Abstract

In this work, we investigate the use of metal-assisted photonic guiding in a polymer-metal waveguide as an alternative approach for high density photonic integration at visible wavelengths. We demonstrate high confinement and long propagation length in sub-wavelength dimensions down to 300nm × 200nm using leakage radiation microscopy at a wavelength of 632.8 nm. Simulations using the finite element method (FEM) show that the optimum dimension that gives good confinement and propagation length is similar to that of the predicted plasmonic mode supported in the same waveguide. Under such optimum conditions, the metal-assisted photonic mode shows a five times longer propagation length and higher transmission efficiency for all 90° bending radius down to 1 μm compared to the plasmonic mode.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. T. Reed and A. P. Knights, in Silicon Photonics: An Introduction (Wiley, England, 2004).
  2. R. Zia, A. J. Schuller, and M. L. Brongersma, “Near-field characterization of guided polariton propagation and cutoff in surface plasmon waveguides,” Phys. Rev. B74(16), 165415 (2006).
    [CrossRef]
  3. E. Ozbay, “Plasmonics: Merging photonics and electronics at nanoscale dimensions,” Science311(5758), 189–193 (2006).
    [CrossRef] [PubMed]
  4. J. C. Weeber, A. Dereux, C. Girard, J. R. Krenn, and J. P. Goudonnet, “Plasmon polaritons of metallic nanowires for controlling submicron propagation of light,” Phys. Rev. B60(12), 9061–9068 (1999).
    [CrossRef]
  5. S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, and T. W. Ebbesen, “Channel plasmon-polariton guiding by subwavelength metal grooves,” Phys. Rev. Lett.95(4), 046802 (2005).
    [CrossRef] [PubMed]
  6. D. F. P. Pile, T. Ogawa, D. K. Gramotnev, Y. Matsuzaki, K. C. Vernon, K. Yamaguchi, T. Okamoto, M. Haraguchi, and M. Fukui, “Two-dimensionally localized modes of a nanoscale gap plasmon waveguide,” Appl. Phys. Lett.87(26), 261114 (2005).
    [CrossRef]
  7. L. Liu, Z. Han, and S. He, “Novel surface plasmon waveguide for high integration,” Opt. Express13(17), 6645–6650 (2005).
    [CrossRef] [PubMed]
  8. S. A. Maier, P. G. Kik, H. A. Atwater, S. Meltzer, E. Harel, B. E. Koel, and A. A. G. Requicha, “Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle Plasmon waveguides,” Nat. Mater.2(4), 229–232 (2003).
    [CrossRef] [PubMed]
  9. J. Grandidier, S. Massenot, G. C. desFrancs, A. Bouhelier, J.-C. Weeber, L. Markey, A. Dereux, J. Renger, M. U. Gonzalez, and R. Quidant, “Dielectric-loaded surface plasmon polariton waveguides: Figures of merit and mode characterization by image and fourier plane leakage microscopy,” Phys. Rev. B78(24), 245419 (2008).
    [CrossRef]
  10. B. Steinberger, A. Hohenau, H. Ditlbacher, F. R. Aussenegg, A. Leitner, and J. R. Krenn, “Dielectric stripes on gold as surface plasmon waveguides: Bends and directional couplers,” Appl. Phys. Lett.91(8), 081111 (2007).
    [CrossRef]
  11. T. Holmgaard, S. I. Bozhevolnyi, L. Markey, and A. Dereux, “Dielectric-loaded surface plasmon-polariton waveguides at telecommunication wavelengths: Excitation and characterization,” Appl. Phys. Lett.92(1), 011124 (2008).
    [CrossRef]
  12. T. Holmgaard, Z. Chen, S. I. Bozhevolnyi, L. Markey, A. Dereux, A. V. Krasavin, and A. V. Zayats, “Bend- and splitting loss of dielectric-loaded surface Plasmon-polariton waveguides,” Opt. Express16(18), 13585–13592 (2008).
    [CrossRef] [PubMed]
  13. A. V. Kravasin and A. V. Zayats, “Passive photonic elements based on dielectric-loaded surface plasmon polariton waveguides,” Appl. Phys. Lett.90(21), 211101 (2007).
    [CrossRef]
  14. V. J. Sorger, Z. Ye, R. F. Oulton, Y. Wang, G. Bartal, X. Yin, and X. Zhang, “Experimental demonstration of low-loss optical waveguiding at deep sub-wavelength scales,” Nature Comm.2, 331 (2011).
    [CrossRef]
  15. H.-S. Chu, E.-P. Li, P. Bai, and R. Hedge, “Optical performance of single-mode hybrid dielectric-loaded plasmonic waveguide-based components,” Appl. Phys. Lett.96(22), 221103 (2010).
    [CrossRef]
  16. W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature424(6950), 824–830 (2003).
    [CrossRef] [PubMed]
  17. P. Berini, “Plasmon-polariton waves guided by thin lossy metal films of finite width: Bound modes of symmetric structures,” Phys. Rev. B61(15), 10484–10503 (2000).
    [CrossRef]
  18. D. Dai, B. Yang, L. Yang, Z. Sheng, and S. He, “Compact microracetrack resonator devices based on small SU-8 polymer strip waveguides,” IEEE Photon. Technol. Lett.21(4), 254–256 (2009).
    [CrossRef]
  19. S. Massenot, J. Grandidier, A. Bouhelier, G. Colas des Francs, L. Markey, J.-C. Weeber, A. Dereux, J. Renger, M. U. Gonzàlez, and R. Quidant, “Polymer-metal waveguides characterization by fourier plane leakage radiation microscopy,” Appl. Phys. Lett.91(24), 243102 (2007).
    [CrossRef]
  20. www.comsol.com
  21. E. D. Palik, Handbook of Optical Constants and Solids (Academic, 1985).
  22. W. Wang, Q. Yang, F. Fan, H. Xu, and Z. L. Wang, “Light propagation in curved silver nanowire plasmonic waveguides,” Nano Lett.11(4), 1603–1608 (2011).
    [CrossRef] [PubMed]

2011 (2)

V. J. Sorger, Z. Ye, R. F. Oulton, Y. Wang, G. Bartal, X. Yin, and X. Zhang, “Experimental demonstration of low-loss optical waveguiding at deep sub-wavelength scales,” Nature Comm.2, 331 (2011).
[CrossRef]

W. Wang, Q. Yang, F. Fan, H. Xu, and Z. L. Wang, “Light propagation in curved silver nanowire plasmonic waveguides,” Nano Lett.11(4), 1603–1608 (2011).
[CrossRef] [PubMed]

2010 (1)

H.-S. Chu, E.-P. Li, P. Bai, and R. Hedge, “Optical performance of single-mode hybrid dielectric-loaded plasmonic waveguide-based components,” Appl. Phys. Lett.96(22), 221103 (2010).
[CrossRef]

2009 (1)

D. Dai, B. Yang, L. Yang, Z. Sheng, and S. He, “Compact microracetrack resonator devices based on small SU-8 polymer strip waveguides,” IEEE Photon. Technol. Lett.21(4), 254–256 (2009).
[CrossRef]

2008 (3)

J. Grandidier, S. Massenot, G. C. desFrancs, A. Bouhelier, J.-C. Weeber, L. Markey, A. Dereux, J. Renger, M. U. Gonzalez, and R. Quidant, “Dielectric-loaded surface plasmon polariton waveguides: Figures of merit and mode characterization by image and fourier plane leakage microscopy,” Phys. Rev. B78(24), 245419 (2008).
[CrossRef]

T. Holmgaard, S. I. Bozhevolnyi, L. Markey, and A. Dereux, “Dielectric-loaded surface plasmon-polariton waveguides at telecommunication wavelengths: Excitation and characterization,” Appl. Phys. Lett.92(1), 011124 (2008).
[CrossRef]

T. Holmgaard, Z. Chen, S. I. Bozhevolnyi, L. Markey, A. Dereux, A. V. Krasavin, and A. V. Zayats, “Bend- and splitting loss of dielectric-loaded surface Plasmon-polariton waveguides,” Opt. Express16(18), 13585–13592 (2008).
[CrossRef] [PubMed]

2007 (3)

A. V. Kravasin and A. V. Zayats, “Passive photonic elements based on dielectric-loaded surface plasmon polariton waveguides,” Appl. Phys. Lett.90(21), 211101 (2007).
[CrossRef]

B. Steinberger, A. Hohenau, H. Ditlbacher, F. R. Aussenegg, A. Leitner, and J. R. Krenn, “Dielectric stripes on gold as surface plasmon waveguides: Bends and directional couplers,” Appl. Phys. Lett.91(8), 081111 (2007).
[CrossRef]

S. Massenot, J. Grandidier, A. Bouhelier, G. Colas des Francs, L. Markey, J.-C. Weeber, A. Dereux, J. Renger, M. U. Gonzàlez, and R. Quidant, “Polymer-metal waveguides characterization by fourier plane leakage radiation microscopy,” Appl. Phys. Lett.91(24), 243102 (2007).
[CrossRef]

2006 (2)

R. Zia, A. J. Schuller, and M. L. Brongersma, “Near-field characterization of guided polariton propagation and cutoff in surface plasmon waveguides,” Phys. Rev. B74(16), 165415 (2006).
[CrossRef]

E. Ozbay, “Plasmonics: Merging photonics and electronics at nanoscale dimensions,” Science311(5758), 189–193 (2006).
[CrossRef] [PubMed]

2005 (3)

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, and T. W. Ebbesen, “Channel plasmon-polariton guiding by subwavelength metal grooves,” Phys. Rev. Lett.95(4), 046802 (2005).
[CrossRef] [PubMed]

D. F. P. Pile, T. Ogawa, D. K. Gramotnev, Y. Matsuzaki, K. C. Vernon, K. Yamaguchi, T. Okamoto, M. Haraguchi, and M. Fukui, “Two-dimensionally localized modes of a nanoscale gap plasmon waveguide,” Appl. Phys. Lett.87(26), 261114 (2005).
[CrossRef]

L. Liu, Z. Han, and S. He, “Novel surface plasmon waveguide for high integration,” Opt. Express13(17), 6645–6650 (2005).
[CrossRef] [PubMed]

2003 (2)

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature424(6950), 824–830 (2003).
[CrossRef] [PubMed]

S. A. Maier, P. G. Kik, H. A. Atwater, S. Meltzer, E. Harel, B. E. Koel, and A. A. G. Requicha, “Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle Plasmon waveguides,” Nat. Mater.2(4), 229–232 (2003).
[CrossRef] [PubMed]

2000 (1)

P. Berini, “Plasmon-polariton waves guided by thin lossy metal films of finite width: Bound modes of symmetric structures,” Phys. Rev. B61(15), 10484–10503 (2000).
[CrossRef]

1999 (1)

J. C. Weeber, A. Dereux, C. Girard, J. R. Krenn, and J. P. Goudonnet, “Plasmon polaritons of metallic nanowires for controlling submicron propagation of light,” Phys. Rev. B60(12), 9061–9068 (1999).
[CrossRef]

Atwater, H. A.

S. A. Maier, P. G. Kik, H. A. Atwater, S. Meltzer, E. Harel, B. E. Koel, and A. A. G. Requicha, “Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle Plasmon waveguides,” Nat. Mater.2(4), 229–232 (2003).
[CrossRef] [PubMed]

Aussenegg, F. R.

B. Steinberger, A. Hohenau, H. Ditlbacher, F. R. Aussenegg, A. Leitner, and J. R. Krenn, “Dielectric stripes on gold as surface plasmon waveguides: Bends and directional couplers,” Appl. Phys. Lett.91(8), 081111 (2007).
[CrossRef]

Bai, P.

H.-S. Chu, E.-P. Li, P. Bai, and R. Hedge, “Optical performance of single-mode hybrid dielectric-loaded plasmonic waveguide-based components,” Appl. Phys. Lett.96(22), 221103 (2010).
[CrossRef]

Barnes, W. L.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature424(6950), 824–830 (2003).
[CrossRef] [PubMed]

Bartal, G.

V. J. Sorger, Z. Ye, R. F. Oulton, Y. Wang, G. Bartal, X. Yin, and X. Zhang, “Experimental demonstration of low-loss optical waveguiding at deep sub-wavelength scales,” Nature Comm.2, 331 (2011).
[CrossRef]

Berini, P.

P. Berini, “Plasmon-polariton waves guided by thin lossy metal films of finite width: Bound modes of symmetric structures,” Phys. Rev. B61(15), 10484–10503 (2000).
[CrossRef]

Bouhelier, A.

J. Grandidier, S. Massenot, G. C. desFrancs, A. Bouhelier, J.-C. Weeber, L. Markey, A. Dereux, J. Renger, M. U. Gonzalez, and R. Quidant, “Dielectric-loaded surface plasmon polariton waveguides: Figures of merit and mode characterization by image and fourier plane leakage microscopy,” Phys. Rev. B78(24), 245419 (2008).
[CrossRef]

S. Massenot, J. Grandidier, A. Bouhelier, G. Colas des Francs, L. Markey, J.-C. Weeber, A. Dereux, J. Renger, M. U. Gonzàlez, and R. Quidant, “Polymer-metal waveguides characterization by fourier plane leakage radiation microscopy,” Appl. Phys. Lett.91(24), 243102 (2007).
[CrossRef]

Bozhevolnyi, S. I.

T. Holmgaard, Z. Chen, S. I. Bozhevolnyi, L. Markey, A. Dereux, A. V. Krasavin, and A. V. Zayats, “Bend- and splitting loss of dielectric-loaded surface Plasmon-polariton waveguides,” Opt. Express16(18), 13585–13592 (2008).
[CrossRef] [PubMed]

T. Holmgaard, S. I. Bozhevolnyi, L. Markey, and A. Dereux, “Dielectric-loaded surface plasmon-polariton waveguides at telecommunication wavelengths: Excitation and characterization,” Appl. Phys. Lett.92(1), 011124 (2008).
[CrossRef]

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, and T. W. Ebbesen, “Channel plasmon-polariton guiding by subwavelength metal grooves,” Phys. Rev. Lett.95(4), 046802 (2005).
[CrossRef] [PubMed]

Brongersma, M. L.

R. Zia, A. J. Schuller, and M. L. Brongersma, “Near-field characterization of guided polariton propagation and cutoff in surface plasmon waveguides,” Phys. Rev. B74(16), 165415 (2006).
[CrossRef]

Chen, Z.

Chu, H.-S.

H.-S. Chu, E.-P. Li, P. Bai, and R. Hedge, “Optical performance of single-mode hybrid dielectric-loaded plasmonic waveguide-based components,” Appl. Phys. Lett.96(22), 221103 (2010).
[CrossRef]

Colas des Francs, G.

S. Massenot, J. Grandidier, A. Bouhelier, G. Colas des Francs, L. Markey, J.-C. Weeber, A. Dereux, J. Renger, M. U. Gonzàlez, and R. Quidant, “Polymer-metal waveguides characterization by fourier plane leakage radiation microscopy,” Appl. Phys. Lett.91(24), 243102 (2007).
[CrossRef]

Dai, D.

D. Dai, B. Yang, L. Yang, Z. Sheng, and S. He, “Compact microracetrack resonator devices based on small SU-8 polymer strip waveguides,” IEEE Photon. Technol. Lett.21(4), 254–256 (2009).
[CrossRef]

Dereux, A.

T. Holmgaard, Z. Chen, S. I. Bozhevolnyi, L. Markey, A. Dereux, A. V. Krasavin, and A. V. Zayats, “Bend- and splitting loss of dielectric-loaded surface Plasmon-polariton waveguides,” Opt. Express16(18), 13585–13592 (2008).
[CrossRef] [PubMed]

T. Holmgaard, S. I. Bozhevolnyi, L. Markey, and A. Dereux, “Dielectric-loaded surface plasmon-polariton waveguides at telecommunication wavelengths: Excitation and characterization,” Appl. Phys. Lett.92(1), 011124 (2008).
[CrossRef]

J. Grandidier, S. Massenot, G. C. desFrancs, A. Bouhelier, J.-C. Weeber, L. Markey, A. Dereux, J. Renger, M. U. Gonzalez, and R. Quidant, “Dielectric-loaded surface plasmon polariton waveguides: Figures of merit and mode characterization by image and fourier plane leakage microscopy,” Phys. Rev. B78(24), 245419 (2008).
[CrossRef]

S. Massenot, J. Grandidier, A. Bouhelier, G. Colas des Francs, L. Markey, J.-C. Weeber, A. Dereux, J. Renger, M. U. Gonzàlez, and R. Quidant, “Polymer-metal waveguides characterization by fourier plane leakage radiation microscopy,” Appl. Phys. Lett.91(24), 243102 (2007).
[CrossRef]

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature424(6950), 824–830 (2003).
[CrossRef] [PubMed]

J. C. Weeber, A. Dereux, C. Girard, J. R. Krenn, and J. P. Goudonnet, “Plasmon polaritons of metallic nanowires for controlling submicron propagation of light,” Phys. Rev. B60(12), 9061–9068 (1999).
[CrossRef]

desFrancs, G. C.

J. Grandidier, S. Massenot, G. C. desFrancs, A. Bouhelier, J.-C. Weeber, L. Markey, A. Dereux, J. Renger, M. U. Gonzalez, and R. Quidant, “Dielectric-loaded surface plasmon polariton waveguides: Figures of merit and mode characterization by image and fourier plane leakage microscopy,” Phys. Rev. B78(24), 245419 (2008).
[CrossRef]

Devaux, E.

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, and T. W. Ebbesen, “Channel plasmon-polariton guiding by subwavelength metal grooves,” Phys. Rev. Lett.95(4), 046802 (2005).
[CrossRef] [PubMed]

Ditlbacher, H.

B. Steinberger, A. Hohenau, H. Ditlbacher, F. R. Aussenegg, A. Leitner, and J. R. Krenn, “Dielectric stripes on gold as surface plasmon waveguides: Bends and directional couplers,” Appl. Phys. Lett.91(8), 081111 (2007).
[CrossRef]

Ebbesen, T. W.

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, and T. W. Ebbesen, “Channel plasmon-polariton guiding by subwavelength metal grooves,” Phys. Rev. Lett.95(4), 046802 (2005).
[CrossRef] [PubMed]

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature424(6950), 824–830 (2003).
[CrossRef] [PubMed]

Fan, F.

W. Wang, Q. Yang, F. Fan, H. Xu, and Z. L. Wang, “Light propagation in curved silver nanowire plasmonic waveguides,” Nano Lett.11(4), 1603–1608 (2011).
[CrossRef] [PubMed]

Fukui, M.

D. F. P. Pile, T. Ogawa, D. K. Gramotnev, Y. Matsuzaki, K. C. Vernon, K. Yamaguchi, T. Okamoto, M. Haraguchi, and M. Fukui, “Two-dimensionally localized modes of a nanoscale gap plasmon waveguide,” Appl. Phys. Lett.87(26), 261114 (2005).
[CrossRef]

Girard, C.

J. C. Weeber, A. Dereux, C. Girard, J. R. Krenn, and J. P. Goudonnet, “Plasmon polaritons of metallic nanowires for controlling submicron propagation of light,” Phys. Rev. B60(12), 9061–9068 (1999).
[CrossRef]

Gonzalez, M. U.

J. Grandidier, S. Massenot, G. C. desFrancs, A. Bouhelier, J.-C. Weeber, L. Markey, A. Dereux, J. Renger, M. U. Gonzalez, and R. Quidant, “Dielectric-loaded surface plasmon polariton waveguides: Figures of merit and mode characterization by image and fourier plane leakage microscopy,” Phys. Rev. B78(24), 245419 (2008).
[CrossRef]

Gonzàlez, M. U.

S. Massenot, J. Grandidier, A. Bouhelier, G. Colas des Francs, L. Markey, J.-C. Weeber, A. Dereux, J. Renger, M. U. Gonzàlez, and R. Quidant, “Polymer-metal waveguides characterization by fourier plane leakage radiation microscopy,” Appl. Phys. Lett.91(24), 243102 (2007).
[CrossRef]

Goudonnet, J. P.

J. C. Weeber, A. Dereux, C. Girard, J. R. Krenn, and J. P. Goudonnet, “Plasmon polaritons of metallic nanowires for controlling submicron propagation of light,” Phys. Rev. B60(12), 9061–9068 (1999).
[CrossRef]

Gramotnev, D. K.

D. F. P. Pile, T. Ogawa, D. K. Gramotnev, Y. Matsuzaki, K. C. Vernon, K. Yamaguchi, T. Okamoto, M. Haraguchi, and M. Fukui, “Two-dimensionally localized modes of a nanoscale gap plasmon waveguide,” Appl. Phys. Lett.87(26), 261114 (2005).
[CrossRef]

Grandidier, J.

J. Grandidier, S. Massenot, G. C. desFrancs, A. Bouhelier, J.-C. Weeber, L. Markey, A. Dereux, J. Renger, M. U. Gonzalez, and R. Quidant, “Dielectric-loaded surface plasmon polariton waveguides: Figures of merit and mode characterization by image and fourier plane leakage microscopy,” Phys. Rev. B78(24), 245419 (2008).
[CrossRef]

S. Massenot, J. Grandidier, A. Bouhelier, G. Colas des Francs, L. Markey, J.-C. Weeber, A. Dereux, J. Renger, M. U. Gonzàlez, and R. Quidant, “Polymer-metal waveguides characterization by fourier plane leakage radiation microscopy,” Appl. Phys. Lett.91(24), 243102 (2007).
[CrossRef]

Han, Z.

Haraguchi, M.

D. F. P. Pile, T. Ogawa, D. K. Gramotnev, Y. Matsuzaki, K. C. Vernon, K. Yamaguchi, T. Okamoto, M. Haraguchi, and M. Fukui, “Two-dimensionally localized modes of a nanoscale gap plasmon waveguide,” Appl. Phys. Lett.87(26), 261114 (2005).
[CrossRef]

Harel, E.

S. A. Maier, P. G. Kik, H. A. Atwater, S. Meltzer, E. Harel, B. E. Koel, and A. A. G. Requicha, “Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle Plasmon waveguides,” Nat. Mater.2(4), 229–232 (2003).
[CrossRef] [PubMed]

He, S.

D. Dai, B. Yang, L. Yang, Z. Sheng, and S. He, “Compact microracetrack resonator devices based on small SU-8 polymer strip waveguides,” IEEE Photon. Technol. Lett.21(4), 254–256 (2009).
[CrossRef]

L. Liu, Z. Han, and S. He, “Novel surface plasmon waveguide for high integration,” Opt. Express13(17), 6645–6650 (2005).
[CrossRef] [PubMed]

Hedge, R.

H.-S. Chu, E.-P. Li, P. Bai, and R. Hedge, “Optical performance of single-mode hybrid dielectric-loaded plasmonic waveguide-based components,” Appl. Phys. Lett.96(22), 221103 (2010).
[CrossRef]

Hohenau, A.

B. Steinberger, A. Hohenau, H. Ditlbacher, F. R. Aussenegg, A. Leitner, and J. R. Krenn, “Dielectric stripes on gold as surface plasmon waveguides: Bends and directional couplers,” Appl. Phys. Lett.91(8), 081111 (2007).
[CrossRef]

Holmgaard, T.

T. Holmgaard, S. I. Bozhevolnyi, L. Markey, and A. Dereux, “Dielectric-loaded surface plasmon-polariton waveguides at telecommunication wavelengths: Excitation and characterization,” Appl. Phys. Lett.92(1), 011124 (2008).
[CrossRef]

T. Holmgaard, Z. Chen, S. I. Bozhevolnyi, L. Markey, A. Dereux, A. V. Krasavin, and A. V. Zayats, “Bend- and splitting loss of dielectric-loaded surface Plasmon-polariton waveguides,” Opt. Express16(18), 13585–13592 (2008).
[CrossRef] [PubMed]

Kik, P. G.

S. A. Maier, P. G. Kik, H. A. Atwater, S. Meltzer, E. Harel, B. E. Koel, and A. A. G. Requicha, “Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle Plasmon waveguides,” Nat. Mater.2(4), 229–232 (2003).
[CrossRef] [PubMed]

Koel, B. E.

S. A. Maier, P. G. Kik, H. A. Atwater, S. Meltzer, E. Harel, B. E. Koel, and A. A. G. Requicha, “Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle Plasmon waveguides,” Nat. Mater.2(4), 229–232 (2003).
[CrossRef] [PubMed]

Krasavin, A. V.

Kravasin, A. V.

A. V. Kravasin and A. V. Zayats, “Passive photonic elements based on dielectric-loaded surface plasmon polariton waveguides,” Appl. Phys. Lett.90(21), 211101 (2007).
[CrossRef]

Krenn, J. R.

B. Steinberger, A. Hohenau, H. Ditlbacher, F. R. Aussenegg, A. Leitner, and J. R. Krenn, “Dielectric stripes on gold as surface plasmon waveguides: Bends and directional couplers,” Appl. Phys. Lett.91(8), 081111 (2007).
[CrossRef]

J. C. Weeber, A. Dereux, C. Girard, J. R. Krenn, and J. P. Goudonnet, “Plasmon polaritons of metallic nanowires for controlling submicron propagation of light,” Phys. Rev. B60(12), 9061–9068 (1999).
[CrossRef]

Leitner, A.

B. Steinberger, A. Hohenau, H. Ditlbacher, F. R. Aussenegg, A. Leitner, and J. R. Krenn, “Dielectric stripes on gold as surface plasmon waveguides: Bends and directional couplers,” Appl. Phys. Lett.91(8), 081111 (2007).
[CrossRef]

Li, E.-P.

H.-S. Chu, E.-P. Li, P. Bai, and R. Hedge, “Optical performance of single-mode hybrid dielectric-loaded plasmonic waveguide-based components,” Appl. Phys. Lett.96(22), 221103 (2010).
[CrossRef]

Liu, L.

Maier, S. A.

S. A. Maier, P. G. Kik, H. A. Atwater, S. Meltzer, E. Harel, B. E. Koel, and A. A. G. Requicha, “Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle Plasmon waveguides,” Nat. Mater.2(4), 229–232 (2003).
[CrossRef] [PubMed]

Markey, L.

T. Holmgaard, S. I. Bozhevolnyi, L. Markey, and A. Dereux, “Dielectric-loaded surface plasmon-polariton waveguides at telecommunication wavelengths: Excitation and characterization,” Appl. Phys. Lett.92(1), 011124 (2008).
[CrossRef]

T. Holmgaard, Z. Chen, S. I. Bozhevolnyi, L. Markey, A. Dereux, A. V. Krasavin, and A. V. Zayats, “Bend- and splitting loss of dielectric-loaded surface Plasmon-polariton waveguides,” Opt. Express16(18), 13585–13592 (2008).
[CrossRef] [PubMed]

J. Grandidier, S. Massenot, G. C. desFrancs, A. Bouhelier, J.-C. Weeber, L. Markey, A. Dereux, J. Renger, M. U. Gonzalez, and R. Quidant, “Dielectric-loaded surface plasmon polariton waveguides: Figures of merit and mode characterization by image and fourier plane leakage microscopy,” Phys. Rev. B78(24), 245419 (2008).
[CrossRef]

S. Massenot, J. Grandidier, A. Bouhelier, G. Colas des Francs, L. Markey, J.-C. Weeber, A. Dereux, J. Renger, M. U. Gonzàlez, and R. Quidant, “Polymer-metal waveguides characterization by fourier plane leakage radiation microscopy,” Appl. Phys. Lett.91(24), 243102 (2007).
[CrossRef]

Massenot, S.

J. Grandidier, S. Massenot, G. C. desFrancs, A. Bouhelier, J.-C. Weeber, L. Markey, A. Dereux, J. Renger, M. U. Gonzalez, and R. Quidant, “Dielectric-loaded surface plasmon polariton waveguides: Figures of merit and mode characterization by image and fourier plane leakage microscopy,” Phys. Rev. B78(24), 245419 (2008).
[CrossRef]

S. Massenot, J. Grandidier, A. Bouhelier, G. Colas des Francs, L. Markey, J.-C. Weeber, A. Dereux, J. Renger, M. U. Gonzàlez, and R. Quidant, “Polymer-metal waveguides characterization by fourier plane leakage radiation microscopy,” Appl. Phys. Lett.91(24), 243102 (2007).
[CrossRef]

Matsuzaki, Y.

D. F. P. Pile, T. Ogawa, D. K. Gramotnev, Y. Matsuzaki, K. C. Vernon, K. Yamaguchi, T. Okamoto, M. Haraguchi, and M. Fukui, “Two-dimensionally localized modes of a nanoscale gap plasmon waveguide,” Appl. Phys. Lett.87(26), 261114 (2005).
[CrossRef]

Meltzer, S.

S. A. Maier, P. G. Kik, H. A. Atwater, S. Meltzer, E. Harel, B. E. Koel, and A. A. G. Requicha, “Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle Plasmon waveguides,” Nat. Mater.2(4), 229–232 (2003).
[CrossRef] [PubMed]

Ogawa, T.

D. F. P. Pile, T. Ogawa, D. K. Gramotnev, Y. Matsuzaki, K. C. Vernon, K. Yamaguchi, T. Okamoto, M. Haraguchi, and M. Fukui, “Two-dimensionally localized modes of a nanoscale gap plasmon waveguide,” Appl. Phys. Lett.87(26), 261114 (2005).
[CrossRef]

Okamoto, T.

D. F. P. Pile, T. Ogawa, D. K. Gramotnev, Y. Matsuzaki, K. C. Vernon, K. Yamaguchi, T. Okamoto, M. Haraguchi, and M. Fukui, “Two-dimensionally localized modes of a nanoscale gap plasmon waveguide,” Appl. Phys. Lett.87(26), 261114 (2005).
[CrossRef]

Oulton, R. F.

V. J. Sorger, Z. Ye, R. F. Oulton, Y. Wang, G. Bartal, X. Yin, and X. Zhang, “Experimental demonstration of low-loss optical waveguiding at deep sub-wavelength scales,” Nature Comm.2, 331 (2011).
[CrossRef]

Ozbay, E.

E. Ozbay, “Plasmonics: Merging photonics and electronics at nanoscale dimensions,” Science311(5758), 189–193 (2006).
[CrossRef] [PubMed]

Pile, D. F. P.

D. F. P. Pile, T. Ogawa, D. K. Gramotnev, Y. Matsuzaki, K. C. Vernon, K. Yamaguchi, T. Okamoto, M. Haraguchi, and M. Fukui, “Two-dimensionally localized modes of a nanoscale gap plasmon waveguide,” Appl. Phys. Lett.87(26), 261114 (2005).
[CrossRef]

Quidant, R.

J. Grandidier, S. Massenot, G. C. desFrancs, A. Bouhelier, J.-C. Weeber, L. Markey, A. Dereux, J. Renger, M. U. Gonzalez, and R. Quidant, “Dielectric-loaded surface plasmon polariton waveguides: Figures of merit and mode characterization by image and fourier plane leakage microscopy,” Phys. Rev. B78(24), 245419 (2008).
[CrossRef]

S. Massenot, J. Grandidier, A. Bouhelier, G. Colas des Francs, L. Markey, J.-C. Weeber, A. Dereux, J. Renger, M. U. Gonzàlez, and R. Quidant, “Polymer-metal waveguides characterization by fourier plane leakage radiation microscopy,” Appl. Phys. Lett.91(24), 243102 (2007).
[CrossRef]

Renger, J.

J. Grandidier, S. Massenot, G. C. desFrancs, A. Bouhelier, J.-C. Weeber, L. Markey, A. Dereux, J. Renger, M. U. Gonzalez, and R. Quidant, “Dielectric-loaded surface plasmon polariton waveguides: Figures of merit and mode characterization by image and fourier plane leakage microscopy,” Phys. Rev. B78(24), 245419 (2008).
[CrossRef]

S. Massenot, J. Grandidier, A. Bouhelier, G. Colas des Francs, L. Markey, J.-C. Weeber, A. Dereux, J. Renger, M. U. Gonzàlez, and R. Quidant, “Polymer-metal waveguides characterization by fourier plane leakage radiation microscopy,” Appl. Phys. Lett.91(24), 243102 (2007).
[CrossRef]

Requicha, A. A. G.

S. A. Maier, P. G. Kik, H. A. Atwater, S. Meltzer, E. Harel, B. E. Koel, and A. A. G. Requicha, “Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle Plasmon waveguides,” Nat. Mater.2(4), 229–232 (2003).
[CrossRef] [PubMed]

Schuller, A. J.

R. Zia, A. J. Schuller, and M. L. Brongersma, “Near-field characterization of guided polariton propagation and cutoff in surface plasmon waveguides,” Phys. Rev. B74(16), 165415 (2006).
[CrossRef]

Sheng, Z.

D. Dai, B. Yang, L. Yang, Z. Sheng, and S. He, “Compact microracetrack resonator devices based on small SU-8 polymer strip waveguides,” IEEE Photon. Technol. Lett.21(4), 254–256 (2009).
[CrossRef]

Sorger, V. J.

V. J. Sorger, Z. Ye, R. F. Oulton, Y. Wang, G. Bartal, X. Yin, and X. Zhang, “Experimental demonstration of low-loss optical waveguiding at deep sub-wavelength scales,” Nature Comm.2, 331 (2011).
[CrossRef]

Steinberger, B.

B. Steinberger, A. Hohenau, H. Ditlbacher, F. R. Aussenegg, A. Leitner, and J. R. Krenn, “Dielectric stripes on gold as surface plasmon waveguides: Bends and directional couplers,” Appl. Phys. Lett.91(8), 081111 (2007).
[CrossRef]

Vernon, K. C.

D. F. P. Pile, T. Ogawa, D. K. Gramotnev, Y. Matsuzaki, K. C. Vernon, K. Yamaguchi, T. Okamoto, M. Haraguchi, and M. Fukui, “Two-dimensionally localized modes of a nanoscale gap plasmon waveguide,” Appl. Phys. Lett.87(26), 261114 (2005).
[CrossRef]

Volkov, V. S.

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, and T. W. Ebbesen, “Channel plasmon-polariton guiding by subwavelength metal grooves,” Phys. Rev. Lett.95(4), 046802 (2005).
[CrossRef] [PubMed]

Wang, W.

W. Wang, Q. Yang, F. Fan, H. Xu, and Z. L. Wang, “Light propagation in curved silver nanowire plasmonic waveguides,” Nano Lett.11(4), 1603–1608 (2011).
[CrossRef] [PubMed]

Wang, Y.

V. J. Sorger, Z. Ye, R. F. Oulton, Y. Wang, G. Bartal, X. Yin, and X. Zhang, “Experimental demonstration of low-loss optical waveguiding at deep sub-wavelength scales,” Nature Comm.2, 331 (2011).
[CrossRef]

Wang, Z. L.

W. Wang, Q. Yang, F. Fan, H. Xu, and Z. L. Wang, “Light propagation in curved silver nanowire plasmonic waveguides,” Nano Lett.11(4), 1603–1608 (2011).
[CrossRef] [PubMed]

Weeber, J. C.

J. C. Weeber, A. Dereux, C. Girard, J. R. Krenn, and J. P. Goudonnet, “Plasmon polaritons of metallic nanowires for controlling submicron propagation of light,” Phys. Rev. B60(12), 9061–9068 (1999).
[CrossRef]

Weeber, J.-C.

J. Grandidier, S. Massenot, G. C. desFrancs, A. Bouhelier, J.-C. Weeber, L. Markey, A. Dereux, J. Renger, M. U. Gonzalez, and R. Quidant, “Dielectric-loaded surface plasmon polariton waveguides: Figures of merit and mode characterization by image and fourier plane leakage microscopy,” Phys. Rev. B78(24), 245419 (2008).
[CrossRef]

S. Massenot, J. Grandidier, A. Bouhelier, G. Colas des Francs, L. Markey, J.-C. Weeber, A. Dereux, J. Renger, M. U. Gonzàlez, and R. Quidant, “Polymer-metal waveguides characterization by fourier plane leakage radiation microscopy,” Appl. Phys. Lett.91(24), 243102 (2007).
[CrossRef]

Xu, H.

W. Wang, Q. Yang, F. Fan, H. Xu, and Z. L. Wang, “Light propagation in curved silver nanowire plasmonic waveguides,” Nano Lett.11(4), 1603–1608 (2011).
[CrossRef] [PubMed]

Yamaguchi, K.

D. F. P. Pile, T. Ogawa, D. K. Gramotnev, Y. Matsuzaki, K. C. Vernon, K. Yamaguchi, T. Okamoto, M. Haraguchi, and M. Fukui, “Two-dimensionally localized modes of a nanoscale gap plasmon waveguide,” Appl. Phys. Lett.87(26), 261114 (2005).
[CrossRef]

Yang, B.

D. Dai, B. Yang, L. Yang, Z. Sheng, and S. He, “Compact microracetrack resonator devices based on small SU-8 polymer strip waveguides,” IEEE Photon. Technol. Lett.21(4), 254–256 (2009).
[CrossRef]

Yang, L.

D. Dai, B. Yang, L. Yang, Z. Sheng, and S. He, “Compact microracetrack resonator devices based on small SU-8 polymer strip waveguides,” IEEE Photon. Technol. Lett.21(4), 254–256 (2009).
[CrossRef]

Yang, Q.

W. Wang, Q. Yang, F. Fan, H. Xu, and Z. L. Wang, “Light propagation in curved silver nanowire plasmonic waveguides,” Nano Lett.11(4), 1603–1608 (2011).
[CrossRef] [PubMed]

Ye, Z.

V. J. Sorger, Z. Ye, R. F. Oulton, Y. Wang, G. Bartal, X. Yin, and X. Zhang, “Experimental demonstration of low-loss optical waveguiding at deep sub-wavelength scales,” Nature Comm.2, 331 (2011).
[CrossRef]

Yin, X.

V. J. Sorger, Z. Ye, R. F. Oulton, Y. Wang, G. Bartal, X. Yin, and X. Zhang, “Experimental demonstration of low-loss optical waveguiding at deep sub-wavelength scales,” Nature Comm.2, 331 (2011).
[CrossRef]

Zayats, A. V.

Zhang, X.

V. J. Sorger, Z. Ye, R. F. Oulton, Y. Wang, G. Bartal, X. Yin, and X. Zhang, “Experimental demonstration of low-loss optical waveguiding at deep sub-wavelength scales,” Nature Comm.2, 331 (2011).
[CrossRef]

Zia, R.

R. Zia, A. J. Schuller, and M. L. Brongersma, “Near-field characterization of guided polariton propagation and cutoff in surface plasmon waveguides,” Phys. Rev. B74(16), 165415 (2006).
[CrossRef]

Appl. Phys. Lett. (6)

B. Steinberger, A. Hohenau, H. Ditlbacher, F. R. Aussenegg, A. Leitner, and J. R. Krenn, “Dielectric stripes on gold as surface plasmon waveguides: Bends and directional couplers,” Appl. Phys. Lett.91(8), 081111 (2007).
[CrossRef]

T. Holmgaard, S. I. Bozhevolnyi, L. Markey, and A. Dereux, “Dielectric-loaded surface plasmon-polariton waveguides at telecommunication wavelengths: Excitation and characterization,” Appl. Phys. Lett.92(1), 011124 (2008).
[CrossRef]

A. V. Kravasin and A. V. Zayats, “Passive photonic elements based on dielectric-loaded surface plasmon polariton waveguides,” Appl. Phys. Lett.90(21), 211101 (2007).
[CrossRef]

D. F. P. Pile, T. Ogawa, D. K. Gramotnev, Y. Matsuzaki, K. C. Vernon, K. Yamaguchi, T. Okamoto, M. Haraguchi, and M. Fukui, “Two-dimensionally localized modes of a nanoscale gap plasmon waveguide,” Appl. Phys. Lett.87(26), 261114 (2005).
[CrossRef]

H.-S. Chu, E.-P. Li, P. Bai, and R. Hedge, “Optical performance of single-mode hybrid dielectric-loaded plasmonic waveguide-based components,” Appl. Phys. Lett.96(22), 221103 (2010).
[CrossRef]

S. Massenot, J. Grandidier, A. Bouhelier, G. Colas des Francs, L. Markey, J.-C. Weeber, A. Dereux, J. Renger, M. U. Gonzàlez, and R. Quidant, “Polymer-metal waveguides characterization by fourier plane leakage radiation microscopy,” Appl. Phys. Lett.91(24), 243102 (2007).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

D. Dai, B. Yang, L. Yang, Z. Sheng, and S. He, “Compact microracetrack resonator devices based on small SU-8 polymer strip waveguides,” IEEE Photon. Technol. Lett.21(4), 254–256 (2009).
[CrossRef]

Nano Lett. (1)

W. Wang, Q. Yang, F. Fan, H. Xu, and Z. L. Wang, “Light propagation in curved silver nanowire plasmonic waveguides,” Nano Lett.11(4), 1603–1608 (2011).
[CrossRef] [PubMed]

Nat. Mater. (1)

S. A. Maier, P. G. Kik, H. A. Atwater, S. Meltzer, E. Harel, B. E. Koel, and A. A. G. Requicha, “Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle Plasmon waveguides,” Nat. Mater.2(4), 229–232 (2003).
[CrossRef] [PubMed]

Nature (1)

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature424(6950), 824–830 (2003).
[CrossRef] [PubMed]

Nature Comm. (1)

V. J. Sorger, Z. Ye, R. F. Oulton, Y. Wang, G. Bartal, X. Yin, and X. Zhang, “Experimental demonstration of low-loss optical waveguiding at deep sub-wavelength scales,” Nature Comm.2, 331 (2011).
[CrossRef]

Opt. Express (2)

Phys. Rev. B (4)

R. Zia, A. J. Schuller, and M. L. Brongersma, “Near-field characterization of guided polariton propagation and cutoff in surface plasmon waveguides,” Phys. Rev. B74(16), 165415 (2006).
[CrossRef]

J. C. Weeber, A. Dereux, C. Girard, J. R. Krenn, and J. P. Goudonnet, “Plasmon polaritons of metallic nanowires for controlling submicron propagation of light,” Phys. Rev. B60(12), 9061–9068 (1999).
[CrossRef]

P. Berini, “Plasmon-polariton waves guided by thin lossy metal films of finite width: Bound modes of symmetric structures,” Phys. Rev. B61(15), 10484–10503 (2000).
[CrossRef]

J. Grandidier, S. Massenot, G. C. desFrancs, A. Bouhelier, J.-C. Weeber, L. Markey, A. Dereux, J. Renger, M. U. Gonzalez, and R. Quidant, “Dielectric-loaded surface plasmon polariton waveguides: Figures of merit and mode characterization by image and fourier plane leakage microscopy,” Phys. Rev. B78(24), 245419 (2008).
[CrossRef]

Phys. Rev. Lett. (1)

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, and T. W. Ebbesen, “Channel plasmon-polariton guiding by subwavelength metal grooves,” Phys. Rev. Lett.95(4), 046802 (2005).
[CrossRef] [PubMed]

Science (1)

E. Ozbay, “Plasmonics: Merging photonics and electronics at nanoscale dimensions,” Science311(5758), 189–193 (2006).
[CrossRef] [PubMed]

Other (3)

G. T. Reed and A. P. Knights, in Silicon Photonics: An Introduction (Wiley, England, 2004).

www.comsol.com

E. D. Palik, Handbook of Optical Constants and Solids (Academic, 1985).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

(a) Schematic cross-sectional view of the waveguide. (b) Electric field distribution of the fundamental (b) photonic TE0 and (c) plasmonic TM0 modes supported in the waveguide. The waveguide size is 500 × 200 nm in the simulation.

Fig. 2
Fig. 2

(a) Scanning electron micrograph (SEM) showing the excitation of the modes at the edge of the waveguide taper. Light propagation in the waveguide (b) in direct plane for widths of 300, 400 and 500 nm. (c) Fourier image recorded by LRM of the guided photonic mode for a 500 × 200 nm waveguide.

Fig. 3
Fig. 3

Plots of the (a) mode index, (b) propagation length and (c) confinement factor as a function of width. Solid red and black lines correspond to simulated data for plasmonic TM0 mode and photonic TE0 mode respectively. The black square symbols correspond to experimental data for TE0 mode. The broken vertical line indicates the cut-off width for the TE0 mode.

Fig. 4
Fig. 4

(a) AFM of 90° and U-bend with 1 µm radius of curvature. (b) LRM of TE0 transmission around 90° and U-bends with 1, 3 and 5 µm radii of curvature.

Fig. 5
Fig. 5

(a) Close-up of the experimental and calculated transmission around a 1 μm bending radius. Plot of the transmission (b) and bending loss (c) data for the observed TE0 and the predicted TM0 modes.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

Bending loss( dB Bend )=10logTpropagation loss( dB μm ) πr 2 .

Metrics