Abstract

This paper reports monitoring fruits maturation using speckle technique. Performed measurements aim the assessing of biological inner fruit variation effect on the speckle image. We show that the speckle grain size is both affected by the glucose level inside the fruits and by the chlorophyll content. Moreover, the determination of circular polarization degree and circular grain size indicate that a Rayleigh diffusion regime gradually becomes predominant in fruits. Principal component analysis is used to highlight high correlation between results and strengthen the establishment of speckle as a novel non invasive method to monitor fruits ripening.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. F. R. Harker, J. H. Maindonald, and P. J. Jackson, “Penetrometer Measurement of Apple and Kiwifruit Firmness: Operator and Instrument Differences,” J. Am. Soc. Horticult. Sci.121, 927–936 (1996).
  2. A. d. J. Maurizio Ventura, H. de Putter, and F. P. Roelofs, “Non-destructive determination of soluble solids in apple fruit by near infrared spectroscopy,” Postharvest Biol. Technol.14, 21–27 (1998).
    [CrossRef]
  3. A. Zdunek, L. Muravsky, L. Frankevych, and K. Konstankiewicz, “New nondestructive method based on spatial-temporal speckle correlation technique for evaluation of apples quality during shelf-life,” Int. Agrophys.21, 305–310 (2007).
  4. G. F. Rabelo, R. A. Braga Junior, I. M. Fabbro, M. R. Trivi, H. J. Rabal, and R. Arizaga, “Laser speckle techniques in quality evaluation of orange fruits,” Revista Brasileira de Engenharia Agricola e Ambiental9, 570–575 (2005).
    [CrossRef]
  5. M. Pajuelo, G. Baldwin, H. Rabal, N. Cap, R. Arizaga, and M. Trivi, “Bio-speckle assessment of bruising in fruits,” Opt. Lasers Eng.40, 13–24 (2003).
    [CrossRef]
  6. B. Cordenunsi and F. Lajolo, “Starch Breakdown during Banana Ripening: Sucrose Synthase and Sucrose Phosphate Synthase,” J. Agric. Food Chem.43, 347–351 (1995).
    [CrossRef]
  7. J. W. Goodman, “Statistical Properties of Laser Speckle Patterns,” in Laser speckle and related phenomena, 9 in series Topics in Applied Physics, J. C. Dainty, Ed., (Springer-Verlag, 1984).
  8. Q. B. Li and F. P. Chiang, “Three-dimensional dimension of laser speckle,” Appl. Opt.31, 6287–6291 (1992).
    [CrossRef] [PubMed]
  9. S. Morgan and M. Ridgway, “Polarization properties of light backscattered from a two layer scattering medium,” Opt. Express7, 395–402 (2000).
    [CrossRef] [PubMed]
  10. Y. Piederrière, F. Boulvert, J. Cariou, B. Le Jeune, Y. Guern, and G. Le Brun, “Backscattered speckle size as a function of polarization: influence of particle-size and concentration,” Opt. Express13, 5030–5039 (2005).
    [CrossRef] [PubMed]
  11. S. G. Demos and R. R. Alfano, “Optical polarization imaging,” Appl. Opt.36, 150–155 (1997).
    [CrossRef] [PubMed]
  12. C. Liu, Y. Song, D. Zhang, and H. Zhang, “On-spot evaluation of maturity stage of fruits based on 655 nm laser-induced photoluminescence of chlorophyll-α,” Metamaterials9, 57–59(2006).
  13. E. W. Yemm and A. J. Willis, “The estimation of carbohydrates in plant extracts by anthrone,” Biochem. J.57, 508–514 (1954).
    [PubMed]
  14. C. Magné, M. Bonenfant-Magné, and J.-C. Audran, “Nitrogenous indicators of postharvest ripening and senescence in apple fruit (malus domestica borkh. cv. granny smith),” Int. J. Plant Sci.158, 811–817 (1997).
    [CrossRef]
  15. H. K. Lichtenthaler and C. Buschmann, “Chlorophylls and Carotenoids: Measurement and Characterization by UV-VIS Spectroscopy,” in Current Protocols in Food Analytical Chemistry, (John Wiley & Sons, Inc., 2001) 705–758.
  16. H. C. van de Hulst, “Rayleigh-Gans scattering,” in Light Scattering by Small Particles, (Dover Publications, Inc., 1981) 85–88.
  17. J. S. Maier, S. A. Walker, S. Fantini, M. A. Franceschini, and E. Gratton, “Possible correlation between blood glucose concentration and the reduced scattering coefficient of tissues in the near infrared,” Opt. Lett.24, 2062–2064 (1994).
    [CrossRef]
  18. Y. Piederrière, J. Cariou, Y. Guern, B. Le Jeune, G. Le Brun, and J. Lortrian, “Scattering through fluids: speckle size measurement and monte carlo simulations close to and into the multiple scattering,” Opt. Express12, 176–188 (2004).
    [CrossRef] [PubMed]
  19. H. Abdi and L. J. Williams, “Principal component analysis,” WIREs Comp. Stat.2, 433–459 (2010).
    [CrossRef]

2010

H. Abdi and L. J. Williams, “Principal component analysis,” WIREs Comp. Stat.2, 433–459 (2010).
[CrossRef]

2007

A. Zdunek, L. Muravsky, L. Frankevych, and K. Konstankiewicz, “New nondestructive method based on spatial-temporal speckle correlation technique for evaluation of apples quality during shelf-life,” Int. Agrophys.21, 305–310 (2007).

2006

C. Liu, Y. Song, D. Zhang, and H. Zhang, “On-spot evaluation of maturity stage of fruits based on 655 nm laser-induced photoluminescence of chlorophyll-α,” Metamaterials9, 57–59(2006).

2005

G. F. Rabelo, R. A. Braga Junior, I. M. Fabbro, M. R. Trivi, H. J. Rabal, and R. Arizaga, “Laser speckle techniques in quality evaluation of orange fruits,” Revista Brasileira de Engenharia Agricola e Ambiental9, 570–575 (2005).
[CrossRef]

Y. Piederrière, F. Boulvert, J. Cariou, B. Le Jeune, Y. Guern, and G. Le Brun, “Backscattered speckle size as a function of polarization: influence of particle-size and concentration,” Opt. Express13, 5030–5039 (2005).
[CrossRef] [PubMed]

2004

2003

M. Pajuelo, G. Baldwin, H. Rabal, N. Cap, R. Arizaga, and M. Trivi, “Bio-speckle assessment of bruising in fruits,” Opt. Lasers Eng.40, 13–24 (2003).
[CrossRef]

2000

1998

A. d. J. Maurizio Ventura, H. de Putter, and F. P. Roelofs, “Non-destructive determination of soluble solids in apple fruit by near infrared spectroscopy,” Postharvest Biol. Technol.14, 21–27 (1998).
[CrossRef]

1997

S. G. Demos and R. R. Alfano, “Optical polarization imaging,” Appl. Opt.36, 150–155 (1997).
[CrossRef] [PubMed]

C. Magné, M. Bonenfant-Magné, and J.-C. Audran, “Nitrogenous indicators of postharvest ripening and senescence in apple fruit (malus domestica borkh. cv. granny smith),” Int. J. Plant Sci.158, 811–817 (1997).
[CrossRef]

1996

F. R. Harker, J. H. Maindonald, and P. J. Jackson, “Penetrometer Measurement of Apple and Kiwifruit Firmness: Operator and Instrument Differences,” J. Am. Soc. Horticult. Sci.121, 927–936 (1996).

1995

B. Cordenunsi and F. Lajolo, “Starch Breakdown during Banana Ripening: Sucrose Synthase and Sucrose Phosphate Synthase,” J. Agric. Food Chem.43, 347–351 (1995).
[CrossRef]

1994

J. S. Maier, S. A. Walker, S. Fantini, M. A. Franceschini, and E. Gratton, “Possible correlation between blood glucose concentration and the reduced scattering coefficient of tissues in the near infrared,” Opt. Lett.24, 2062–2064 (1994).
[CrossRef]

1992

1954

E. W. Yemm and A. J. Willis, “The estimation of carbohydrates in plant extracts by anthrone,” Biochem. J.57, 508–514 (1954).
[PubMed]

Abdi, H.

H. Abdi and L. J. Williams, “Principal component analysis,” WIREs Comp. Stat.2, 433–459 (2010).
[CrossRef]

Alfano, R. R.

Arizaga, R.

G. F. Rabelo, R. A. Braga Junior, I. M. Fabbro, M. R. Trivi, H. J. Rabal, and R. Arizaga, “Laser speckle techniques in quality evaluation of orange fruits,” Revista Brasileira de Engenharia Agricola e Ambiental9, 570–575 (2005).
[CrossRef]

M. Pajuelo, G. Baldwin, H. Rabal, N. Cap, R. Arizaga, and M. Trivi, “Bio-speckle assessment of bruising in fruits,” Opt. Lasers Eng.40, 13–24 (2003).
[CrossRef]

Audran, J.-C.

C. Magné, M. Bonenfant-Magné, and J.-C. Audran, “Nitrogenous indicators of postharvest ripening and senescence in apple fruit (malus domestica borkh. cv. granny smith),” Int. J. Plant Sci.158, 811–817 (1997).
[CrossRef]

Baldwin, G.

M. Pajuelo, G. Baldwin, H. Rabal, N. Cap, R. Arizaga, and M. Trivi, “Bio-speckle assessment of bruising in fruits,” Opt. Lasers Eng.40, 13–24 (2003).
[CrossRef]

Bonenfant-Magné, M.

C. Magné, M. Bonenfant-Magné, and J.-C. Audran, “Nitrogenous indicators of postharvest ripening and senescence in apple fruit (malus domestica borkh. cv. granny smith),” Int. J. Plant Sci.158, 811–817 (1997).
[CrossRef]

Boulvert, F.

Braga Junior, R. A.

G. F. Rabelo, R. A. Braga Junior, I. M. Fabbro, M. R. Trivi, H. J. Rabal, and R. Arizaga, “Laser speckle techniques in quality evaluation of orange fruits,” Revista Brasileira de Engenharia Agricola e Ambiental9, 570–575 (2005).
[CrossRef]

Buschmann, C.

H. K. Lichtenthaler and C. Buschmann, “Chlorophylls and Carotenoids: Measurement and Characterization by UV-VIS Spectroscopy,” in Current Protocols in Food Analytical Chemistry, (John Wiley & Sons, Inc., 2001) 705–758.

Cap, N.

M. Pajuelo, G. Baldwin, H. Rabal, N. Cap, R. Arizaga, and M. Trivi, “Bio-speckle assessment of bruising in fruits,” Opt. Lasers Eng.40, 13–24 (2003).
[CrossRef]

Cariou, J.

Chiang, F. P.

Cordenunsi, B.

B. Cordenunsi and F. Lajolo, “Starch Breakdown during Banana Ripening: Sucrose Synthase and Sucrose Phosphate Synthase,” J. Agric. Food Chem.43, 347–351 (1995).
[CrossRef]

de Putter, H.

A. d. J. Maurizio Ventura, H. de Putter, and F. P. Roelofs, “Non-destructive determination of soluble solids in apple fruit by near infrared spectroscopy,” Postharvest Biol. Technol.14, 21–27 (1998).
[CrossRef]

Demos, S. G.

Fabbro, I. M.

G. F. Rabelo, R. A. Braga Junior, I. M. Fabbro, M. R. Trivi, H. J. Rabal, and R. Arizaga, “Laser speckle techniques in quality evaluation of orange fruits,” Revista Brasileira de Engenharia Agricola e Ambiental9, 570–575 (2005).
[CrossRef]

Fantini, S.

J. S. Maier, S. A. Walker, S. Fantini, M. A. Franceschini, and E. Gratton, “Possible correlation between blood glucose concentration and the reduced scattering coefficient of tissues in the near infrared,” Opt. Lett.24, 2062–2064 (1994).
[CrossRef]

Franceschini, M. A.

J. S. Maier, S. A. Walker, S. Fantini, M. A. Franceschini, and E. Gratton, “Possible correlation between blood glucose concentration and the reduced scattering coefficient of tissues in the near infrared,” Opt. Lett.24, 2062–2064 (1994).
[CrossRef]

Frankevych, L.

A. Zdunek, L. Muravsky, L. Frankevych, and K. Konstankiewicz, “New nondestructive method based on spatial-temporal speckle correlation technique for evaluation of apples quality during shelf-life,” Int. Agrophys.21, 305–310 (2007).

Goodman, J. W.

J. W. Goodman, “Statistical Properties of Laser Speckle Patterns,” in Laser speckle and related phenomena, 9 in series Topics in Applied Physics, J. C. Dainty, Ed., (Springer-Verlag, 1984).

Gratton, E.

J. S. Maier, S. A. Walker, S. Fantini, M. A. Franceschini, and E. Gratton, “Possible correlation between blood glucose concentration and the reduced scattering coefficient of tissues in the near infrared,” Opt. Lett.24, 2062–2064 (1994).
[CrossRef]

Guern, Y.

Harker, F. R.

F. R. Harker, J. H. Maindonald, and P. J. Jackson, “Penetrometer Measurement of Apple and Kiwifruit Firmness: Operator and Instrument Differences,” J. Am. Soc. Horticult. Sci.121, 927–936 (1996).

Jackson, P. J.

F. R. Harker, J. H. Maindonald, and P. J. Jackson, “Penetrometer Measurement of Apple and Kiwifruit Firmness: Operator and Instrument Differences,” J. Am. Soc. Horticult. Sci.121, 927–936 (1996).

Konstankiewicz, K.

A. Zdunek, L. Muravsky, L. Frankevych, and K. Konstankiewicz, “New nondestructive method based on spatial-temporal speckle correlation technique for evaluation of apples quality during shelf-life,” Int. Agrophys.21, 305–310 (2007).

Lajolo, F.

B. Cordenunsi and F. Lajolo, “Starch Breakdown during Banana Ripening: Sucrose Synthase and Sucrose Phosphate Synthase,” J. Agric. Food Chem.43, 347–351 (1995).
[CrossRef]

Le Brun, G.

Le Jeune, B.

Li, Q. B.

Lichtenthaler, H. K.

H. K. Lichtenthaler and C. Buschmann, “Chlorophylls and Carotenoids: Measurement and Characterization by UV-VIS Spectroscopy,” in Current Protocols in Food Analytical Chemistry, (John Wiley & Sons, Inc., 2001) 705–758.

Liu, C.

C. Liu, Y. Song, D. Zhang, and H. Zhang, “On-spot evaluation of maturity stage of fruits based on 655 nm laser-induced photoluminescence of chlorophyll-α,” Metamaterials9, 57–59(2006).

Lortrian, J.

Magné, C.

C. Magné, M. Bonenfant-Magné, and J.-C. Audran, “Nitrogenous indicators of postharvest ripening and senescence in apple fruit (malus domestica borkh. cv. granny smith),” Int. J. Plant Sci.158, 811–817 (1997).
[CrossRef]

Maier, J. S.

J. S. Maier, S. A. Walker, S. Fantini, M. A. Franceschini, and E. Gratton, “Possible correlation between blood glucose concentration and the reduced scattering coefficient of tissues in the near infrared,” Opt. Lett.24, 2062–2064 (1994).
[CrossRef]

Maindonald, J. H.

F. R. Harker, J. H. Maindonald, and P. J. Jackson, “Penetrometer Measurement of Apple and Kiwifruit Firmness: Operator and Instrument Differences,” J. Am. Soc. Horticult. Sci.121, 927–936 (1996).

Maurizio Ventura, A. d. J.

A. d. J. Maurizio Ventura, H. de Putter, and F. P. Roelofs, “Non-destructive determination of soluble solids in apple fruit by near infrared spectroscopy,” Postharvest Biol. Technol.14, 21–27 (1998).
[CrossRef]

Morgan, S.

Muravsky, L.

A. Zdunek, L. Muravsky, L. Frankevych, and K. Konstankiewicz, “New nondestructive method based on spatial-temporal speckle correlation technique for evaluation of apples quality during shelf-life,” Int. Agrophys.21, 305–310 (2007).

Pajuelo, M.

M. Pajuelo, G. Baldwin, H. Rabal, N. Cap, R. Arizaga, and M. Trivi, “Bio-speckle assessment of bruising in fruits,” Opt. Lasers Eng.40, 13–24 (2003).
[CrossRef]

Piederrière, Y.

Rabal, H.

M. Pajuelo, G. Baldwin, H. Rabal, N. Cap, R. Arizaga, and M. Trivi, “Bio-speckle assessment of bruising in fruits,” Opt. Lasers Eng.40, 13–24 (2003).
[CrossRef]

Rabal, H. J.

G. F. Rabelo, R. A. Braga Junior, I. M. Fabbro, M. R. Trivi, H. J. Rabal, and R. Arizaga, “Laser speckle techniques in quality evaluation of orange fruits,” Revista Brasileira de Engenharia Agricola e Ambiental9, 570–575 (2005).
[CrossRef]

Rabelo, G. F.

G. F. Rabelo, R. A. Braga Junior, I. M. Fabbro, M. R. Trivi, H. J. Rabal, and R. Arizaga, “Laser speckle techniques in quality evaluation of orange fruits,” Revista Brasileira de Engenharia Agricola e Ambiental9, 570–575 (2005).
[CrossRef]

Ridgway, M.

Roelofs, F. P.

A. d. J. Maurizio Ventura, H. de Putter, and F. P. Roelofs, “Non-destructive determination of soluble solids in apple fruit by near infrared spectroscopy,” Postharvest Biol. Technol.14, 21–27 (1998).
[CrossRef]

Song, Y.

C. Liu, Y. Song, D. Zhang, and H. Zhang, “On-spot evaluation of maturity stage of fruits based on 655 nm laser-induced photoluminescence of chlorophyll-α,” Metamaterials9, 57–59(2006).

Trivi, M.

M. Pajuelo, G. Baldwin, H. Rabal, N. Cap, R. Arizaga, and M. Trivi, “Bio-speckle assessment of bruising in fruits,” Opt. Lasers Eng.40, 13–24 (2003).
[CrossRef]

Trivi, M. R.

G. F. Rabelo, R. A. Braga Junior, I. M. Fabbro, M. R. Trivi, H. J. Rabal, and R. Arizaga, “Laser speckle techniques in quality evaluation of orange fruits,” Revista Brasileira de Engenharia Agricola e Ambiental9, 570–575 (2005).
[CrossRef]

van de Hulst, H. C.

H. C. van de Hulst, “Rayleigh-Gans scattering,” in Light Scattering by Small Particles, (Dover Publications, Inc., 1981) 85–88.

Walker, S. A.

J. S. Maier, S. A. Walker, S. Fantini, M. A. Franceschini, and E. Gratton, “Possible correlation between blood glucose concentration and the reduced scattering coefficient of tissues in the near infrared,” Opt. Lett.24, 2062–2064 (1994).
[CrossRef]

Williams, L. J.

H. Abdi and L. J. Williams, “Principal component analysis,” WIREs Comp. Stat.2, 433–459 (2010).
[CrossRef]

Willis, A. J.

E. W. Yemm and A. J. Willis, “The estimation of carbohydrates in plant extracts by anthrone,” Biochem. J.57, 508–514 (1954).
[PubMed]

Yemm, E. W.

E. W. Yemm and A. J. Willis, “The estimation of carbohydrates in plant extracts by anthrone,” Biochem. J.57, 508–514 (1954).
[PubMed]

Zdunek, A.

A. Zdunek, L. Muravsky, L. Frankevych, and K. Konstankiewicz, “New nondestructive method based on spatial-temporal speckle correlation technique for evaluation of apples quality during shelf-life,” Int. Agrophys.21, 305–310 (2007).

Zhang, D.

C. Liu, Y. Song, D. Zhang, and H. Zhang, “On-spot evaluation of maturity stage of fruits based on 655 nm laser-induced photoluminescence of chlorophyll-α,” Metamaterials9, 57–59(2006).

Zhang, H.

C. Liu, Y. Song, D. Zhang, and H. Zhang, “On-spot evaluation of maturity stage of fruits based on 655 nm laser-induced photoluminescence of chlorophyll-α,” Metamaterials9, 57–59(2006).

Appl. Opt.

Biochem. J.

E. W. Yemm and A. J. Willis, “The estimation of carbohydrates in plant extracts by anthrone,” Biochem. J.57, 508–514 (1954).
[PubMed]

Int. Agrophys.

A. Zdunek, L. Muravsky, L. Frankevych, and K. Konstankiewicz, “New nondestructive method based on spatial-temporal speckle correlation technique for evaluation of apples quality during shelf-life,” Int. Agrophys.21, 305–310 (2007).

Int. J. Plant Sci.

C. Magné, M. Bonenfant-Magné, and J.-C. Audran, “Nitrogenous indicators of postharvest ripening and senescence in apple fruit (malus domestica borkh. cv. granny smith),” Int. J. Plant Sci.158, 811–817 (1997).
[CrossRef]

J. Agric. Food Chem.

B. Cordenunsi and F. Lajolo, “Starch Breakdown during Banana Ripening: Sucrose Synthase and Sucrose Phosphate Synthase,” J. Agric. Food Chem.43, 347–351 (1995).
[CrossRef]

J. Am. Soc. Horticult. Sci.

F. R. Harker, J. H. Maindonald, and P. J. Jackson, “Penetrometer Measurement of Apple and Kiwifruit Firmness: Operator and Instrument Differences,” J. Am. Soc. Horticult. Sci.121, 927–936 (1996).

Metamaterials

C. Liu, Y. Song, D. Zhang, and H. Zhang, “On-spot evaluation of maturity stage of fruits based on 655 nm laser-induced photoluminescence of chlorophyll-α,” Metamaterials9, 57–59(2006).

Opt. Express

Opt. Lasers Eng.

M. Pajuelo, G. Baldwin, H. Rabal, N. Cap, R. Arizaga, and M. Trivi, “Bio-speckle assessment of bruising in fruits,” Opt. Lasers Eng.40, 13–24 (2003).
[CrossRef]

Opt. Lett.

J. S. Maier, S. A. Walker, S. Fantini, M. A. Franceschini, and E. Gratton, “Possible correlation between blood glucose concentration and the reduced scattering coefficient of tissues in the near infrared,” Opt. Lett.24, 2062–2064 (1994).
[CrossRef]

Postharvest Biol. Technol.

A. d. J. Maurizio Ventura, H. de Putter, and F. P. Roelofs, “Non-destructive determination of soluble solids in apple fruit by near infrared spectroscopy,” Postharvest Biol. Technol.14, 21–27 (1998).
[CrossRef]

Revista Brasileira de Engenharia Agricola e Ambiental

G. F. Rabelo, R. A. Braga Junior, I. M. Fabbro, M. R. Trivi, H. J. Rabal, and R. Arizaga, “Laser speckle techniques in quality evaluation of orange fruits,” Revista Brasileira de Engenharia Agricola e Ambiental9, 570–575 (2005).
[CrossRef]

WIREs Comp. Stat.

H. Abdi and L. J. Williams, “Principal component analysis,” WIREs Comp. Stat.2, 433–459 (2010).
[CrossRef]

Other

J. W. Goodman, “Statistical Properties of Laser Speckle Patterns,” in Laser speckle and related phenomena, 9 in series Topics in Applied Physics, J. C. Dainty, Ed., (Springer-Verlag, 1984).

H. K. Lichtenthaler and C. Buschmann, “Chlorophylls and Carotenoids: Measurement and Characterization by UV-VIS Spectroscopy,” in Current Protocols in Food Analytical Chemistry, (John Wiley & Sons, Inc., 2001) 705–758.

H. C. van de Hulst, “Rayleigh-Gans scattering,” in Light Scattering by Small Particles, (Dover Publications, Inc., 1981) 85–88.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Top view of the experimental setup. λ/2 and λ/4 are half and quarter wave plates.

Fig. 2
Fig. 2

Variation of horizontal speckle grain size during ripening. Results are averaged on the three monitored pears. Different symbols correspond to the four light polarization configurations. Dots represent experimental results; dashed lines represent the spline fit. dx error bars are on the order of 2 pixels and are not illustrated in the figure for clarity purpose.

Fig. 3
Fig. 3

-a- On the left, variation of the intensity peak at 685nm and 735nm during ripening. Results are averaged on the three monitored pears. Diamonds and dots represent the F685 and F735 intensities respectively. -b- On the right, variation of Rpigmentation during ripening. Results are monitored on two pears. Squares represent the experimental logarithmic values of Rpigmentation and the dashed line is the linear fit. Error bars in both plots correspond to the standard deviation.

Fig. 4
Fig. 4

Variation of DOPC and DOPL during maturation. Results are averaged on the three monitored pears. Dots represent experimental values and error bars correspond to the standard deviation. Dashed lines are the exponential fit.

Fig. 5
Fig. 5

Variation of the DOPC/DOPL ratio during maturation. Results are averaged on the three monitored pears; error bars correspond to the standard deviation.

Fig. 6
Fig. 6

Pearson circle correlation presenting loadings of variables projected on PC1 and PC2 axis. The right part of the figure presents a zoom of the encircled zone.

Fig. 7
Fig. 7

Observations grouped according to the maturation level starting from day one till day nine.

Tables (3)

Tables Icon

Table 1 Characteristics of different diffusion media according to the scatterers size. dx// represents the speckle grain size when the axis of the polarizer and analyzer are parallel, and dx corresponds to crossed axis.

Tables Icon

Table 2 Evolution of Total Soluble Sugars level TSS during days.

Tables Icon

Table 3 Pearson correlation coefficient matrix between speckle variables, fluorescence and biochemical variables.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

c I ( x , y ) = F T 1 [ | F T [ I ( x , y ) ] | 2 ] I ( x , y ) 2 I 2 ( x , y ) I ( x , y ) 2
d x = 1.22 λ D D e cos ϑ d y = 1.22 λ D D e
D O P = I / / I I / / + I
μ s = K ( n p n m 1 ) 2

Metrics