Abstract

We demonstrate terahertz quantum-cascade lasers with a 30 μm thick double-metal waveguide, which are fabricated by stacking two 15 μm thick active regions using a wafer bonding process. By increasing the active region thickness more optical power is generated inside the cavity, the waveguide losses are decreased and the far-field is improved due to a larger facet aperture. In this way the output power is increased by significantly more than a factor of 2 without reducing the maximum operating temperature and without increasing the threshold current.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. Koehler, A. Tredicucci, F. Beltram, H. E. Beere, E. H. Linfield, A. G. Davies, D. A. Ritchie, R. C. Iotti, and F. Rossi, “Terahertz semiconductor-heterostructure laser,” Nature417, 156–159 (2002).
    [CrossRef]
  2. M. Tonouchi, “Cutting-edge terahertz technology,” Nat. Photonics1, 97–105 (2007).
    [CrossRef]
  3. S. Fathololoumi, E. Dupont, C. Chan, Z. Wasilewski, S. Laframboise, D. Ban, A. Mtys, C. Jirauschek, Q. Hu, and H. C. Liu, “Terahertz quantum cascade lasers operating up to 200 K with optimized oscillator strength and improved injection tunneling,” Opt. Express20, 3866–3876 (2012).
    [CrossRef] [PubMed]
  4. M. Fischer, G. Scalari, K. Celebi, M. Amanti, C. Walther, M. Beck, and J. Faist, “Scattering processes in terahertz InGaAs/InAlAs quantum cascade lasers,” Appl. Phys. Lett.97, 221114 (2010).
    [CrossRef]
  5. C. Deutsch, A. Benz, H. Detz, P. Klang, M. Nobile, A. M. Andrews, W. Schrenk, T. Kubis, P. Vogl, G. Strasser, and K. Unterrainer, “Terahertz quantum cascade lasers based on type II InGaAs/GaAsSb/InP,” Appl. Phys. Lett.97, 1110 (2010).
    [CrossRef]
  6. K. Unterrainer, R. Colombelli, C. Gmachl, F. Capasso, H. Y. Hwang, A. M. Sergent, D. L. Sivco, and A. Y. Cho, “Quantum cascade lasers with double metal-semiconductor waveguide resonators,” Appl. Phys. Lett.80, 3060–3062 (2002).
    [CrossRef]
  7. G. Fasching, V. Tamošiu̅nas, A. Benz, A. M. Andrews, K. Unterrainer, R. Zobl, T. Roch, W. Schrenk, and G. Strasser, “Subwavelength microdisk and microring terahertz quantum-cascade lasers,” IEEE J. Quantum Electron.43, 687–697 (2007).
    [CrossRef]
  8. A. Benz, C. Deutsch, G. Fasching, K. Unterrainer, A. M. Andrews, P. Klang, W. Schrenk, and G. Strasser, “Active photonic crystal terahertz laser,” Opt. Express17, 941–946 (2009).
    [CrossRef] [PubMed]
  9. B. Williams, S. Kumar, Q. Hu, and J. Reno, “High-power terahertz quantum-cascade lasers,” Electron. Lett.42, 89 (2006).
    [CrossRef]
  10. M. I. Amanti, M. Fischer, G. Scalari, M. Beck, and J. Faist, “Low-divergence single-mode terahertz quantum cascade laser,” Nat. Photonics3, 586–590 (2009).
    [CrossRef]
  11. L. Mahler, A. Tredicucci, F. Beltram, C. Walther, J. Faist, B. Witzigmann, H. E. Beere, and D. A. Ritchie, “Vertically emitting microdisk lasers,” Nat. Photonics3, 46–49 (2009).
    [CrossRef]
  12. Y. Chassagneux, R. Colombelli, W. Maineult, S. Barbieri, H. E. Beere, D. A. Ritchie, S. P. Khanna, E. H. Linfield, and A. G. Davies, “Electrically pumped photonic-crystal terahertz lasers controlled by boundary conditions,” Nature457, 174–178 (2009).
    [CrossRef] [PubMed]
  13. Y. Okuno, K. Uomi, M. Aoki, and T. Tsuchiya, “Direct wafer bonding of IIIV compound semiconductors for free-material and free-orientation integration,” IEEE J. Quantum Electron.33, 959–969 (1997).
    [CrossRef]
  14. A. Black, A. R. Hawkins, N. M. Margalit, D. I. Babic, A. L. Holmes, Y.-L. Chang, P. Abraham, J. E. Bowers, and E. L. Hu, “Wafer fusion: Materials issues and device results,” IEEE J. Sel. Top. Quantum Electron.3, 943–951 (1997).
    [CrossRef]
  15. M. A. Ordal, L. L. Long, R. J. Bell, S. E. Bell, R. R. Bell, R. W. Alexander, and C. A. Ward, “Optical properties of the metals Al, Co, Cu, Au, Fe, Pb, Ni, Pd, Pt, Ag, Ti, and W in the infrared and far infrared,” Appl. Opt.22, 1100–1120 (1983).
    [CrossRef]
  16. “Comsol multiphysics, http://www.comsol.com ,”.
  17. S. Kohen, B. S. Williams, and Q. Hu, “Electromagnetic modeling of terahertz quantum cascade laser waveguides and resonators,” J. Appl. Phys.97, 053106 (2005).
    [CrossRef]
  18. B. S. Williams, H. Callebaut, S. Kumar, Q. Hu, and J. L. Reno, “3.4 THz quantum cascade laser based on longintudinal-optical-phonon scattering for depopulation,” Appl. Phys. Lett.82, 1015–1017 (2003).
    [CrossRef]

2012

2010

M. Fischer, G. Scalari, K. Celebi, M. Amanti, C. Walther, M. Beck, and J. Faist, “Scattering processes in terahertz InGaAs/InAlAs quantum cascade lasers,” Appl. Phys. Lett.97, 221114 (2010).
[CrossRef]

C. Deutsch, A. Benz, H. Detz, P. Klang, M. Nobile, A. M. Andrews, W. Schrenk, T. Kubis, P. Vogl, G. Strasser, and K. Unterrainer, “Terahertz quantum cascade lasers based on type II InGaAs/GaAsSb/InP,” Appl. Phys. Lett.97, 1110 (2010).
[CrossRef]

2009

M. I. Amanti, M. Fischer, G. Scalari, M. Beck, and J. Faist, “Low-divergence single-mode terahertz quantum cascade laser,” Nat. Photonics3, 586–590 (2009).
[CrossRef]

L. Mahler, A. Tredicucci, F. Beltram, C. Walther, J. Faist, B. Witzigmann, H. E. Beere, and D. A. Ritchie, “Vertically emitting microdisk lasers,” Nat. Photonics3, 46–49 (2009).
[CrossRef]

Y. Chassagneux, R. Colombelli, W. Maineult, S. Barbieri, H. E. Beere, D. A. Ritchie, S. P. Khanna, E. H. Linfield, and A. G. Davies, “Electrically pumped photonic-crystal terahertz lasers controlled by boundary conditions,” Nature457, 174–178 (2009).
[CrossRef] [PubMed]

A. Benz, C. Deutsch, G. Fasching, K. Unterrainer, A. M. Andrews, P. Klang, W. Schrenk, and G. Strasser, “Active photonic crystal terahertz laser,” Opt. Express17, 941–946 (2009).
[CrossRef] [PubMed]

2007

G. Fasching, V. Tamošiu̅nas, A. Benz, A. M. Andrews, K. Unterrainer, R. Zobl, T. Roch, W. Schrenk, and G. Strasser, “Subwavelength microdisk and microring terahertz quantum-cascade lasers,” IEEE J. Quantum Electron.43, 687–697 (2007).
[CrossRef]

M. Tonouchi, “Cutting-edge terahertz technology,” Nat. Photonics1, 97–105 (2007).
[CrossRef]

2006

B. Williams, S. Kumar, Q. Hu, and J. Reno, “High-power terahertz quantum-cascade lasers,” Electron. Lett.42, 89 (2006).
[CrossRef]

2005

S. Kohen, B. S. Williams, and Q. Hu, “Electromagnetic modeling of terahertz quantum cascade laser waveguides and resonators,” J. Appl. Phys.97, 053106 (2005).
[CrossRef]

2003

B. S. Williams, H. Callebaut, S. Kumar, Q. Hu, and J. L. Reno, “3.4 THz quantum cascade laser based on longintudinal-optical-phonon scattering for depopulation,” Appl. Phys. Lett.82, 1015–1017 (2003).
[CrossRef]

2002

K. Unterrainer, R. Colombelli, C. Gmachl, F. Capasso, H. Y. Hwang, A. M. Sergent, D. L. Sivco, and A. Y. Cho, “Quantum cascade lasers with double metal-semiconductor waveguide resonators,” Appl. Phys. Lett.80, 3060–3062 (2002).
[CrossRef]

R. Koehler, A. Tredicucci, F. Beltram, H. E. Beere, E. H. Linfield, A. G. Davies, D. A. Ritchie, R. C. Iotti, and F. Rossi, “Terahertz semiconductor-heterostructure laser,” Nature417, 156–159 (2002).
[CrossRef]

1997

Y. Okuno, K. Uomi, M. Aoki, and T. Tsuchiya, “Direct wafer bonding of IIIV compound semiconductors for free-material and free-orientation integration,” IEEE J. Quantum Electron.33, 959–969 (1997).
[CrossRef]

A. Black, A. R. Hawkins, N. M. Margalit, D. I. Babic, A. L. Holmes, Y.-L. Chang, P. Abraham, J. E. Bowers, and E. L. Hu, “Wafer fusion: Materials issues and device results,” IEEE J. Sel. Top. Quantum Electron.3, 943–951 (1997).
[CrossRef]

1983

M. A. Ordal, L. L. Long, R. J. Bell, S. E. Bell, R. R. Bell, R. W. Alexander, and C. A. Ward, “Optical properties of the metals Al, Co, Cu, Au, Fe, Pb, Ni, Pd, Pt, Ag, Ti, and W in the infrared and far infrared,” Appl. Opt.22, 1100–1120 (1983).
[CrossRef]

Abraham, P.

A. Black, A. R. Hawkins, N. M. Margalit, D. I. Babic, A. L. Holmes, Y.-L. Chang, P. Abraham, J. E. Bowers, and E. L. Hu, “Wafer fusion: Materials issues and device results,” IEEE J. Sel. Top. Quantum Electron.3, 943–951 (1997).
[CrossRef]

Alexander, R. W.

M. A. Ordal, L. L. Long, R. J. Bell, S. E. Bell, R. R. Bell, R. W. Alexander, and C. A. Ward, “Optical properties of the metals Al, Co, Cu, Au, Fe, Pb, Ni, Pd, Pt, Ag, Ti, and W in the infrared and far infrared,” Appl. Opt.22, 1100–1120 (1983).
[CrossRef]

Amanti, M.

M. Fischer, G. Scalari, K. Celebi, M. Amanti, C. Walther, M. Beck, and J. Faist, “Scattering processes in terahertz InGaAs/InAlAs quantum cascade lasers,” Appl. Phys. Lett.97, 221114 (2010).
[CrossRef]

Amanti, M. I.

M. I. Amanti, M. Fischer, G. Scalari, M. Beck, and J. Faist, “Low-divergence single-mode terahertz quantum cascade laser,” Nat. Photonics3, 586–590 (2009).
[CrossRef]

Andrews, A. M.

C. Deutsch, A. Benz, H. Detz, P. Klang, M. Nobile, A. M. Andrews, W. Schrenk, T. Kubis, P. Vogl, G. Strasser, and K. Unterrainer, “Terahertz quantum cascade lasers based on type II InGaAs/GaAsSb/InP,” Appl. Phys. Lett.97, 1110 (2010).
[CrossRef]

A. Benz, C. Deutsch, G. Fasching, K. Unterrainer, A. M. Andrews, P. Klang, W. Schrenk, and G. Strasser, “Active photonic crystal terahertz laser,” Opt. Express17, 941–946 (2009).
[CrossRef] [PubMed]

G. Fasching, V. Tamošiu̅nas, A. Benz, A. M. Andrews, K. Unterrainer, R. Zobl, T. Roch, W. Schrenk, and G. Strasser, “Subwavelength microdisk and microring terahertz quantum-cascade lasers,” IEEE J. Quantum Electron.43, 687–697 (2007).
[CrossRef]

Aoki, M.

Y. Okuno, K. Uomi, M. Aoki, and T. Tsuchiya, “Direct wafer bonding of IIIV compound semiconductors for free-material and free-orientation integration,” IEEE J. Quantum Electron.33, 959–969 (1997).
[CrossRef]

Babic, D. I.

A. Black, A. R. Hawkins, N. M. Margalit, D. I. Babic, A. L. Holmes, Y.-L. Chang, P. Abraham, J. E. Bowers, and E. L. Hu, “Wafer fusion: Materials issues and device results,” IEEE J. Sel. Top. Quantum Electron.3, 943–951 (1997).
[CrossRef]

Ban, D.

Barbieri, S.

Y. Chassagneux, R. Colombelli, W. Maineult, S. Barbieri, H. E. Beere, D. A. Ritchie, S. P. Khanna, E. H. Linfield, and A. G. Davies, “Electrically pumped photonic-crystal terahertz lasers controlled by boundary conditions,” Nature457, 174–178 (2009).
[CrossRef] [PubMed]

Beck, M.

M. Fischer, G. Scalari, K. Celebi, M. Amanti, C. Walther, M. Beck, and J. Faist, “Scattering processes in terahertz InGaAs/InAlAs quantum cascade lasers,” Appl. Phys. Lett.97, 221114 (2010).
[CrossRef]

M. I. Amanti, M. Fischer, G. Scalari, M. Beck, and J. Faist, “Low-divergence single-mode terahertz quantum cascade laser,” Nat. Photonics3, 586–590 (2009).
[CrossRef]

Beere, H. E.

Y. Chassagneux, R. Colombelli, W. Maineult, S. Barbieri, H. E. Beere, D. A. Ritchie, S. P. Khanna, E. H. Linfield, and A. G. Davies, “Electrically pumped photonic-crystal terahertz lasers controlled by boundary conditions,” Nature457, 174–178 (2009).
[CrossRef] [PubMed]

L. Mahler, A. Tredicucci, F. Beltram, C. Walther, J. Faist, B. Witzigmann, H. E. Beere, and D. A. Ritchie, “Vertically emitting microdisk lasers,” Nat. Photonics3, 46–49 (2009).
[CrossRef]

R. Koehler, A. Tredicucci, F. Beltram, H. E. Beere, E. H. Linfield, A. G. Davies, D. A. Ritchie, R. C. Iotti, and F. Rossi, “Terahertz semiconductor-heterostructure laser,” Nature417, 156–159 (2002).
[CrossRef]

Bell, R. J.

M. A. Ordal, L. L. Long, R. J. Bell, S. E. Bell, R. R. Bell, R. W. Alexander, and C. A. Ward, “Optical properties of the metals Al, Co, Cu, Au, Fe, Pb, Ni, Pd, Pt, Ag, Ti, and W in the infrared and far infrared,” Appl. Opt.22, 1100–1120 (1983).
[CrossRef]

Bell, R. R.

M. A. Ordal, L. L. Long, R. J. Bell, S. E. Bell, R. R. Bell, R. W. Alexander, and C. A. Ward, “Optical properties of the metals Al, Co, Cu, Au, Fe, Pb, Ni, Pd, Pt, Ag, Ti, and W in the infrared and far infrared,” Appl. Opt.22, 1100–1120 (1983).
[CrossRef]

Bell, S. E.

M. A. Ordal, L. L. Long, R. J. Bell, S. E. Bell, R. R. Bell, R. W. Alexander, and C. A. Ward, “Optical properties of the metals Al, Co, Cu, Au, Fe, Pb, Ni, Pd, Pt, Ag, Ti, and W in the infrared and far infrared,” Appl. Opt.22, 1100–1120 (1983).
[CrossRef]

Beltram, F.

L. Mahler, A. Tredicucci, F. Beltram, C. Walther, J. Faist, B. Witzigmann, H. E. Beere, and D. A. Ritchie, “Vertically emitting microdisk lasers,” Nat. Photonics3, 46–49 (2009).
[CrossRef]

R. Koehler, A. Tredicucci, F. Beltram, H. E. Beere, E. H. Linfield, A. G. Davies, D. A. Ritchie, R. C. Iotti, and F. Rossi, “Terahertz semiconductor-heterostructure laser,” Nature417, 156–159 (2002).
[CrossRef]

Benz, A.

C. Deutsch, A. Benz, H. Detz, P. Klang, M. Nobile, A. M. Andrews, W. Schrenk, T. Kubis, P. Vogl, G. Strasser, and K. Unterrainer, “Terahertz quantum cascade lasers based on type II InGaAs/GaAsSb/InP,” Appl. Phys. Lett.97, 1110 (2010).
[CrossRef]

A. Benz, C. Deutsch, G. Fasching, K. Unterrainer, A. M. Andrews, P. Klang, W. Schrenk, and G. Strasser, “Active photonic crystal terahertz laser,” Opt. Express17, 941–946 (2009).
[CrossRef] [PubMed]

G. Fasching, V. Tamošiu̅nas, A. Benz, A. M. Andrews, K. Unterrainer, R. Zobl, T. Roch, W. Schrenk, and G. Strasser, “Subwavelength microdisk and microring terahertz quantum-cascade lasers,” IEEE J. Quantum Electron.43, 687–697 (2007).
[CrossRef]

Black, A.

A. Black, A. R. Hawkins, N. M. Margalit, D. I. Babic, A. L. Holmes, Y.-L. Chang, P. Abraham, J. E. Bowers, and E. L. Hu, “Wafer fusion: Materials issues and device results,” IEEE J. Sel. Top. Quantum Electron.3, 943–951 (1997).
[CrossRef]

Bowers, J. E.

A. Black, A. R. Hawkins, N. M. Margalit, D. I. Babic, A. L. Holmes, Y.-L. Chang, P. Abraham, J. E. Bowers, and E. L. Hu, “Wafer fusion: Materials issues and device results,” IEEE J. Sel. Top. Quantum Electron.3, 943–951 (1997).
[CrossRef]

Callebaut, H.

B. S. Williams, H. Callebaut, S. Kumar, Q. Hu, and J. L. Reno, “3.4 THz quantum cascade laser based on longintudinal-optical-phonon scattering for depopulation,” Appl. Phys. Lett.82, 1015–1017 (2003).
[CrossRef]

Capasso, F.

K. Unterrainer, R. Colombelli, C. Gmachl, F. Capasso, H. Y. Hwang, A. M. Sergent, D. L. Sivco, and A. Y. Cho, “Quantum cascade lasers with double metal-semiconductor waveguide resonators,” Appl. Phys. Lett.80, 3060–3062 (2002).
[CrossRef]

Celebi, K.

M. Fischer, G. Scalari, K. Celebi, M. Amanti, C. Walther, M. Beck, and J. Faist, “Scattering processes in terahertz InGaAs/InAlAs quantum cascade lasers,” Appl. Phys. Lett.97, 221114 (2010).
[CrossRef]

Chan, C.

Chang, Y.-L.

A. Black, A. R. Hawkins, N. M. Margalit, D. I. Babic, A. L. Holmes, Y.-L. Chang, P. Abraham, J. E. Bowers, and E. L. Hu, “Wafer fusion: Materials issues and device results,” IEEE J. Sel. Top. Quantum Electron.3, 943–951 (1997).
[CrossRef]

Chassagneux, Y.

Y. Chassagneux, R. Colombelli, W. Maineult, S. Barbieri, H. E. Beere, D. A. Ritchie, S. P. Khanna, E. H. Linfield, and A. G. Davies, “Electrically pumped photonic-crystal terahertz lasers controlled by boundary conditions,” Nature457, 174–178 (2009).
[CrossRef] [PubMed]

Cho, A. Y.

K. Unterrainer, R. Colombelli, C. Gmachl, F. Capasso, H. Y. Hwang, A. M. Sergent, D. L. Sivco, and A. Y. Cho, “Quantum cascade lasers with double metal-semiconductor waveguide resonators,” Appl. Phys. Lett.80, 3060–3062 (2002).
[CrossRef]

Colombelli, R.

Y. Chassagneux, R. Colombelli, W. Maineult, S. Barbieri, H. E. Beere, D. A. Ritchie, S. P. Khanna, E. H. Linfield, and A. G. Davies, “Electrically pumped photonic-crystal terahertz lasers controlled by boundary conditions,” Nature457, 174–178 (2009).
[CrossRef] [PubMed]

K. Unterrainer, R. Colombelli, C. Gmachl, F. Capasso, H. Y. Hwang, A. M. Sergent, D. L. Sivco, and A. Y. Cho, “Quantum cascade lasers with double metal-semiconductor waveguide resonators,” Appl. Phys. Lett.80, 3060–3062 (2002).
[CrossRef]

Davies, A. G.

Y. Chassagneux, R. Colombelli, W. Maineult, S. Barbieri, H. E. Beere, D. A. Ritchie, S. P. Khanna, E. H. Linfield, and A. G. Davies, “Electrically pumped photonic-crystal terahertz lasers controlled by boundary conditions,” Nature457, 174–178 (2009).
[CrossRef] [PubMed]

R. Koehler, A. Tredicucci, F. Beltram, H. E. Beere, E. H. Linfield, A. G. Davies, D. A. Ritchie, R. C. Iotti, and F. Rossi, “Terahertz semiconductor-heterostructure laser,” Nature417, 156–159 (2002).
[CrossRef]

Detz, H.

C. Deutsch, A. Benz, H. Detz, P. Klang, M. Nobile, A. M. Andrews, W. Schrenk, T. Kubis, P. Vogl, G. Strasser, and K. Unterrainer, “Terahertz quantum cascade lasers based on type II InGaAs/GaAsSb/InP,” Appl. Phys. Lett.97, 1110 (2010).
[CrossRef]

Deutsch, C.

C. Deutsch, A. Benz, H. Detz, P. Klang, M. Nobile, A. M. Andrews, W. Schrenk, T. Kubis, P. Vogl, G. Strasser, and K. Unterrainer, “Terahertz quantum cascade lasers based on type II InGaAs/GaAsSb/InP,” Appl. Phys. Lett.97, 1110 (2010).
[CrossRef]

A. Benz, C. Deutsch, G. Fasching, K. Unterrainer, A. M. Andrews, P. Klang, W. Schrenk, and G. Strasser, “Active photonic crystal terahertz laser,” Opt. Express17, 941–946 (2009).
[CrossRef] [PubMed]

Dupont, E.

Faist, J.

M. Fischer, G. Scalari, K. Celebi, M. Amanti, C. Walther, M. Beck, and J. Faist, “Scattering processes in terahertz InGaAs/InAlAs quantum cascade lasers,” Appl. Phys. Lett.97, 221114 (2010).
[CrossRef]

M. I. Amanti, M. Fischer, G. Scalari, M. Beck, and J. Faist, “Low-divergence single-mode terahertz quantum cascade laser,” Nat. Photonics3, 586–590 (2009).
[CrossRef]

L. Mahler, A. Tredicucci, F. Beltram, C. Walther, J. Faist, B. Witzigmann, H. E. Beere, and D. A. Ritchie, “Vertically emitting microdisk lasers,” Nat. Photonics3, 46–49 (2009).
[CrossRef]

Fasching, G.

A. Benz, C. Deutsch, G. Fasching, K. Unterrainer, A. M. Andrews, P. Klang, W. Schrenk, and G. Strasser, “Active photonic crystal terahertz laser,” Opt. Express17, 941–946 (2009).
[CrossRef] [PubMed]

G. Fasching, V. Tamošiu̅nas, A. Benz, A. M. Andrews, K. Unterrainer, R. Zobl, T. Roch, W. Schrenk, and G. Strasser, “Subwavelength microdisk and microring terahertz quantum-cascade lasers,” IEEE J. Quantum Electron.43, 687–697 (2007).
[CrossRef]

Fathololoumi, S.

Fischer, M.

M. Fischer, G. Scalari, K. Celebi, M. Amanti, C. Walther, M. Beck, and J. Faist, “Scattering processes in terahertz InGaAs/InAlAs quantum cascade lasers,” Appl. Phys. Lett.97, 221114 (2010).
[CrossRef]

M. I. Amanti, M. Fischer, G. Scalari, M. Beck, and J. Faist, “Low-divergence single-mode terahertz quantum cascade laser,” Nat. Photonics3, 586–590 (2009).
[CrossRef]

Gmachl, C.

K. Unterrainer, R. Colombelli, C. Gmachl, F. Capasso, H. Y. Hwang, A. M. Sergent, D. L. Sivco, and A. Y. Cho, “Quantum cascade lasers with double metal-semiconductor waveguide resonators,” Appl. Phys. Lett.80, 3060–3062 (2002).
[CrossRef]

Hawkins, A. R.

A. Black, A. R. Hawkins, N. M. Margalit, D. I. Babic, A. L. Holmes, Y.-L. Chang, P. Abraham, J. E. Bowers, and E. L. Hu, “Wafer fusion: Materials issues and device results,” IEEE J. Sel. Top. Quantum Electron.3, 943–951 (1997).
[CrossRef]

Holmes, A. L.

A. Black, A. R. Hawkins, N. M. Margalit, D. I. Babic, A. L. Holmes, Y.-L. Chang, P. Abraham, J. E. Bowers, and E. L. Hu, “Wafer fusion: Materials issues and device results,” IEEE J. Sel. Top. Quantum Electron.3, 943–951 (1997).
[CrossRef]

Hu, E. L.

A. Black, A. R. Hawkins, N. M. Margalit, D. I. Babic, A. L. Holmes, Y.-L. Chang, P. Abraham, J. E. Bowers, and E. L. Hu, “Wafer fusion: Materials issues and device results,” IEEE J. Sel. Top. Quantum Electron.3, 943–951 (1997).
[CrossRef]

Hu, Q.

S. Fathololoumi, E. Dupont, C. Chan, Z. Wasilewski, S. Laframboise, D. Ban, A. Mtys, C. Jirauschek, Q. Hu, and H. C. Liu, “Terahertz quantum cascade lasers operating up to 200 K with optimized oscillator strength and improved injection tunneling,” Opt. Express20, 3866–3876 (2012).
[CrossRef] [PubMed]

B. Williams, S. Kumar, Q. Hu, and J. Reno, “High-power terahertz quantum-cascade lasers,” Electron. Lett.42, 89 (2006).
[CrossRef]

S. Kohen, B. S. Williams, and Q. Hu, “Electromagnetic modeling of terahertz quantum cascade laser waveguides and resonators,” J. Appl. Phys.97, 053106 (2005).
[CrossRef]

B. S. Williams, H. Callebaut, S. Kumar, Q. Hu, and J. L. Reno, “3.4 THz quantum cascade laser based on longintudinal-optical-phonon scattering for depopulation,” Appl. Phys. Lett.82, 1015–1017 (2003).
[CrossRef]

Hwang, H. Y.

K. Unterrainer, R. Colombelli, C. Gmachl, F. Capasso, H. Y. Hwang, A. M. Sergent, D. L. Sivco, and A. Y. Cho, “Quantum cascade lasers with double metal-semiconductor waveguide resonators,” Appl. Phys. Lett.80, 3060–3062 (2002).
[CrossRef]

Iotti, R. C.

R. Koehler, A. Tredicucci, F. Beltram, H. E. Beere, E. H. Linfield, A. G. Davies, D. A. Ritchie, R. C. Iotti, and F. Rossi, “Terahertz semiconductor-heterostructure laser,” Nature417, 156–159 (2002).
[CrossRef]

Jirauschek, C.

Khanna, S. P.

Y. Chassagneux, R. Colombelli, W. Maineult, S. Barbieri, H. E. Beere, D. A. Ritchie, S. P. Khanna, E. H. Linfield, and A. G. Davies, “Electrically pumped photonic-crystal terahertz lasers controlled by boundary conditions,” Nature457, 174–178 (2009).
[CrossRef] [PubMed]

Klang, P.

C. Deutsch, A. Benz, H. Detz, P. Klang, M. Nobile, A. M. Andrews, W. Schrenk, T. Kubis, P. Vogl, G. Strasser, and K. Unterrainer, “Terahertz quantum cascade lasers based on type II InGaAs/GaAsSb/InP,” Appl. Phys. Lett.97, 1110 (2010).
[CrossRef]

A. Benz, C. Deutsch, G. Fasching, K. Unterrainer, A. M. Andrews, P. Klang, W. Schrenk, and G. Strasser, “Active photonic crystal terahertz laser,” Opt. Express17, 941–946 (2009).
[CrossRef] [PubMed]

Koehler, R.

R. Koehler, A. Tredicucci, F. Beltram, H. E. Beere, E. H. Linfield, A. G. Davies, D. A. Ritchie, R. C. Iotti, and F. Rossi, “Terahertz semiconductor-heterostructure laser,” Nature417, 156–159 (2002).
[CrossRef]

Kohen, S.

S. Kohen, B. S. Williams, and Q. Hu, “Electromagnetic modeling of terahertz quantum cascade laser waveguides and resonators,” J. Appl. Phys.97, 053106 (2005).
[CrossRef]

Kubis, T.

C. Deutsch, A. Benz, H. Detz, P. Klang, M. Nobile, A. M. Andrews, W. Schrenk, T. Kubis, P. Vogl, G. Strasser, and K. Unterrainer, “Terahertz quantum cascade lasers based on type II InGaAs/GaAsSb/InP,” Appl. Phys. Lett.97, 1110 (2010).
[CrossRef]

Kumar, S.

B. Williams, S. Kumar, Q. Hu, and J. Reno, “High-power terahertz quantum-cascade lasers,” Electron. Lett.42, 89 (2006).
[CrossRef]

B. S. Williams, H. Callebaut, S. Kumar, Q. Hu, and J. L. Reno, “3.4 THz quantum cascade laser based on longintudinal-optical-phonon scattering for depopulation,” Appl. Phys. Lett.82, 1015–1017 (2003).
[CrossRef]

Laframboise, S.

Linfield, E. H.

Y. Chassagneux, R. Colombelli, W. Maineult, S. Barbieri, H. E. Beere, D. A. Ritchie, S. P. Khanna, E. H. Linfield, and A. G. Davies, “Electrically pumped photonic-crystal terahertz lasers controlled by boundary conditions,” Nature457, 174–178 (2009).
[CrossRef] [PubMed]

R. Koehler, A. Tredicucci, F. Beltram, H. E. Beere, E. H. Linfield, A. G. Davies, D. A. Ritchie, R. C. Iotti, and F. Rossi, “Terahertz semiconductor-heterostructure laser,” Nature417, 156–159 (2002).
[CrossRef]

Liu, H. C.

Long, L. L.

M. A. Ordal, L. L. Long, R. J. Bell, S. E. Bell, R. R. Bell, R. W. Alexander, and C. A. Ward, “Optical properties of the metals Al, Co, Cu, Au, Fe, Pb, Ni, Pd, Pt, Ag, Ti, and W in the infrared and far infrared,” Appl. Opt.22, 1100–1120 (1983).
[CrossRef]

Mahler, L.

L. Mahler, A. Tredicucci, F. Beltram, C. Walther, J. Faist, B. Witzigmann, H. E. Beere, and D. A. Ritchie, “Vertically emitting microdisk lasers,” Nat. Photonics3, 46–49 (2009).
[CrossRef]

Maineult, W.

Y. Chassagneux, R. Colombelli, W. Maineult, S. Barbieri, H. E. Beere, D. A. Ritchie, S. P. Khanna, E. H. Linfield, and A. G. Davies, “Electrically pumped photonic-crystal terahertz lasers controlled by boundary conditions,” Nature457, 174–178 (2009).
[CrossRef] [PubMed]

Margalit, N. M.

A. Black, A. R. Hawkins, N. M. Margalit, D. I. Babic, A. L. Holmes, Y.-L. Chang, P. Abraham, J. E. Bowers, and E. L. Hu, “Wafer fusion: Materials issues and device results,” IEEE J. Sel. Top. Quantum Electron.3, 943–951 (1997).
[CrossRef]

Mtys, A.

Nobile, M.

C. Deutsch, A. Benz, H. Detz, P. Klang, M. Nobile, A. M. Andrews, W. Schrenk, T. Kubis, P. Vogl, G. Strasser, and K. Unterrainer, “Terahertz quantum cascade lasers based on type II InGaAs/GaAsSb/InP,” Appl. Phys. Lett.97, 1110 (2010).
[CrossRef]

Okuno, Y.

Y. Okuno, K. Uomi, M. Aoki, and T. Tsuchiya, “Direct wafer bonding of IIIV compound semiconductors for free-material and free-orientation integration,” IEEE J. Quantum Electron.33, 959–969 (1997).
[CrossRef]

Ordal, M. A.

M. A. Ordal, L. L. Long, R. J. Bell, S. E. Bell, R. R. Bell, R. W. Alexander, and C. A. Ward, “Optical properties of the metals Al, Co, Cu, Au, Fe, Pb, Ni, Pd, Pt, Ag, Ti, and W in the infrared and far infrared,” Appl. Opt.22, 1100–1120 (1983).
[CrossRef]

Reno, J.

B. Williams, S. Kumar, Q. Hu, and J. Reno, “High-power terahertz quantum-cascade lasers,” Electron. Lett.42, 89 (2006).
[CrossRef]

Reno, J. L.

B. S. Williams, H. Callebaut, S. Kumar, Q. Hu, and J. L. Reno, “3.4 THz quantum cascade laser based on longintudinal-optical-phonon scattering for depopulation,” Appl. Phys. Lett.82, 1015–1017 (2003).
[CrossRef]

Ritchie, D. A.

Y. Chassagneux, R. Colombelli, W. Maineult, S. Barbieri, H. E. Beere, D. A. Ritchie, S. P. Khanna, E. H. Linfield, and A. G. Davies, “Electrically pumped photonic-crystal terahertz lasers controlled by boundary conditions,” Nature457, 174–178 (2009).
[CrossRef] [PubMed]

L. Mahler, A. Tredicucci, F. Beltram, C. Walther, J. Faist, B. Witzigmann, H. E. Beere, and D. A. Ritchie, “Vertically emitting microdisk lasers,” Nat. Photonics3, 46–49 (2009).
[CrossRef]

R. Koehler, A. Tredicucci, F. Beltram, H. E. Beere, E. H. Linfield, A. G. Davies, D. A. Ritchie, R. C. Iotti, and F. Rossi, “Terahertz semiconductor-heterostructure laser,” Nature417, 156–159 (2002).
[CrossRef]

Roch, T.

G. Fasching, V. Tamošiu̅nas, A. Benz, A. M. Andrews, K. Unterrainer, R. Zobl, T. Roch, W. Schrenk, and G. Strasser, “Subwavelength microdisk and microring terahertz quantum-cascade lasers,” IEEE J. Quantum Electron.43, 687–697 (2007).
[CrossRef]

Rossi, F.

R. Koehler, A. Tredicucci, F. Beltram, H. E. Beere, E. H. Linfield, A. G. Davies, D. A. Ritchie, R. C. Iotti, and F. Rossi, “Terahertz semiconductor-heterostructure laser,” Nature417, 156–159 (2002).
[CrossRef]

Scalari, G.

M. Fischer, G. Scalari, K. Celebi, M. Amanti, C. Walther, M. Beck, and J. Faist, “Scattering processes in terahertz InGaAs/InAlAs quantum cascade lasers,” Appl. Phys. Lett.97, 221114 (2010).
[CrossRef]

M. I. Amanti, M. Fischer, G. Scalari, M. Beck, and J. Faist, “Low-divergence single-mode terahertz quantum cascade laser,” Nat. Photonics3, 586–590 (2009).
[CrossRef]

Schrenk, W.

C. Deutsch, A. Benz, H. Detz, P. Klang, M. Nobile, A. M. Andrews, W. Schrenk, T. Kubis, P. Vogl, G. Strasser, and K. Unterrainer, “Terahertz quantum cascade lasers based on type II InGaAs/GaAsSb/InP,” Appl. Phys. Lett.97, 1110 (2010).
[CrossRef]

A. Benz, C. Deutsch, G. Fasching, K. Unterrainer, A. M. Andrews, P. Klang, W. Schrenk, and G. Strasser, “Active photonic crystal terahertz laser,” Opt. Express17, 941–946 (2009).
[CrossRef] [PubMed]

G. Fasching, V. Tamošiu̅nas, A. Benz, A. M. Andrews, K. Unterrainer, R. Zobl, T. Roch, W. Schrenk, and G. Strasser, “Subwavelength microdisk and microring terahertz quantum-cascade lasers,” IEEE J. Quantum Electron.43, 687–697 (2007).
[CrossRef]

Sergent, A. M.

K. Unterrainer, R. Colombelli, C. Gmachl, F. Capasso, H. Y. Hwang, A. M. Sergent, D. L. Sivco, and A. Y. Cho, “Quantum cascade lasers with double metal-semiconductor waveguide resonators,” Appl. Phys. Lett.80, 3060–3062 (2002).
[CrossRef]

Sivco, D. L.

K. Unterrainer, R. Colombelli, C. Gmachl, F. Capasso, H. Y. Hwang, A. M. Sergent, D. L. Sivco, and A. Y. Cho, “Quantum cascade lasers with double metal-semiconductor waveguide resonators,” Appl. Phys. Lett.80, 3060–3062 (2002).
[CrossRef]

Strasser, G.

C. Deutsch, A. Benz, H. Detz, P. Klang, M. Nobile, A. M. Andrews, W. Schrenk, T. Kubis, P. Vogl, G. Strasser, and K. Unterrainer, “Terahertz quantum cascade lasers based on type II InGaAs/GaAsSb/InP,” Appl. Phys. Lett.97, 1110 (2010).
[CrossRef]

A. Benz, C. Deutsch, G. Fasching, K. Unterrainer, A. M. Andrews, P. Klang, W. Schrenk, and G. Strasser, “Active photonic crystal terahertz laser,” Opt. Express17, 941–946 (2009).
[CrossRef] [PubMed]

G. Fasching, V. Tamošiu̅nas, A. Benz, A. M. Andrews, K. Unterrainer, R. Zobl, T. Roch, W. Schrenk, and G. Strasser, “Subwavelength microdisk and microring terahertz quantum-cascade lasers,” IEEE J. Quantum Electron.43, 687–697 (2007).
[CrossRef]

Tamošiu¯nas, V.

G. Fasching, V. Tamošiu̅nas, A. Benz, A. M. Andrews, K. Unterrainer, R. Zobl, T. Roch, W. Schrenk, and G. Strasser, “Subwavelength microdisk and microring terahertz quantum-cascade lasers,” IEEE J. Quantum Electron.43, 687–697 (2007).
[CrossRef]

Tonouchi, M.

M. Tonouchi, “Cutting-edge terahertz technology,” Nat. Photonics1, 97–105 (2007).
[CrossRef]

Tredicucci, A.

L. Mahler, A. Tredicucci, F. Beltram, C. Walther, J. Faist, B. Witzigmann, H. E. Beere, and D. A. Ritchie, “Vertically emitting microdisk lasers,” Nat. Photonics3, 46–49 (2009).
[CrossRef]

R. Koehler, A. Tredicucci, F. Beltram, H. E. Beere, E. H. Linfield, A. G. Davies, D. A. Ritchie, R. C. Iotti, and F. Rossi, “Terahertz semiconductor-heterostructure laser,” Nature417, 156–159 (2002).
[CrossRef]

Tsuchiya, T.

Y. Okuno, K. Uomi, M. Aoki, and T. Tsuchiya, “Direct wafer bonding of IIIV compound semiconductors for free-material and free-orientation integration,” IEEE J. Quantum Electron.33, 959–969 (1997).
[CrossRef]

Unterrainer, K.

C. Deutsch, A. Benz, H. Detz, P. Klang, M. Nobile, A. M. Andrews, W. Schrenk, T. Kubis, P. Vogl, G. Strasser, and K. Unterrainer, “Terahertz quantum cascade lasers based on type II InGaAs/GaAsSb/InP,” Appl. Phys. Lett.97, 1110 (2010).
[CrossRef]

A. Benz, C. Deutsch, G. Fasching, K. Unterrainer, A. M. Andrews, P. Klang, W. Schrenk, and G. Strasser, “Active photonic crystal terahertz laser,” Opt. Express17, 941–946 (2009).
[CrossRef] [PubMed]

G. Fasching, V. Tamošiu̅nas, A. Benz, A. M. Andrews, K. Unterrainer, R. Zobl, T. Roch, W. Schrenk, and G. Strasser, “Subwavelength microdisk and microring terahertz quantum-cascade lasers,” IEEE J. Quantum Electron.43, 687–697 (2007).
[CrossRef]

K. Unterrainer, R. Colombelli, C. Gmachl, F. Capasso, H. Y. Hwang, A. M. Sergent, D. L. Sivco, and A. Y. Cho, “Quantum cascade lasers with double metal-semiconductor waveguide resonators,” Appl. Phys. Lett.80, 3060–3062 (2002).
[CrossRef]

Uomi, K.

Y. Okuno, K. Uomi, M. Aoki, and T. Tsuchiya, “Direct wafer bonding of IIIV compound semiconductors for free-material and free-orientation integration,” IEEE J. Quantum Electron.33, 959–969 (1997).
[CrossRef]

Vogl, P.

C. Deutsch, A. Benz, H. Detz, P. Klang, M. Nobile, A. M. Andrews, W. Schrenk, T. Kubis, P. Vogl, G. Strasser, and K. Unterrainer, “Terahertz quantum cascade lasers based on type II InGaAs/GaAsSb/InP,” Appl. Phys. Lett.97, 1110 (2010).
[CrossRef]

Walther, C.

M. Fischer, G. Scalari, K. Celebi, M. Amanti, C. Walther, M. Beck, and J. Faist, “Scattering processes in terahertz InGaAs/InAlAs quantum cascade lasers,” Appl. Phys. Lett.97, 221114 (2010).
[CrossRef]

L. Mahler, A. Tredicucci, F. Beltram, C. Walther, J. Faist, B. Witzigmann, H. E. Beere, and D. A. Ritchie, “Vertically emitting microdisk lasers,” Nat. Photonics3, 46–49 (2009).
[CrossRef]

Ward, C. A.

M. A. Ordal, L. L. Long, R. J. Bell, S. E. Bell, R. R. Bell, R. W. Alexander, and C. A. Ward, “Optical properties of the metals Al, Co, Cu, Au, Fe, Pb, Ni, Pd, Pt, Ag, Ti, and W in the infrared and far infrared,” Appl. Opt.22, 1100–1120 (1983).
[CrossRef]

Wasilewski, Z.

Williams, B.

B. Williams, S. Kumar, Q. Hu, and J. Reno, “High-power terahertz quantum-cascade lasers,” Electron. Lett.42, 89 (2006).
[CrossRef]

Williams, B. S.

S. Kohen, B. S. Williams, and Q. Hu, “Electromagnetic modeling of terahertz quantum cascade laser waveguides and resonators,” J. Appl. Phys.97, 053106 (2005).
[CrossRef]

B. S. Williams, H. Callebaut, S. Kumar, Q. Hu, and J. L. Reno, “3.4 THz quantum cascade laser based on longintudinal-optical-phonon scattering for depopulation,” Appl. Phys. Lett.82, 1015–1017 (2003).
[CrossRef]

Witzigmann, B.

L. Mahler, A. Tredicucci, F. Beltram, C. Walther, J. Faist, B. Witzigmann, H. E. Beere, and D. A. Ritchie, “Vertically emitting microdisk lasers,” Nat. Photonics3, 46–49 (2009).
[CrossRef]

Zobl, R.

G. Fasching, V. Tamošiu̅nas, A. Benz, A. M. Andrews, K. Unterrainer, R. Zobl, T. Roch, W. Schrenk, and G. Strasser, “Subwavelength microdisk and microring terahertz quantum-cascade lasers,” IEEE J. Quantum Electron.43, 687–697 (2007).
[CrossRef]

Appl. Opt.

M. A. Ordal, L. L. Long, R. J. Bell, S. E. Bell, R. R. Bell, R. W. Alexander, and C. A. Ward, “Optical properties of the metals Al, Co, Cu, Au, Fe, Pb, Ni, Pd, Pt, Ag, Ti, and W in the infrared and far infrared,” Appl. Opt.22, 1100–1120 (1983).
[CrossRef]

Appl. Phys. Lett.

M. Fischer, G. Scalari, K. Celebi, M. Amanti, C. Walther, M. Beck, and J. Faist, “Scattering processes in terahertz InGaAs/InAlAs quantum cascade lasers,” Appl. Phys. Lett.97, 221114 (2010).
[CrossRef]

C. Deutsch, A. Benz, H. Detz, P. Klang, M. Nobile, A. M. Andrews, W. Schrenk, T. Kubis, P. Vogl, G. Strasser, and K. Unterrainer, “Terahertz quantum cascade lasers based on type II InGaAs/GaAsSb/InP,” Appl. Phys. Lett.97, 1110 (2010).
[CrossRef]

K. Unterrainer, R. Colombelli, C. Gmachl, F. Capasso, H. Y. Hwang, A. M. Sergent, D. L. Sivco, and A. Y. Cho, “Quantum cascade lasers with double metal-semiconductor waveguide resonators,” Appl. Phys. Lett.80, 3060–3062 (2002).
[CrossRef]

B. S. Williams, H. Callebaut, S. Kumar, Q. Hu, and J. L. Reno, “3.4 THz quantum cascade laser based on longintudinal-optical-phonon scattering for depopulation,” Appl. Phys. Lett.82, 1015–1017 (2003).
[CrossRef]

Electron. Lett.

B. Williams, S. Kumar, Q. Hu, and J. Reno, “High-power terahertz quantum-cascade lasers,” Electron. Lett.42, 89 (2006).
[CrossRef]

IEEE J. Quantum Electron.

G. Fasching, V. Tamošiu̅nas, A. Benz, A. M. Andrews, K. Unterrainer, R. Zobl, T. Roch, W. Schrenk, and G. Strasser, “Subwavelength microdisk and microring terahertz quantum-cascade lasers,” IEEE J. Quantum Electron.43, 687–697 (2007).
[CrossRef]

Y. Okuno, K. Uomi, M. Aoki, and T. Tsuchiya, “Direct wafer bonding of IIIV compound semiconductors for free-material and free-orientation integration,” IEEE J. Quantum Electron.33, 959–969 (1997).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron.

A. Black, A. R. Hawkins, N. M. Margalit, D. I. Babic, A. L. Holmes, Y.-L. Chang, P. Abraham, J. E. Bowers, and E. L. Hu, “Wafer fusion: Materials issues and device results,” IEEE J. Sel. Top. Quantum Electron.3, 943–951 (1997).
[CrossRef]

J. Appl. Phys.

S. Kohen, B. S. Williams, and Q. Hu, “Electromagnetic modeling of terahertz quantum cascade laser waveguides and resonators,” J. Appl. Phys.97, 053106 (2005).
[CrossRef]

Nat. Photonics

M. Tonouchi, “Cutting-edge terahertz technology,” Nat. Photonics1, 97–105 (2007).
[CrossRef]

M. I. Amanti, M. Fischer, G. Scalari, M. Beck, and J. Faist, “Low-divergence single-mode terahertz quantum cascade laser,” Nat. Photonics3, 586–590 (2009).
[CrossRef]

L. Mahler, A. Tredicucci, F. Beltram, C. Walther, J. Faist, B. Witzigmann, H. E. Beere, and D. A. Ritchie, “Vertically emitting microdisk lasers,” Nat. Photonics3, 46–49 (2009).
[CrossRef]

Nature

Y. Chassagneux, R. Colombelli, W. Maineult, S. Barbieri, H. E. Beere, D. A. Ritchie, S. P. Khanna, E. H. Linfield, and A. G. Davies, “Electrically pumped photonic-crystal terahertz lasers controlled by boundary conditions,” Nature457, 174–178 (2009).
[CrossRef] [PubMed]

R. Koehler, A. Tredicucci, F. Beltram, H. E. Beere, E. H. Linfield, A. G. Davies, D. A. Ritchie, R. C. Iotti, and F. Rossi, “Terahertz semiconductor-heterostructure laser,” Nature417, 156–159 (2002).
[CrossRef]

Opt. Express

Other

“Comsol multiphysics, http://www.comsol.com ,”.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Calculated intensity inside the waveguide for (a) 15 μm and (b) 30 μm active region thickness (red solid line). The black dashed line indicates the refractive index of the respective material. (c) Reflectivity of a double-metal waveguide with etched facet at varying thickness. For the experiment the emitting frequency is chosen such that the reflectivity at 15 μm and 30 μm is almost equal. (d) SEM picture of a fabricated device.

Fig. 2
Fig. 2

Temperature characteristics of a device with (a) 15 μm and (b) 30 μm active region. The threshold current densities and maximum operating temperature are comparable for both devices. The threshold voltage for a 30 μm device is increased by a factor of 2 compared to the single active region device, indicating a good electrical interface quality in terms of the contact voltage.

Fig. 3
Fig. 3

Experimentally measured far-field of a device with (a) 15 μm and (b) 30 μm active region. The lower plots show the intensity along the dashed line, which is compared to a 2-dimensional finite-element simulation. The far-field is improved significantly for the thick device in terms of a reduced fringe visibility and a better collimated beam, which is also confirmed by the simulation.

Tables (1)

Tables Icon

Table 1 Maximum output power of devices with different dimensions and 15 μm and 30 μm active region thickness respectively. The maximum value of a 30 μm thick device is larger by significantly more than a factor of 2 compared to a single active region device.

Metrics