Abstract

We demonstrate amorphous and polycrystalline anatase TiO2 thin films and submicrometer-wide waveguides with promising optical properties for microphotonic devices. We deposit both amorphous and polycrystalline anatase TiO2 using reactive sputtering and define waveguides using electron-beam lithography and reactive ion etching. For the amorphous TiO2, we obtain propagation losses of 0.12 ± 0.02 dB/mm at 633 nm and 0.04 ± 0.01 dB/mm at 1550 nm in thin films and 2.6 ± 0.5 dB/mm at 633 nm and 0.4 ± 0.2 dB/mm at 1550 nm in waveguides. Using single-mode amorphous TiO2 waveguides, we characterize microphotonic features including microbends and optical couplers. We show transmission of 780-nm light through microbends having radii down to 2 μm and variable signal splitting in microphotonic couplers with coupling lengths of 10 μm.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. R. Villeneuve, J. S. Foresi, J. Ferrera, E. R. Thoen, G. Steinmeyer, S. Fan, J. D. Joannopoulos, L. C. Kimerling, H. I. Smith, and E. P. Ippen, “Photonic-bandgap microcavities in optical waveguides,” Nature390(6656), 143–145 (1997).
    [CrossRef]
  2. L. M. Tong, R. R. Gattass, J. B. Ashcom, S. L. He, J. Y. Lou, M. Y. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature426(6968), 816–819 (2003).
    [CrossRef] [PubMed]
  3. V. R. Almeida, C. A. Barrios, R. R. Panepucci, and M. Lipson, “All-optical control of light on a silicon chip,” Nature431(7012), 1081–1084 (2004).
    [CrossRef] [PubMed]
  4. M. T. Hill, H. J. S. Dorren, T. De Vries, X. J. Leijtens, J. H. Den Besten, B. Smalbrugge, Y.-S. Oei, H. Binsma, G.-D. Khoe, and M. K. Smit, “A fast low-power optical memory based on coupled micro-ring lasers,” Nature432(7014), 206–209 (2004).
    [CrossRef] [PubMed]
  5. H. Park, A. W. Fang, R. Jones, O. Cohen, O. Raday, M. N. Sysak, M. J. Paniccia, and J. E. Bowers, “A hybrid AlGaInAs-silicon evanescent waveguide photodetector,” Opt. Express15(10), 6044–6052 (2007).
    [CrossRef] [PubMed]
  6. C. Koos, P. Vorreau, T. Vallaitis, P. Dumon, W. Bogaerts, R. Baets, B. Esembeson, I. Biaggio, T. Michinobu, F. Diederich, W. Freude, and J. Leuthold, “All-optical high-speed signal processing with silicon-organic hybrid slot waveguides,” Nat. Photonics3(4), 216–219 (2009).
    [CrossRef]
  7. X. Guo, M. Qiu, J. M. Bao, B. J. Wiley, Q. Yang, X. N. Zhang, Y. G. Ma, H. K. Yu, and L. M. Tong, “Direct coupling of plasmonic and photonic nanowires for hybrid nanophotonic components and circuits,” Nano Lett.9(12), 4515–4519 (2009).
    [CrossRef] [PubMed]
  8. B. J. Eggleton, B. Luther-Davies, and K. Richardson, “Chalcogenide photonics,” Nat. Photonics5, 141–148 (2011).
  9. R. L. Espinola, J. I. Dadap, R. M. Osgood, S. J. McNab, and Y. A. Vlasov, “Raman amplification in ultrasmall silicon-on-insulator wire waveguides,” Opt. Express12(16), 3713–3718 (2004).
    [CrossRef] [PubMed]
  10. R. R. Gattass, G. T. Svacha, L. M. Tong, and E. Mazur, “Supercontinuum generation in submicrometer diameter silica fibers,” Opt. Express14(20), 9408–9414 (2006).
    [CrossRef] [PubMed]
  11. R. Dekker, A. Driessen, T. Wahlbrink, C. Moormann, J. Niehusmann, and M. Först, “Ultrafast Kerr-induced all-optical wavelength conversion in silicon waveguides using 1.55 mum femtosecond pulses,” Opt. Express14(18), 8336–8346 (2006).
    [CrossRef] [PubMed]
  12. L. Tong, J. Lou, R. R. Gattass, S. He, X. Chen, L. Liu, and E. Mazur, “Assembly of silica nanowires on silica aerogels for microphotonic devices,” Nano Lett.5(2), 259–262 (2005).
    [CrossRef] [PubMed]
  13. T. Tsuchizawa, K. Yamada, H. Fukuda, T. Watanabe, M. Jun-ichi Takahashi, T. Takahashi, E. Shoji, S. Tamechika, Itabashi, and H. Morita, “Microphotonic devices based on silicon microfabrication technology,” IEEE J. Sel. Top. Quantum Electron.11(1), 232–240 (2005).
    [CrossRef]
  14. M. A. Foster, K. D. Moll, and A. L. Gaeta, “Optimal waveguide dimensions for nonlinear interactions,” Opt. Express12(13), 2880–2887 (2004).
    [CrossRef] [PubMed]
  15. M. A. Foster, A. C. Turner, M. Lipson, and A. L. Gaeta, “Nonlinear optics in photonic nanowires,” Opt. Express16(2), 1300–1320 (2008).
    [CrossRef] [PubMed]
  16. J. T. Choy, B. J. M. Hausmann, T. M. Babinec, I. Bulu, M. Khan, P. Maletinsky, A. Yacoby, and M. Lončar, “Enhanced single photon emission from a diamond-silver aperture,” Nat. Photonics5(12), 738–743 (2011).
    [CrossRef]
  17. P. Koonath, D. R. Solli, and B. Jalali, “Limiting nature of continuum generation in silicon,” Appl. Phys. Lett.93(9), 091114 (2008).
    [CrossRef]
  18. Q. Lin, J. Zhang, G. Piredda, R. W. Boyd, P. M. Fauchet, and G. P. Agrawal, “Dispersion of silicon nonlinearities in the near infrared region,” Appl. Phys. Lett.91(2), 021111 (2007).
    [CrossRef]
  19. R. Mechiakh, F. Meriche, R. Kremer, R. Bensaha, B. Boudine, and A. Boudrioua, “TiO2 thin films prepared by sol-gel method for waveguiding applications: Correlation between the structural and optical properties,” Opt. Mater.30(4), 645–651 (2007).
    [CrossRef]
  20. T. Alasaarela, T. Saastamoinen, J. Hiltunen, A. Säynätjoki, A. Tervonen, P. Stenberg, M. Kuittinen, and S. Honkanen, “Atomic layer deposited titanium dioxide and its application in resonant waveguide grating,” Appl. Opt.49(22), 4321–4325 (2010).
    [CrossRef] [PubMed]
  21. J. D. B. Bradley, C. C. Evans, F. Parsy, K. C. Phillips, R. Senaratne, E. Marti, and E. Mazur, “Low-loss TiO2 planar waveguides for nanophotonic applications,” in Proceedings of the 23rd Annual Meeting of the IEEE Photonics Society (Institute of Electrical and Electronics Engineers, Denver, Colorado, 2010), pp. 313−314.
  22. M. Furuhashi, M. Fujiwara, T. Ohshiro, M. Tsutsui, K. Matsubara, M. Taniguchi, S. Takeuchi, and T. Kawai, “Development of microfabricated TiO2 channel waveguides,” AIP Advances 1, 032102/1−5 (2011).
  23. K. Abe, E. Y. M. Teraoka, T. Kita, and H. Yamada, “Nonlinear optical waveguides with rutile TiO2,” Proc. SPIE 7940, 79401G/1−7 (2011).
  24. J. T. Choy, J. D. B. Bradley, P. B. Deotare, I. B. Burgess, C. C. Evans, E. Mazur, and M. Lončar, “Integrated TiO2 resonators for visible photonics,” Opt. Lett.37(4), 539–541 (2012).
    [CrossRef] [PubMed]
  25. Z.-F. Bi, L. Wang, X.-H. Liu, S.-M. Zhang, M.-M. Dong, Q.-Z. Zhao, X.-L. Wu, and K.-M. Wang, “Optical waveguides in TiO₂ formed by He ion implantation,” Opt. Express20(6), 6712–6719 (2012).
    [CrossRef] [PubMed]
  26. J. M. Bennett, E. Pelletier, G. Albrand, J. P. Borgogno, B. Lazarides, C. K. Carniglia, R. A. Schmell, T. H. Allen, T. Tuttle-Hart, K. H. Guenther, and A. Saxer, “Comparison of the properties of titanium dioxide films prepared by various techniques,” Appl. Opt.28(16), 3303–3317 (1989).
    [CrossRef] [PubMed]
  27. N. Sherwood-Droz and M. Lipson, “Scalable 3D dense integration of photonics on bulk silicon,” Opt. Express19(18), 17758–17765 (2011).
    [CrossRef] [PubMed]
  28. R. Adair, L. L. Chase, and S. A. Payne, “Nonlinear refractive index of optical crystals,” Phys. Rev. B Condens. Matter39(5), 3337–3350 (1989).
    [CrossRef] [PubMed]
  29. H. Long, A. P. Chen, G. Yang, Y. H. Li, and P. X. Lu, “Third-order optical nonlinearities in anatase and rutile TiO2 thin films,” Thin Solid Films517(19), 5601–5604 (2009).
    [CrossRef]
  30. C. C. Evans, J. D. B. Bradley, E. A. Martí-Panameño, and E. Mazur, “Mixed two- and three-photon absorption in bulk rutile (TiO2) around 800 nm,” Opt. Express20(3), 3118–3128 (2012).
    [CrossRef] [PubMed]
  31. K. Ikeda, R. E. Saperstein, N. Alic, and Y. Fainman, “Thermal and Kerr nonlinear properties of plasma-deposited silicon nitride/ silicon dioxide waveguides,” Opt. Express16(17), 12987–12994 (2008).
    [CrossRef] [PubMed]
  32. S. P. S. Porto, P. A. Fleury, and T. C. Damen, “Raman spectra of TiO2, MgF2, ZnF2, FeF2, and MnF2,” Phys. Rev.154(2), 522–526 (1967).
    [CrossRef]
  33. T. Ohsaka, F. Izumi, and Y. Fujiki, “Raman spectrum of anatase, TiO2,” J. Raman Spectrosc.7(6), 321–324 (1978).
    [CrossRef]
  34. P. K. Tien, “Light waves in thin films and integrated Optics,” Appl. Opt.10(11), 2395–2413 (1971).
    [CrossRef] [PubMed]
  35. N. Daldosso, M. Melchiorri, F. Riboli, F. Sbrana, L. Pavesi, G. Pucker, C. Kompocholis, M. Crivellari, P. Bellutti, and A. Lui, “Fabrication and optical characterization of thin two-dimensional Si3N4 waveguides,” Mater. Sci. Semicond. Process.7(4-6), 453–458 (2004).
    [CrossRef]
  36. N. Martin, C. Rousselot, D. Rondot, F. Palmino, and R. Mercier, “Microstructure modification of amorphous titanium dioxide thin films during annealing treatment,” Thin Solid Films300(1-2), 113–121 (1997).
    [CrossRef]
  37. Y. Vlasov and S. J. McNab, “Losses in single-mode silicon-on-insulator strip waveguides and bends,” Opt. Express12(8), 1622–1631 (2004).
    [CrossRef] [PubMed]
  38. J. S. Foresi, M. R. Black, A. M. Agarwal, and L. C. Kimerling, “Losses in polycrystalline silicon waveguides,” Appl. Phys. Lett.68(15), 2052–2054 (1996).
    [CrossRef]
  39. T. Barwicz and H. I. Smith, “Evolution of line-edge roughness during fabrication of high-index-contrast microphotonic devices,” J. Vac. Sci. Technol. B21(6), 2892–2896 (2003).
    [CrossRef]
  40. M. Gnan, D. S. Macintyre, M. Sorel, R. M. De La Rue, and S. Thoms, “Enhanced stitching for the fabrication of photonic structures by electron beam lithography,” J. Vac. Sci. Technol. B25(6), 2034–2037 (2007).
    [CrossRef]
  41. S. Lardenois, D. Pascal, L. Vivien, E. Cassan, S. Laval, R. Orobtchouk, M. Heitzmann, N. Bouzaida, and L. Mollard, “Low-loss submicrometer silicon-on-insulator rib waveguides and corner mirrors,” Opt. Lett.28(13), 1150–1152 (2003).
    [CrossRef] [PubMed]
  42. J. Cardenas, C. B. Poitras, J. T. Robinson, K. Preston, L. Chen, and M. Lipson, “Low loss etchless silicon photonic waveguides,” Opt. Express17(6), 4752–4757 (2009).
    [CrossRef] [PubMed]
  43. R. J. Bojko, J. Li, L. He, T. Baehr-Jones, M. Hochberg, and Y. Aida, “Electron beam lithography writing strategies for low loss, high confinement silicon optical waveguides,” J. Vac. Sci. Technol.29(6), 06F309 (2011).
    [CrossRef]

2012

2011

N. Sherwood-Droz and M. Lipson, “Scalable 3D dense integration of photonics on bulk silicon,” Opt. Express19(18), 17758–17765 (2011).
[CrossRef] [PubMed]

B. J. Eggleton, B. Luther-Davies, and K. Richardson, “Chalcogenide photonics,” Nat. Photonics5, 141–148 (2011).

J. T. Choy, B. J. M. Hausmann, T. M. Babinec, I. Bulu, M. Khan, P. Maletinsky, A. Yacoby, and M. Lončar, “Enhanced single photon emission from a diamond-silver aperture,” Nat. Photonics5(12), 738–743 (2011).
[CrossRef]

R. J. Bojko, J. Li, L. He, T. Baehr-Jones, M. Hochberg, and Y. Aida, “Electron beam lithography writing strategies for low loss, high confinement silicon optical waveguides,” J. Vac. Sci. Technol.29(6), 06F309 (2011).
[CrossRef]

2010

2009

H. Long, A. P. Chen, G. Yang, Y. H. Li, and P. X. Lu, “Third-order optical nonlinearities in anatase and rutile TiO2 thin films,” Thin Solid Films517(19), 5601–5604 (2009).
[CrossRef]

C. Koos, P. Vorreau, T. Vallaitis, P. Dumon, W. Bogaerts, R. Baets, B. Esembeson, I. Biaggio, T. Michinobu, F. Diederich, W. Freude, and J. Leuthold, “All-optical high-speed signal processing with silicon-organic hybrid slot waveguides,” Nat. Photonics3(4), 216–219 (2009).
[CrossRef]

X. Guo, M. Qiu, J. M. Bao, B. J. Wiley, Q. Yang, X. N. Zhang, Y. G. Ma, H. K. Yu, and L. M. Tong, “Direct coupling of plasmonic and photonic nanowires for hybrid nanophotonic components and circuits,” Nano Lett.9(12), 4515–4519 (2009).
[CrossRef] [PubMed]

J. Cardenas, C. B. Poitras, J. T. Robinson, K. Preston, L. Chen, and M. Lipson, “Low loss etchless silicon photonic waveguides,” Opt. Express17(6), 4752–4757 (2009).
[CrossRef] [PubMed]

2008

2007

H. Park, A. W. Fang, R. Jones, O. Cohen, O. Raday, M. N. Sysak, M. J. Paniccia, and J. E. Bowers, “A hybrid AlGaInAs-silicon evanescent waveguide photodetector,” Opt. Express15(10), 6044–6052 (2007).
[CrossRef] [PubMed]

Q. Lin, J. Zhang, G. Piredda, R. W. Boyd, P. M. Fauchet, and G. P. Agrawal, “Dispersion of silicon nonlinearities in the near infrared region,” Appl. Phys. Lett.91(2), 021111 (2007).
[CrossRef]

R. Mechiakh, F. Meriche, R. Kremer, R. Bensaha, B. Boudine, and A. Boudrioua, “TiO2 thin films prepared by sol-gel method for waveguiding applications: Correlation between the structural and optical properties,” Opt. Mater.30(4), 645–651 (2007).
[CrossRef]

M. Gnan, D. S. Macintyre, M. Sorel, R. M. De La Rue, and S. Thoms, “Enhanced stitching for the fabrication of photonic structures by electron beam lithography,” J. Vac. Sci. Technol. B25(6), 2034–2037 (2007).
[CrossRef]

2006

2005

L. Tong, J. Lou, R. R. Gattass, S. He, X. Chen, L. Liu, and E. Mazur, “Assembly of silica nanowires on silica aerogels for microphotonic devices,” Nano Lett.5(2), 259–262 (2005).
[CrossRef] [PubMed]

T. Tsuchizawa, K. Yamada, H. Fukuda, T. Watanabe, M. Jun-ichi Takahashi, T. Takahashi, E. Shoji, S. Tamechika, Itabashi, and H. Morita, “Microphotonic devices based on silicon microfabrication technology,” IEEE J. Sel. Top. Quantum Electron.11(1), 232–240 (2005).
[CrossRef]

2004

M. A. Foster, K. D. Moll, and A. L. Gaeta, “Optimal waveguide dimensions for nonlinear interactions,” Opt. Express12(13), 2880–2887 (2004).
[CrossRef] [PubMed]

R. L. Espinola, J. I. Dadap, R. M. Osgood, S. J. McNab, and Y. A. Vlasov, “Raman amplification in ultrasmall silicon-on-insulator wire waveguides,” Opt. Express12(16), 3713–3718 (2004).
[CrossRef] [PubMed]

V. R. Almeida, C. A. Barrios, R. R. Panepucci, and M. Lipson, “All-optical control of light on a silicon chip,” Nature431(7012), 1081–1084 (2004).
[CrossRef] [PubMed]

M. T. Hill, H. J. S. Dorren, T. De Vries, X. J. Leijtens, J. H. Den Besten, B. Smalbrugge, Y.-S. Oei, H. Binsma, G.-D. Khoe, and M. K. Smit, “A fast low-power optical memory based on coupled micro-ring lasers,” Nature432(7014), 206–209 (2004).
[CrossRef] [PubMed]

N. Daldosso, M. Melchiorri, F. Riboli, F. Sbrana, L. Pavesi, G. Pucker, C. Kompocholis, M. Crivellari, P. Bellutti, and A. Lui, “Fabrication and optical characterization of thin two-dimensional Si3N4 waveguides,” Mater. Sci. Semicond. Process.7(4-6), 453–458 (2004).
[CrossRef]

Y. Vlasov and S. J. McNab, “Losses in single-mode silicon-on-insulator strip waveguides and bends,” Opt. Express12(8), 1622–1631 (2004).
[CrossRef] [PubMed]

2003

L. M. Tong, R. R. Gattass, J. B. Ashcom, S. L. He, J. Y. Lou, M. Y. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature426(6968), 816–819 (2003).
[CrossRef] [PubMed]

S. Lardenois, D. Pascal, L. Vivien, E. Cassan, S. Laval, R. Orobtchouk, M. Heitzmann, N. Bouzaida, and L. Mollard, “Low-loss submicrometer silicon-on-insulator rib waveguides and corner mirrors,” Opt. Lett.28(13), 1150–1152 (2003).
[CrossRef] [PubMed]

T. Barwicz and H. I. Smith, “Evolution of line-edge roughness during fabrication of high-index-contrast microphotonic devices,” J. Vac. Sci. Technol. B21(6), 2892–2896 (2003).
[CrossRef]

1997

P. R. Villeneuve, J. S. Foresi, J. Ferrera, E. R. Thoen, G. Steinmeyer, S. Fan, J. D. Joannopoulos, L. C. Kimerling, H. I. Smith, and E. P. Ippen, “Photonic-bandgap microcavities in optical waveguides,” Nature390(6656), 143–145 (1997).
[CrossRef]

N. Martin, C. Rousselot, D. Rondot, F. Palmino, and R. Mercier, “Microstructure modification of amorphous titanium dioxide thin films during annealing treatment,” Thin Solid Films300(1-2), 113–121 (1997).
[CrossRef]

1996

J. S. Foresi, M. R. Black, A. M. Agarwal, and L. C. Kimerling, “Losses in polycrystalline silicon waveguides,” Appl. Phys. Lett.68(15), 2052–2054 (1996).
[CrossRef]

1989

1978

T. Ohsaka, F. Izumi, and Y. Fujiki, “Raman spectrum of anatase, TiO2,” J. Raman Spectrosc.7(6), 321–324 (1978).
[CrossRef]

1971

1967

S. P. S. Porto, P. A. Fleury, and T. C. Damen, “Raman spectra of TiO2, MgF2, ZnF2, FeF2, and MnF2,” Phys. Rev.154(2), 522–526 (1967).
[CrossRef]

Adair, R.

R. Adair, L. L. Chase, and S. A. Payne, “Nonlinear refractive index of optical crystals,” Phys. Rev. B Condens. Matter39(5), 3337–3350 (1989).
[CrossRef] [PubMed]

Agarwal, A. M.

J. S. Foresi, M. R. Black, A. M. Agarwal, and L. C. Kimerling, “Losses in polycrystalline silicon waveguides,” Appl. Phys. Lett.68(15), 2052–2054 (1996).
[CrossRef]

Agrawal, G. P.

Q. Lin, J. Zhang, G. Piredda, R. W. Boyd, P. M. Fauchet, and G. P. Agrawal, “Dispersion of silicon nonlinearities in the near infrared region,” Appl. Phys. Lett.91(2), 021111 (2007).
[CrossRef]

Aida, Y.

R. J. Bojko, J. Li, L. He, T. Baehr-Jones, M. Hochberg, and Y. Aida, “Electron beam lithography writing strategies for low loss, high confinement silicon optical waveguides,” J. Vac. Sci. Technol.29(6), 06F309 (2011).
[CrossRef]

Alasaarela, T.

Albrand, G.

Alic, N.

Allen, T. H.

Almeida, V. R.

V. R. Almeida, C. A. Barrios, R. R. Panepucci, and M. Lipson, “All-optical control of light on a silicon chip,” Nature431(7012), 1081–1084 (2004).
[CrossRef] [PubMed]

Ashcom, J. B.

L. M. Tong, R. R. Gattass, J. B. Ashcom, S. L. He, J. Y. Lou, M. Y. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature426(6968), 816–819 (2003).
[CrossRef] [PubMed]

Babinec, T. M.

J. T. Choy, B. J. M. Hausmann, T. M. Babinec, I. Bulu, M. Khan, P. Maletinsky, A. Yacoby, and M. Lončar, “Enhanced single photon emission from a diamond-silver aperture,” Nat. Photonics5(12), 738–743 (2011).
[CrossRef]

Baehr-Jones, T.

R. J. Bojko, J. Li, L. He, T. Baehr-Jones, M. Hochberg, and Y. Aida, “Electron beam lithography writing strategies for low loss, high confinement silicon optical waveguides,” J. Vac. Sci. Technol.29(6), 06F309 (2011).
[CrossRef]

Baets, R.

C. Koos, P. Vorreau, T. Vallaitis, P. Dumon, W. Bogaerts, R. Baets, B. Esembeson, I. Biaggio, T. Michinobu, F. Diederich, W. Freude, and J. Leuthold, “All-optical high-speed signal processing with silicon-organic hybrid slot waveguides,” Nat. Photonics3(4), 216–219 (2009).
[CrossRef]

Bao, J. M.

X. Guo, M. Qiu, J. M. Bao, B. J. Wiley, Q. Yang, X. N. Zhang, Y. G. Ma, H. K. Yu, and L. M. Tong, “Direct coupling of plasmonic and photonic nanowires for hybrid nanophotonic components and circuits,” Nano Lett.9(12), 4515–4519 (2009).
[CrossRef] [PubMed]

Barrios, C. A.

V. R. Almeida, C. A. Barrios, R. R. Panepucci, and M. Lipson, “All-optical control of light on a silicon chip,” Nature431(7012), 1081–1084 (2004).
[CrossRef] [PubMed]

Barwicz, T.

T. Barwicz and H. I. Smith, “Evolution of line-edge roughness during fabrication of high-index-contrast microphotonic devices,” J. Vac. Sci. Technol. B21(6), 2892–2896 (2003).
[CrossRef]

Bellutti, P.

N. Daldosso, M. Melchiorri, F. Riboli, F. Sbrana, L. Pavesi, G. Pucker, C. Kompocholis, M. Crivellari, P. Bellutti, and A. Lui, “Fabrication and optical characterization of thin two-dimensional Si3N4 waveguides,” Mater. Sci. Semicond. Process.7(4-6), 453–458 (2004).
[CrossRef]

Bennett, J. M.

Bensaha, R.

R. Mechiakh, F. Meriche, R. Kremer, R. Bensaha, B. Boudine, and A. Boudrioua, “TiO2 thin films prepared by sol-gel method for waveguiding applications: Correlation between the structural and optical properties,” Opt. Mater.30(4), 645–651 (2007).
[CrossRef]

Bi, Z.-F.

Biaggio, I.

C. Koos, P. Vorreau, T. Vallaitis, P. Dumon, W. Bogaerts, R. Baets, B. Esembeson, I. Biaggio, T. Michinobu, F. Diederich, W. Freude, and J. Leuthold, “All-optical high-speed signal processing with silicon-organic hybrid slot waveguides,” Nat. Photonics3(4), 216–219 (2009).
[CrossRef]

Binsma, H.

M. T. Hill, H. J. S. Dorren, T. De Vries, X. J. Leijtens, J. H. Den Besten, B. Smalbrugge, Y.-S. Oei, H. Binsma, G.-D. Khoe, and M. K. Smit, “A fast low-power optical memory based on coupled micro-ring lasers,” Nature432(7014), 206–209 (2004).
[CrossRef] [PubMed]

Black, M. R.

J. S. Foresi, M. R. Black, A. M. Agarwal, and L. C. Kimerling, “Losses in polycrystalline silicon waveguides,” Appl. Phys. Lett.68(15), 2052–2054 (1996).
[CrossRef]

Bogaerts, W.

C. Koos, P. Vorreau, T. Vallaitis, P. Dumon, W. Bogaerts, R. Baets, B. Esembeson, I. Biaggio, T. Michinobu, F. Diederich, W. Freude, and J. Leuthold, “All-optical high-speed signal processing with silicon-organic hybrid slot waveguides,” Nat. Photonics3(4), 216–219 (2009).
[CrossRef]

Bojko, R. J.

R. J. Bojko, J. Li, L. He, T. Baehr-Jones, M. Hochberg, and Y. Aida, “Electron beam lithography writing strategies for low loss, high confinement silicon optical waveguides,” J. Vac. Sci. Technol.29(6), 06F309 (2011).
[CrossRef]

Borgogno, J. P.

Boudine, B.

R. Mechiakh, F. Meriche, R. Kremer, R. Bensaha, B. Boudine, and A. Boudrioua, “TiO2 thin films prepared by sol-gel method for waveguiding applications: Correlation between the structural and optical properties,” Opt. Mater.30(4), 645–651 (2007).
[CrossRef]

Boudrioua, A.

R. Mechiakh, F. Meriche, R. Kremer, R. Bensaha, B. Boudine, and A. Boudrioua, “TiO2 thin films prepared by sol-gel method for waveguiding applications: Correlation between the structural and optical properties,” Opt. Mater.30(4), 645–651 (2007).
[CrossRef]

Bouzaida, N.

Bowers, J. E.

Boyd, R. W.

Q. Lin, J. Zhang, G. Piredda, R. W. Boyd, P. M. Fauchet, and G. P. Agrawal, “Dispersion of silicon nonlinearities in the near infrared region,” Appl. Phys. Lett.91(2), 021111 (2007).
[CrossRef]

Bradley, J. D. B.

Bulu, I.

J. T. Choy, B. J. M. Hausmann, T. M. Babinec, I. Bulu, M. Khan, P. Maletinsky, A. Yacoby, and M. Lončar, “Enhanced single photon emission from a diamond-silver aperture,” Nat. Photonics5(12), 738–743 (2011).
[CrossRef]

Burgess, I. B.

Cardenas, J.

Carniglia, C. K.

Cassan, E.

Chase, L. L.

R. Adair, L. L. Chase, and S. A. Payne, “Nonlinear refractive index of optical crystals,” Phys. Rev. B Condens. Matter39(5), 3337–3350 (1989).
[CrossRef] [PubMed]

Chen, A. P.

H. Long, A. P. Chen, G. Yang, Y. H. Li, and P. X. Lu, “Third-order optical nonlinearities in anatase and rutile TiO2 thin films,” Thin Solid Films517(19), 5601–5604 (2009).
[CrossRef]

Chen, L.

Chen, X.

L. Tong, J. Lou, R. R. Gattass, S. He, X. Chen, L. Liu, and E. Mazur, “Assembly of silica nanowires on silica aerogels for microphotonic devices,” Nano Lett.5(2), 259–262 (2005).
[CrossRef] [PubMed]

Choy, J. T.

J. T. Choy, J. D. B. Bradley, P. B. Deotare, I. B. Burgess, C. C. Evans, E. Mazur, and M. Lončar, “Integrated TiO2 resonators for visible photonics,” Opt. Lett.37(4), 539–541 (2012).
[CrossRef] [PubMed]

J. T. Choy, B. J. M. Hausmann, T. M. Babinec, I. Bulu, M. Khan, P. Maletinsky, A. Yacoby, and M. Lončar, “Enhanced single photon emission from a diamond-silver aperture,” Nat. Photonics5(12), 738–743 (2011).
[CrossRef]

Cohen, O.

Crivellari, M.

N. Daldosso, M. Melchiorri, F. Riboli, F. Sbrana, L. Pavesi, G. Pucker, C. Kompocholis, M. Crivellari, P. Bellutti, and A. Lui, “Fabrication and optical characterization of thin two-dimensional Si3N4 waveguides,” Mater. Sci. Semicond. Process.7(4-6), 453–458 (2004).
[CrossRef]

Dadap, J. I.

Daldosso, N.

N. Daldosso, M. Melchiorri, F. Riboli, F. Sbrana, L. Pavesi, G. Pucker, C. Kompocholis, M. Crivellari, P. Bellutti, and A. Lui, “Fabrication and optical characterization of thin two-dimensional Si3N4 waveguides,” Mater. Sci. Semicond. Process.7(4-6), 453–458 (2004).
[CrossRef]

Damen, T. C.

S. P. S. Porto, P. A. Fleury, and T. C. Damen, “Raman spectra of TiO2, MgF2, ZnF2, FeF2, and MnF2,” Phys. Rev.154(2), 522–526 (1967).
[CrossRef]

De La Rue, R. M.

M. Gnan, D. S. Macintyre, M. Sorel, R. M. De La Rue, and S. Thoms, “Enhanced stitching for the fabrication of photonic structures by electron beam lithography,” J. Vac. Sci. Technol. B25(6), 2034–2037 (2007).
[CrossRef]

De Vries, T.

M. T. Hill, H. J. S. Dorren, T. De Vries, X. J. Leijtens, J. H. Den Besten, B. Smalbrugge, Y.-S. Oei, H. Binsma, G.-D. Khoe, and M. K. Smit, “A fast low-power optical memory based on coupled micro-ring lasers,” Nature432(7014), 206–209 (2004).
[CrossRef] [PubMed]

Dekker, R.

Den Besten, J. H.

M. T. Hill, H. J. S. Dorren, T. De Vries, X. J. Leijtens, J. H. Den Besten, B. Smalbrugge, Y.-S. Oei, H. Binsma, G.-D. Khoe, and M. K. Smit, “A fast low-power optical memory based on coupled micro-ring lasers,” Nature432(7014), 206–209 (2004).
[CrossRef] [PubMed]

Deotare, P. B.

Diederich, F.

C. Koos, P. Vorreau, T. Vallaitis, P. Dumon, W. Bogaerts, R. Baets, B. Esembeson, I. Biaggio, T. Michinobu, F. Diederich, W. Freude, and J. Leuthold, “All-optical high-speed signal processing with silicon-organic hybrid slot waveguides,” Nat. Photonics3(4), 216–219 (2009).
[CrossRef]

Dong, M.-M.

Dorren, H. J. S.

M. T. Hill, H. J. S. Dorren, T. De Vries, X. J. Leijtens, J. H. Den Besten, B. Smalbrugge, Y.-S. Oei, H. Binsma, G.-D. Khoe, and M. K. Smit, “A fast low-power optical memory based on coupled micro-ring lasers,” Nature432(7014), 206–209 (2004).
[CrossRef] [PubMed]

Driessen, A.

Dumon, P.

C. Koos, P. Vorreau, T. Vallaitis, P. Dumon, W. Bogaerts, R. Baets, B. Esembeson, I. Biaggio, T. Michinobu, F. Diederich, W. Freude, and J. Leuthold, “All-optical high-speed signal processing with silicon-organic hybrid slot waveguides,” Nat. Photonics3(4), 216–219 (2009).
[CrossRef]

Eggleton, B. J.

B. J. Eggleton, B. Luther-Davies, and K. Richardson, “Chalcogenide photonics,” Nat. Photonics5, 141–148 (2011).

Esembeson, B.

C. Koos, P. Vorreau, T. Vallaitis, P. Dumon, W. Bogaerts, R. Baets, B. Esembeson, I. Biaggio, T. Michinobu, F. Diederich, W. Freude, and J. Leuthold, “All-optical high-speed signal processing with silicon-organic hybrid slot waveguides,” Nat. Photonics3(4), 216–219 (2009).
[CrossRef]

Espinola, R. L.

Evans, C. C.

Fainman, Y.

Fan, S.

P. R. Villeneuve, J. S. Foresi, J. Ferrera, E. R. Thoen, G. Steinmeyer, S. Fan, J. D. Joannopoulos, L. C. Kimerling, H. I. Smith, and E. P. Ippen, “Photonic-bandgap microcavities in optical waveguides,” Nature390(6656), 143–145 (1997).
[CrossRef]

Fang, A. W.

Fauchet, P. M.

Q. Lin, J. Zhang, G. Piredda, R. W. Boyd, P. M. Fauchet, and G. P. Agrawal, “Dispersion of silicon nonlinearities in the near infrared region,” Appl. Phys. Lett.91(2), 021111 (2007).
[CrossRef]

Ferrera, J.

P. R. Villeneuve, J. S. Foresi, J. Ferrera, E. R. Thoen, G. Steinmeyer, S. Fan, J. D. Joannopoulos, L. C. Kimerling, H. I. Smith, and E. P. Ippen, “Photonic-bandgap microcavities in optical waveguides,” Nature390(6656), 143–145 (1997).
[CrossRef]

Fleury, P. A.

S. P. S. Porto, P. A. Fleury, and T. C. Damen, “Raman spectra of TiO2, MgF2, ZnF2, FeF2, and MnF2,” Phys. Rev.154(2), 522–526 (1967).
[CrossRef]

Foresi, J. S.

P. R. Villeneuve, J. S. Foresi, J. Ferrera, E. R. Thoen, G. Steinmeyer, S. Fan, J. D. Joannopoulos, L. C. Kimerling, H. I. Smith, and E. P. Ippen, “Photonic-bandgap microcavities in optical waveguides,” Nature390(6656), 143–145 (1997).
[CrossRef]

J. S. Foresi, M. R. Black, A. M. Agarwal, and L. C. Kimerling, “Losses in polycrystalline silicon waveguides,” Appl. Phys. Lett.68(15), 2052–2054 (1996).
[CrossRef]

Först, M.

Foster, M. A.

Freude, W.

C. Koos, P. Vorreau, T. Vallaitis, P. Dumon, W. Bogaerts, R. Baets, B. Esembeson, I. Biaggio, T. Michinobu, F. Diederich, W. Freude, and J. Leuthold, “All-optical high-speed signal processing with silicon-organic hybrid slot waveguides,” Nat. Photonics3(4), 216–219 (2009).
[CrossRef]

Fujiki, Y.

T. Ohsaka, F. Izumi, and Y. Fujiki, “Raman spectrum of anatase, TiO2,” J. Raman Spectrosc.7(6), 321–324 (1978).
[CrossRef]

Fukuda, H.

T. Tsuchizawa, K. Yamada, H. Fukuda, T. Watanabe, M. Jun-ichi Takahashi, T. Takahashi, E. Shoji, S. Tamechika, Itabashi, and H. Morita, “Microphotonic devices based on silicon microfabrication technology,” IEEE J. Sel. Top. Quantum Electron.11(1), 232–240 (2005).
[CrossRef]

Gaeta, A. L.

Gattass, R. R.

R. R. Gattass, G. T. Svacha, L. M. Tong, and E. Mazur, “Supercontinuum generation in submicrometer diameter silica fibers,” Opt. Express14(20), 9408–9414 (2006).
[CrossRef] [PubMed]

L. Tong, J. Lou, R. R. Gattass, S. He, X. Chen, L. Liu, and E. Mazur, “Assembly of silica nanowires on silica aerogels for microphotonic devices,” Nano Lett.5(2), 259–262 (2005).
[CrossRef] [PubMed]

L. M. Tong, R. R. Gattass, J. B. Ashcom, S. L. He, J. Y. Lou, M. Y. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature426(6968), 816–819 (2003).
[CrossRef] [PubMed]

Gnan, M.

M. Gnan, D. S. Macintyre, M. Sorel, R. M. De La Rue, and S. Thoms, “Enhanced stitching for the fabrication of photonic structures by electron beam lithography,” J. Vac. Sci. Technol. B25(6), 2034–2037 (2007).
[CrossRef]

Guenther, K. H.

Guo, X.

X. Guo, M. Qiu, J. M. Bao, B. J. Wiley, Q. Yang, X. N. Zhang, Y. G. Ma, H. K. Yu, and L. M. Tong, “Direct coupling of plasmonic and photonic nanowires for hybrid nanophotonic components and circuits,” Nano Lett.9(12), 4515–4519 (2009).
[CrossRef] [PubMed]

Hausmann, B. J. M.

J. T. Choy, B. J. M. Hausmann, T. M. Babinec, I. Bulu, M. Khan, P. Maletinsky, A. Yacoby, and M. Lončar, “Enhanced single photon emission from a diamond-silver aperture,” Nat. Photonics5(12), 738–743 (2011).
[CrossRef]

He, L.

R. J. Bojko, J. Li, L. He, T. Baehr-Jones, M. Hochberg, and Y. Aida, “Electron beam lithography writing strategies for low loss, high confinement silicon optical waveguides,” J. Vac. Sci. Technol.29(6), 06F309 (2011).
[CrossRef]

He, S.

L. Tong, J. Lou, R. R. Gattass, S. He, X. Chen, L. Liu, and E. Mazur, “Assembly of silica nanowires on silica aerogels for microphotonic devices,” Nano Lett.5(2), 259–262 (2005).
[CrossRef] [PubMed]

He, S. L.

L. M. Tong, R. R. Gattass, J. B. Ashcom, S. L. He, J. Y. Lou, M. Y. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature426(6968), 816–819 (2003).
[CrossRef] [PubMed]

Heitzmann, M.

Hill, M. T.

M. T. Hill, H. J. S. Dorren, T. De Vries, X. J. Leijtens, J. H. Den Besten, B. Smalbrugge, Y.-S. Oei, H. Binsma, G.-D. Khoe, and M. K. Smit, “A fast low-power optical memory based on coupled micro-ring lasers,” Nature432(7014), 206–209 (2004).
[CrossRef] [PubMed]

Hiltunen, J.

Hochberg, M.

R. J. Bojko, J. Li, L. He, T. Baehr-Jones, M. Hochberg, and Y. Aida, “Electron beam lithography writing strategies for low loss, high confinement silicon optical waveguides,” J. Vac. Sci. Technol.29(6), 06F309 (2011).
[CrossRef]

Honkanen, S.

Ikeda, K.

Ippen, E. P.

P. R. Villeneuve, J. S. Foresi, J. Ferrera, E. R. Thoen, G. Steinmeyer, S. Fan, J. D. Joannopoulos, L. C. Kimerling, H. I. Smith, and E. P. Ippen, “Photonic-bandgap microcavities in optical waveguides,” Nature390(6656), 143–145 (1997).
[CrossRef]

Itabashi,

T. Tsuchizawa, K. Yamada, H. Fukuda, T. Watanabe, M. Jun-ichi Takahashi, T. Takahashi, E. Shoji, S. Tamechika, Itabashi, and H. Morita, “Microphotonic devices based on silicon microfabrication technology,” IEEE J. Sel. Top. Quantum Electron.11(1), 232–240 (2005).
[CrossRef]

Izumi, F.

T. Ohsaka, F. Izumi, and Y. Fujiki, “Raman spectrum of anatase, TiO2,” J. Raman Spectrosc.7(6), 321–324 (1978).
[CrossRef]

Jalali, B.

P. Koonath, D. R. Solli, and B. Jalali, “Limiting nature of continuum generation in silicon,” Appl. Phys. Lett.93(9), 091114 (2008).
[CrossRef]

Joannopoulos, J. D.

P. R. Villeneuve, J. S. Foresi, J. Ferrera, E. R. Thoen, G. Steinmeyer, S. Fan, J. D. Joannopoulos, L. C. Kimerling, H. I. Smith, and E. P. Ippen, “Photonic-bandgap microcavities in optical waveguides,” Nature390(6656), 143–145 (1997).
[CrossRef]

Jones, R.

Jun-ichi Takahashi, M.

T. Tsuchizawa, K. Yamada, H. Fukuda, T. Watanabe, M. Jun-ichi Takahashi, T. Takahashi, E. Shoji, S. Tamechika, Itabashi, and H. Morita, “Microphotonic devices based on silicon microfabrication technology,” IEEE J. Sel. Top. Quantum Electron.11(1), 232–240 (2005).
[CrossRef]

Khan, M.

J. T. Choy, B. J. M. Hausmann, T. M. Babinec, I. Bulu, M. Khan, P. Maletinsky, A. Yacoby, and M. Lončar, “Enhanced single photon emission from a diamond-silver aperture,” Nat. Photonics5(12), 738–743 (2011).
[CrossRef]

Khoe, G.-D.

M. T. Hill, H. J. S. Dorren, T. De Vries, X. J. Leijtens, J. H. Den Besten, B. Smalbrugge, Y.-S. Oei, H. Binsma, G.-D. Khoe, and M. K. Smit, “A fast low-power optical memory based on coupled micro-ring lasers,” Nature432(7014), 206–209 (2004).
[CrossRef] [PubMed]

Kimerling, L. C.

P. R. Villeneuve, J. S. Foresi, J. Ferrera, E. R. Thoen, G. Steinmeyer, S. Fan, J. D. Joannopoulos, L. C. Kimerling, H. I. Smith, and E. P. Ippen, “Photonic-bandgap microcavities in optical waveguides,” Nature390(6656), 143–145 (1997).
[CrossRef]

J. S. Foresi, M. R. Black, A. M. Agarwal, and L. C. Kimerling, “Losses in polycrystalline silicon waveguides,” Appl. Phys. Lett.68(15), 2052–2054 (1996).
[CrossRef]

Kompocholis, C.

N. Daldosso, M. Melchiorri, F. Riboli, F. Sbrana, L. Pavesi, G. Pucker, C. Kompocholis, M. Crivellari, P. Bellutti, and A. Lui, “Fabrication and optical characterization of thin two-dimensional Si3N4 waveguides,” Mater. Sci. Semicond. Process.7(4-6), 453–458 (2004).
[CrossRef]

Koonath, P.

P. Koonath, D. R. Solli, and B. Jalali, “Limiting nature of continuum generation in silicon,” Appl. Phys. Lett.93(9), 091114 (2008).
[CrossRef]

Koos, C.

C. Koos, P. Vorreau, T. Vallaitis, P. Dumon, W. Bogaerts, R. Baets, B. Esembeson, I. Biaggio, T. Michinobu, F. Diederich, W. Freude, and J. Leuthold, “All-optical high-speed signal processing with silicon-organic hybrid slot waveguides,” Nat. Photonics3(4), 216–219 (2009).
[CrossRef]

Kremer, R.

R. Mechiakh, F. Meriche, R. Kremer, R. Bensaha, B. Boudine, and A. Boudrioua, “TiO2 thin films prepared by sol-gel method for waveguiding applications: Correlation between the structural and optical properties,” Opt. Mater.30(4), 645–651 (2007).
[CrossRef]

Kuittinen, M.

Lardenois, S.

Laval, S.

Lazarides, B.

Leijtens, X. J.

M. T. Hill, H. J. S. Dorren, T. De Vries, X. J. Leijtens, J. H. Den Besten, B. Smalbrugge, Y.-S. Oei, H. Binsma, G.-D. Khoe, and M. K. Smit, “A fast low-power optical memory based on coupled micro-ring lasers,” Nature432(7014), 206–209 (2004).
[CrossRef] [PubMed]

Leuthold, J.

C. Koos, P. Vorreau, T. Vallaitis, P. Dumon, W. Bogaerts, R. Baets, B. Esembeson, I. Biaggio, T. Michinobu, F. Diederich, W. Freude, and J. Leuthold, “All-optical high-speed signal processing with silicon-organic hybrid slot waveguides,” Nat. Photonics3(4), 216–219 (2009).
[CrossRef]

Li, J.

R. J. Bojko, J. Li, L. He, T. Baehr-Jones, M. Hochberg, and Y. Aida, “Electron beam lithography writing strategies for low loss, high confinement silicon optical waveguides,” J. Vac. Sci. Technol.29(6), 06F309 (2011).
[CrossRef]

Li, Y. H.

H. Long, A. P. Chen, G. Yang, Y. H. Li, and P. X. Lu, “Third-order optical nonlinearities in anatase and rutile TiO2 thin films,” Thin Solid Films517(19), 5601–5604 (2009).
[CrossRef]

Lin, Q.

Q. Lin, J. Zhang, G. Piredda, R. W. Boyd, P. M. Fauchet, and G. P. Agrawal, “Dispersion of silicon nonlinearities in the near infrared region,” Appl. Phys. Lett.91(2), 021111 (2007).
[CrossRef]

Lipson, M.

Liu, L.

L. Tong, J. Lou, R. R. Gattass, S. He, X. Chen, L. Liu, and E. Mazur, “Assembly of silica nanowires on silica aerogels for microphotonic devices,” Nano Lett.5(2), 259–262 (2005).
[CrossRef] [PubMed]

Liu, X.-H.

Loncar, M.

J. T. Choy, J. D. B. Bradley, P. B. Deotare, I. B. Burgess, C. C. Evans, E. Mazur, and M. Lončar, “Integrated TiO2 resonators for visible photonics,” Opt. Lett.37(4), 539–541 (2012).
[CrossRef] [PubMed]

J. T. Choy, B. J. M. Hausmann, T. M. Babinec, I. Bulu, M. Khan, P. Maletinsky, A. Yacoby, and M. Lončar, “Enhanced single photon emission from a diamond-silver aperture,” Nat. Photonics5(12), 738–743 (2011).
[CrossRef]

Long, H.

H. Long, A. P. Chen, G. Yang, Y. H. Li, and P. X. Lu, “Third-order optical nonlinearities in anatase and rutile TiO2 thin films,” Thin Solid Films517(19), 5601–5604 (2009).
[CrossRef]

Lou, J.

L. Tong, J. Lou, R. R. Gattass, S. He, X. Chen, L. Liu, and E. Mazur, “Assembly of silica nanowires on silica aerogels for microphotonic devices,” Nano Lett.5(2), 259–262 (2005).
[CrossRef] [PubMed]

Lou, J. Y.

L. M. Tong, R. R. Gattass, J. B. Ashcom, S. L. He, J. Y. Lou, M. Y. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature426(6968), 816–819 (2003).
[CrossRef] [PubMed]

Lu, P. X.

H. Long, A. P. Chen, G. Yang, Y. H. Li, and P. X. Lu, “Third-order optical nonlinearities in anatase and rutile TiO2 thin films,” Thin Solid Films517(19), 5601–5604 (2009).
[CrossRef]

Lui, A.

N. Daldosso, M. Melchiorri, F. Riboli, F. Sbrana, L. Pavesi, G. Pucker, C. Kompocholis, M. Crivellari, P. Bellutti, and A. Lui, “Fabrication and optical characterization of thin two-dimensional Si3N4 waveguides,” Mater. Sci. Semicond. Process.7(4-6), 453–458 (2004).
[CrossRef]

Luther-Davies, B.

B. J. Eggleton, B. Luther-Davies, and K. Richardson, “Chalcogenide photonics,” Nat. Photonics5, 141–148 (2011).

Ma, Y. G.

X. Guo, M. Qiu, J. M. Bao, B. J. Wiley, Q. Yang, X. N. Zhang, Y. G. Ma, H. K. Yu, and L. M. Tong, “Direct coupling of plasmonic and photonic nanowires for hybrid nanophotonic components and circuits,” Nano Lett.9(12), 4515–4519 (2009).
[CrossRef] [PubMed]

Macintyre, D. S.

M. Gnan, D. S. Macintyre, M. Sorel, R. M. De La Rue, and S. Thoms, “Enhanced stitching for the fabrication of photonic structures by electron beam lithography,” J. Vac. Sci. Technol. B25(6), 2034–2037 (2007).
[CrossRef]

Maletinsky, P.

J. T. Choy, B. J. M. Hausmann, T. M. Babinec, I. Bulu, M. Khan, P. Maletinsky, A. Yacoby, and M. Lončar, “Enhanced single photon emission from a diamond-silver aperture,” Nat. Photonics5(12), 738–743 (2011).
[CrossRef]

Martin, N.

N. Martin, C. Rousselot, D. Rondot, F. Palmino, and R. Mercier, “Microstructure modification of amorphous titanium dioxide thin films during annealing treatment,” Thin Solid Films300(1-2), 113–121 (1997).
[CrossRef]

Martí-Panameño, E. A.

Maxwell, I.

L. M. Tong, R. R. Gattass, J. B. Ashcom, S. L. He, J. Y. Lou, M. Y. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature426(6968), 816–819 (2003).
[CrossRef] [PubMed]

Mazur, E.

McNab, S. J.

Mechiakh, R.

R. Mechiakh, F. Meriche, R. Kremer, R. Bensaha, B. Boudine, and A. Boudrioua, “TiO2 thin films prepared by sol-gel method for waveguiding applications: Correlation between the structural and optical properties,” Opt. Mater.30(4), 645–651 (2007).
[CrossRef]

Melchiorri, M.

N. Daldosso, M. Melchiorri, F. Riboli, F. Sbrana, L. Pavesi, G. Pucker, C. Kompocholis, M. Crivellari, P. Bellutti, and A. Lui, “Fabrication and optical characterization of thin two-dimensional Si3N4 waveguides,” Mater. Sci. Semicond. Process.7(4-6), 453–458 (2004).
[CrossRef]

Mercier, R.

N. Martin, C. Rousselot, D. Rondot, F. Palmino, and R. Mercier, “Microstructure modification of amorphous titanium dioxide thin films during annealing treatment,” Thin Solid Films300(1-2), 113–121 (1997).
[CrossRef]

Meriche, F.

R. Mechiakh, F. Meriche, R. Kremer, R. Bensaha, B. Boudine, and A. Boudrioua, “TiO2 thin films prepared by sol-gel method for waveguiding applications: Correlation between the structural and optical properties,” Opt. Mater.30(4), 645–651 (2007).
[CrossRef]

Michinobu, T.

C. Koos, P. Vorreau, T. Vallaitis, P. Dumon, W. Bogaerts, R. Baets, B. Esembeson, I. Biaggio, T. Michinobu, F. Diederich, W. Freude, and J. Leuthold, “All-optical high-speed signal processing with silicon-organic hybrid slot waveguides,” Nat. Photonics3(4), 216–219 (2009).
[CrossRef]

Moll, K. D.

Mollard, L.

Moormann, C.

Morita, H.

T. Tsuchizawa, K. Yamada, H. Fukuda, T. Watanabe, M. Jun-ichi Takahashi, T. Takahashi, E. Shoji, S. Tamechika, Itabashi, and H. Morita, “Microphotonic devices based on silicon microfabrication technology,” IEEE J. Sel. Top. Quantum Electron.11(1), 232–240 (2005).
[CrossRef]

Niehusmann, J.

Oei, Y.-S.

M. T. Hill, H. J. S. Dorren, T. De Vries, X. J. Leijtens, J. H. Den Besten, B. Smalbrugge, Y.-S. Oei, H. Binsma, G.-D. Khoe, and M. K. Smit, “A fast low-power optical memory based on coupled micro-ring lasers,” Nature432(7014), 206–209 (2004).
[CrossRef] [PubMed]

Ohsaka, T.

T. Ohsaka, F. Izumi, and Y. Fujiki, “Raman spectrum of anatase, TiO2,” J. Raman Spectrosc.7(6), 321–324 (1978).
[CrossRef]

Orobtchouk, R.

Osgood, R. M.

Palmino, F.

N. Martin, C. Rousselot, D. Rondot, F. Palmino, and R. Mercier, “Microstructure modification of amorphous titanium dioxide thin films during annealing treatment,” Thin Solid Films300(1-2), 113–121 (1997).
[CrossRef]

Panepucci, R. R.

V. R. Almeida, C. A. Barrios, R. R. Panepucci, and M. Lipson, “All-optical control of light on a silicon chip,” Nature431(7012), 1081–1084 (2004).
[CrossRef] [PubMed]

Paniccia, M. J.

Park, H.

Pascal, D.

Pavesi, L.

N. Daldosso, M. Melchiorri, F. Riboli, F. Sbrana, L. Pavesi, G. Pucker, C. Kompocholis, M. Crivellari, P. Bellutti, and A. Lui, “Fabrication and optical characterization of thin two-dimensional Si3N4 waveguides,” Mater. Sci. Semicond. Process.7(4-6), 453–458 (2004).
[CrossRef]

Payne, S. A.

R. Adair, L. L. Chase, and S. A. Payne, “Nonlinear refractive index of optical crystals,” Phys. Rev. B Condens. Matter39(5), 3337–3350 (1989).
[CrossRef] [PubMed]

Pelletier, E.

Piredda, G.

Q. Lin, J. Zhang, G. Piredda, R. W. Boyd, P. M. Fauchet, and G. P. Agrawal, “Dispersion of silicon nonlinearities in the near infrared region,” Appl. Phys. Lett.91(2), 021111 (2007).
[CrossRef]

Poitras, C. B.

Porto, S. P. S.

S. P. S. Porto, P. A. Fleury, and T. C. Damen, “Raman spectra of TiO2, MgF2, ZnF2, FeF2, and MnF2,” Phys. Rev.154(2), 522–526 (1967).
[CrossRef]

Preston, K.

Pucker, G.

N. Daldosso, M. Melchiorri, F. Riboli, F. Sbrana, L. Pavesi, G. Pucker, C. Kompocholis, M. Crivellari, P. Bellutti, and A. Lui, “Fabrication and optical characterization of thin two-dimensional Si3N4 waveguides,” Mater. Sci. Semicond. Process.7(4-6), 453–458 (2004).
[CrossRef]

Qiu, M.

X. Guo, M. Qiu, J. M. Bao, B. J. Wiley, Q. Yang, X. N. Zhang, Y. G. Ma, H. K. Yu, and L. M. Tong, “Direct coupling of plasmonic and photonic nanowires for hybrid nanophotonic components and circuits,” Nano Lett.9(12), 4515–4519 (2009).
[CrossRef] [PubMed]

Raday, O.

Riboli, F.

N. Daldosso, M. Melchiorri, F. Riboli, F. Sbrana, L. Pavesi, G. Pucker, C. Kompocholis, M. Crivellari, P. Bellutti, and A. Lui, “Fabrication and optical characterization of thin two-dimensional Si3N4 waveguides,” Mater. Sci. Semicond. Process.7(4-6), 453–458 (2004).
[CrossRef]

Richardson, K.

B. J. Eggleton, B. Luther-Davies, and K. Richardson, “Chalcogenide photonics,” Nat. Photonics5, 141–148 (2011).

Robinson, J. T.

Rondot, D.

N. Martin, C. Rousselot, D. Rondot, F. Palmino, and R. Mercier, “Microstructure modification of amorphous titanium dioxide thin films during annealing treatment,” Thin Solid Films300(1-2), 113–121 (1997).
[CrossRef]

Rousselot, C.

N. Martin, C. Rousselot, D. Rondot, F. Palmino, and R. Mercier, “Microstructure modification of amorphous titanium dioxide thin films during annealing treatment,” Thin Solid Films300(1-2), 113–121 (1997).
[CrossRef]

Saastamoinen, T.

Saperstein, R. E.

Saxer, A.

Säynätjoki, A.

Sbrana, F.

N. Daldosso, M. Melchiorri, F. Riboli, F. Sbrana, L. Pavesi, G. Pucker, C. Kompocholis, M. Crivellari, P. Bellutti, and A. Lui, “Fabrication and optical characterization of thin two-dimensional Si3N4 waveguides,” Mater. Sci. Semicond. Process.7(4-6), 453–458 (2004).
[CrossRef]

Schmell, R. A.

Shen, M. Y.

L. M. Tong, R. R. Gattass, J. B. Ashcom, S. L. He, J. Y. Lou, M. Y. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature426(6968), 816–819 (2003).
[CrossRef] [PubMed]

Sherwood-Droz, N.

Shoji, E.

T. Tsuchizawa, K. Yamada, H. Fukuda, T. Watanabe, M. Jun-ichi Takahashi, T. Takahashi, E. Shoji, S. Tamechika, Itabashi, and H. Morita, “Microphotonic devices based on silicon microfabrication technology,” IEEE J. Sel. Top. Quantum Electron.11(1), 232–240 (2005).
[CrossRef]

Smalbrugge, B.

M. T. Hill, H. J. S. Dorren, T. De Vries, X. J. Leijtens, J. H. Den Besten, B. Smalbrugge, Y.-S. Oei, H. Binsma, G.-D. Khoe, and M. K. Smit, “A fast low-power optical memory based on coupled micro-ring lasers,” Nature432(7014), 206–209 (2004).
[CrossRef] [PubMed]

Smit, M. K.

M. T. Hill, H. J. S. Dorren, T. De Vries, X. J. Leijtens, J. H. Den Besten, B. Smalbrugge, Y.-S. Oei, H. Binsma, G.-D. Khoe, and M. K. Smit, “A fast low-power optical memory based on coupled micro-ring lasers,” Nature432(7014), 206–209 (2004).
[CrossRef] [PubMed]

Smith, H. I.

T. Barwicz and H. I. Smith, “Evolution of line-edge roughness during fabrication of high-index-contrast microphotonic devices,” J. Vac. Sci. Technol. B21(6), 2892–2896 (2003).
[CrossRef]

P. R. Villeneuve, J. S. Foresi, J. Ferrera, E. R. Thoen, G. Steinmeyer, S. Fan, J. D. Joannopoulos, L. C. Kimerling, H. I. Smith, and E. P. Ippen, “Photonic-bandgap microcavities in optical waveguides,” Nature390(6656), 143–145 (1997).
[CrossRef]

Solli, D. R.

P. Koonath, D. R. Solli, and B. Jalali, “Limiting nature of continuum generation in silicon,” Appl. Phys. Lett.93(9), 091114 (2008).
[CrossRef]

Sorel, M.

M. Gnan, D. S. Macintyre, M. Sorel, R. M. De La Rue, and S. Thoms, “Enhanced stitching for the fabrication of photonic structures by electron beam lithography,” J. Vac. Sci. Technol. B25(6), 2034–2037 (2007).
[CrossRef]

Steinmeyer, G.

P. R. Villeneuve, J. S. Foresi, J. Ferrera, E. R. Thoen, G. Steinmeyer, S. Fan, J. D. Joannopoulos, L. C. Kimerling, H. I. Smith, and E. P. Ippen, “Photonic-bandgap microcavities in optical waveguides,” Nature390(6656), 143–145 (1997).
[CrossRef]

Stenberg, P.

Svacha, G. T.

Sysak, M. N.

Takahashi, T.

T. Tsuchizawa, K. Yamada, H. Fukuda, T. Watanabe, M. Jun-ichi Takahashi, T. Takahashi, E. Shoji, S. Tamechika, Itabashi, and H. Morita, “Microphotonic devices based on silicon microfabrication technology,” IEEE J. Sel. Top. Quantum Electron.11(1), 232–240 (2005).
[CrossRef]

Tamechika, S.

T. Tsuchizawa, K. Yamada, H. Fukuda, T. Watanabe, M. Jun-ichi Takahashi, T. Takahashi, E. Shoji, S. Tamechika, Itabashi, and H. Morita, “Microphotonic devices based on silicon microfabrication technology,” IEEE J. Sel. Top. Quantum Electron.11(1), 232–240 (2005).
[CrossRef]

Tervonen, A.

Thoen, E. R.

P. R. Villeneuve, J. S. Foresi, J. Ferrera, E. R. Thoen, G. Steinmeyer, S. Fan, J. D. Joannopoulos, L. C. Kimerling, H. I. Smith, and E. P. Ippen, “Photonic-bandgap microcavities in optical waveguides,” Nature390(6656), 143–145 (1997).
[CrossRef]

Thoms, S.

M. Gnan, D. S. Macintyre, M. Sorel, R. M. De La Rue, and S. Thoms, “Enhanced stitching for the fabrication of photonic structures by electron beam lithography,” J. Vac. Sci. Technol. B25(6), 2034–2037 (2007).
[CrossRef]

Tien, P. K.

Tong, L.

L. Tong, J. Lou, R. R. Gattass, S. He, X. Chen, L. Liu, and E. Mazur, “Assembly of silica nanowires on silica aerogels for microphotonic devices,” Nano Lett.5(2), 259–262 (2005).
[CrossRef] [PubMed]

Tong, L. M.

X. Guo, M. Qiu, J. M. Bao, B. J. Wiley, Q. Yang, X. N. Zhang, Y. G. Ma, H. K. Yu, and L. M. Tong, “Direct coupling of plasmonic and photonic nanowires for hybrid nanophotonic components and circuits,” Nano Lett.9(12), 4515–4519 (2009).
[CrossRef] [PubMed]

R. R. Gattass, G. T. Svacha, L. M. Tong, and E. Mazur, “Supercontinuum generation in submicrometer diameter silica fibers,” Opt. Express14(20), 9408–9414 (2006).
[CrossRef] [PubMed]

L. M. Tong, R. R. Gattass, J. B. Ashcom, S. L. He, J. Y. Lou, M. Y. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature426(6968), 816–819 (2003).
[CrossRef] [PubMed]

Tsuchizawa, T.

T. Tsuchizawa, K. Yamada, H. Fukuda, T. Watanabe, M. Jun-ichi Takahashi, T. Takahashi, E. Shoji, S. Tamechika, Itabashi, and H. Morita, “Microphotonic devices based on silicon microfabrication technology,” IEEE J. Sel. Top. Quantum Electron.11(1), 232–240 (2005).
[CrossRef]

Turner, A. C.

Tuttle-Hart, T.

Vallaitis, T.

C. Koos, P. Vorreau, T. Vallaitis, P. Dumon, W. Bogaerts, R. Baets, B. Esembeson, I. Biaggio, T. Michinobu, F. Diederich, W. Freude, and J. Leuthold, “All-optical high-speed signal processing with silicon-organic hybrid slot waveguides,” Nat. Photonics3(4), 216–219 (2009).
[CrossRef]

Villeneuve, P. R.

P. R. Villeneuve, J. S. Foresi, J. Ferrera, E. R. Thoen, G. Steinmeyer, S. Fan, J. D. Joannopoulos, L. C. Kimerling, H. I. Smith, and E. P. Ippen, “Photonic-bandgap microcavities in optical waveguides,” Nature390(6656), 143–145 (1997).
[CrossRef]

Vivien, L.

Vlasov, Y.

Vlasov, Y. A.

Vorreau, P.

C. Koos, P. Vorreau, T. Vallaitis, P. Dumon, W. Bogaerts, R. Baets, B. Esembeson, I. Biaggio, T. Michinobu, F. Diederich, W. Freude, and J. Leuthold, “All-optical high-speed signal processing with silicon-organic hybrid slot waveguides,” Nat. Photonics3(4), 216–219 (2009).
[CrossRef]

Wahlbrink, T.

Wang, K.-M.

Wang, L.

Watanabe, T.

T. Tsuchizawa, K. Yamada, H. Fukuda, T. Watanabe, M. Jun-ichi Takahashi, T. Takahashi, E. Shoji, S. Tamechika, Itabashi, and H. Morita, “Microphotonic devices based on silicon microfabrication technology,” IEEE J. Sel. Top. Quantum Electron.11(1), 232–240 (2005).
[CrossRef]

Wiley, B. J.

X. Guo, M. Qiu, J. M. Bao, B. J. Wiley, Q. Yang, X. N. Zhang, Y. G. Ma, H. K. Yu, and L. M. Tong, “Direct coupling of plasmonic and photonic nanowires for hybrid nanophotonic components and circuits,” Nano Lett.9(12), 4515–4519 (2009).
[CrossRef] [PubMed]

Wu, X.-L.

Yacoby, A.

J. T. Choy, B. J. M. Hausmann, T. M. Babinec, I. Bulu, M. Khan, P. Maletinsky, A. Yacoby, and M. Lončar, “Enhanced single photon emission from a diamond-silver aperture,” Nat. Photonics5(12), 738–743 (2011).
[CrossRef]

Yamada, K.

T. Tsuchizawa, K. Yamada, H. Fukuda, T. Watanabe, M. Jun-ichi Takahashi, T. Takahashi, E. Shoji, S. Tamechika, Itabashi, and H. Morita, “Microphotonic devices based on silicon microfabrication technology,” IEEE J. Sel. Top. Quantum Electron.11(1), 232–240 (2005).
[CrossRef]

Yang, G.

H. Long, A. P. Chen, G. Yang, Y. H. Li, and P. X. Lu, “Third-order optical nonlinearities in anatase and rutile TiO2 thin films,” Thin Solid Films517(19), 5601–5604 (2009).
[CrossRef]

Yang, Q.

X. Guo, M. Qiu, J. M. Bao, B. J. Wiley, Q. Yang, X. N. Zhang, Y. G. Ma, H. K. Yu, and L. M. Tong, “Direct coupling of plasmonic and photonic nanowires for hybrid nanophotonic components and circuits,” Nano Lett.9(12), 4515–4519 (2009).
[CrossRef] [PubMed]

Yu, H. K.

X. Guo, M. Qiu, J. M. Bao, B. J. Wiley, Q. Yang, X. N. Zhang, Y. G. Ma, H. K. Yu, and L. M. Tong, “Direct coupling of plasmonic and photonic nanowires for hybrid nanophotonic components and circuits,” Nano Lett.9(12), 4515–4519 (2009).
[CrossRef] [PubMed]

Zhang, J.

Q. Lin, J. Zhang, G. Piredda, R. W. Boyd, P. M. Fauchet, and G. P. Agrawal, “Dispersion of silicon nonlinearities in the near infrared region,” Appl. Phys. Lett.91(2), 021111 (2007).
[CrossRef]

Zhang, S.-M.

Zhang, X. N.

X. Guo, M. Qiu, J. M. Bao, B. J. Wiley, Q. Yang, X. N. Zhang, Y. G. Ma, H. K. Yu, and L. M. Tong, “Direct coupling of plasmonic and photonic nanowires for hybrid nanophotonic components and circuits,” Nano Lett.9(12), 4515–4519 (2009).
[CrossRef] [PubMed]

Zhao, Q.-Z.

Appl. Opt.

Appl. Phys. Lett.

P. Koonath, D. R. Solli, and B. Jalali, “Limiting nature of continuum generation in silicon,” Appl. Phys. Lett.93(9), 091114 (2008).
[CrossRef]

Q. Lin, J. Zhang, G. Piredda, R. W. Boyd, P. M. Fauchet, and G. P. Agrawal, “Dispersion of silicon nonlinearities in the near infrared region,” Appl. Phys. Lett.91(2), 021111 (2007).
[CrossRef]

J. S. Foresi, M. R. Black, A. M. Agarwal, and L. C. Kimerling, “Losses in polycrystalline silicon waveguides,” Appl. Phys. Lett.68(15), 2052–2054 (1996).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron.

T. Tsuchizawa, K. Yamada, H. Fukuda, T. Watanabe, M. Jun-ichi Takahashi, T. Takahashi, E. Shoji, S. Tamechika, Itabashi, and H. Morita, “Microphotonic devices based on silicon microfabrication technology,” IEEE J. Sel. Top. Quantum Electron.11(1), 232–240 (2005).
[CrossRef]

J. Raman Spectrosc.

T. Ohsaka, F. Izumi, and Y. Fujiki, “Raman spectrum of anatase, TiO2,” J. Raman Spectrosc.7(6), 321–324 (1978).
[CrossRef]

J. Vac. Sci. Technol.

R. J. Bojko, J. Li, L. He, T. Baehr-Jones, M. Hochberg, and Y. Aida, “Electron beam lithography writing strategies for low loss, high confinement silicon optical waveguides,” J. Vac. Sci. Technol.29(6), 06F309 (2011).
[CrossRef]

J. Vac. Sci. Technol. B

T. Barwicz and H. I. Smith, “Evolution of line-edge roughness during fabrication of high-index-contrast microphotonic devices,” J. Vac. Sci. Technol. B21(6), 2892–2896 (2003).
[CrossRef]

M. Gnan, D. S. Macintyre, M. Sorel, R. M. De La Rue, and S. Thoms, “Enhanced stitching for the fabrication of photonic structures by electron beam lithography,” J. Vac. Sci. Technol. B25(6), 2034–2037 (2007).
[CrossRef]

Mater. Sci. Semicond. Process.

N. Daldosso, M. Melchiorri, F. Riboli, F. Sbrana, L. Pavesi, G. Pucker, C. Kompocholis, M. Crivellari, P. Bellutti, and A. Lui, “Fabrication and optical characterization of thin two-dimensional Si3N4 waveguides,” Mater. Sci. Semicond. Process.7(4-6), 453–458 (2004).
[CrossRef]

Nano Lett.

L. Tong, J. Lou, R. R. Gattass, S. He, X. Chen, L. Liu, and E. Mazur, “Assembly of silica nanowires on silica aerogels for microphotonic devices,” Nano Lett.5(2), 259–262 (2005).
[CrossRef] [PubMed]

X. Guo, M. Qiu, J. M. Bao, B. J. Wiley, Q. Yang, X. N. Zhang, Y. G. Ma, H. K. Yu, and L. M. Tong, “Direct coupling of plasmonic and photonic nanowires for hybrid nanophotonic components and circuits,” Nano Lett.9(12), 4515–4519 (2009).
[CrossRef] [PubMed]

Nat. Photonics

B. J. Eggleton, B. Luther-Davies, and K. Richardson, “Chalcogenide photonics,” Nat. Photonics5, 141–148 (2011).

C. Koos, P. Vorreau, T. Vallaitis, P. Dumon, W. Bogaerts, R. Baets, B. Esembeson, I. Biaggio, T. Michinobu, F. Diederich, W. Freude, and J. Leuthold, “All-optical high-speed signal processing with silicon-organic hybrid slot waveguides,” Nat. Photonics3(4), 216–219 (2009).
[CrossRef]

J. T. Choy, B. J. M. Hausmann, T. M. Babinec, I. Bulu, M. Khan, P. Maletinsky, A. Yacoby, and M. Lončar, “Enhanced single photon emission from a diamond-silver aperture,” Nat. Photonics5(12), 738–743 (2011).
[CrossRef]

Nature

P. R. Villeneuve, J. S. Foresi, J. Ferrera, E. R. Thoen, G. Steinmeyer, S. Fan, J. D. Joannopoulos, L. C. Kimerling, H. I. Smith, and E. P. Ippen, “Photonic-bandgap microcavities in optical waveguides,” Nature390(6656), 143–145 (1997).
[CrossRef]

L. M. Tong, R. R. Gattass, J. B. Ashcom, S. L. He, J. Y. Lou, M. Y. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature426(6968), 816–819 (2003).
[CrossRef] [PubMed]

V. R. Almeida, C. A. Barrios, R. R. Panepucci, and M. Lipson, “All-optical control of light on a silicon chip,” Nature431(7012), 1081–1084 (2004).
[CrossRef] [PubMed]

M. T. Hill, H. J. S. Dorren, T. De Vries, X. J. Leijtens, J. H. Den Besten, B. Smalbrugge, Y.-S. Oei, H. Binsma, G.-D. Khoe, and M. K. Smit, “A fast low-power optical memory based on coupled micro-ring lasers,” Nature432(7014), 206–209 (2004).
[CrossRef] [PubMed]

Opt. Express

H. Park, A. W. Fang, R. Jones, O. Cohen, O. Raday, M. N. Sysak, M. J. Paniccia, and J. E. Bowers, “A hybrid AlGaInAs-silicon evanescent waveguide photodetector,” Opt. Express15(10), 6044–6052 (2007).
[CrossRef] [PubMed]

R. L. Espinola, J. I. Dadap, R. M. Osgood, S. J. McNab, and Y. A. Vlasov, “Raman amplification in ultrasmall silicon-on-insulator wire waveguides,” Opt. Express12(16), 3713–3718 (2004).
[CrossRef] [PubMed]

R. R. Gattass, G. T. Svacha, L. M. Tong, and E. Mazur, “Supercontinuum generation in submicrometer diameter silica fibers,” Opt. Express14(20), 9408–9414 (2006).
[CrossRef] [PubMed]

R. Dekker, A. Driessen, T. Wahlbrink, C. Moormann, J. Niehusmann, and M. Först, “Ultrafast Kerr-induced all-optical wavelength conversion in silicon waveguides using 1.55 mum femtosecond pulses,” Opt. Express14(18), 8336–8346 (2006).
[CrossRef] [PubMed]

M. A. Foster, K. D. Moll, and A. L. Gaeta, “Optimal waveguide dimensions for nonlinear interactions,” Opt. Express12(13), 2880–2887 (2004).
[CrossRef] [PubMed]

M. A. Foster, A. C. Turner, M. Lipson, and A. L. Gaeta, “Nonlinear optics in photonic nanowires,” Opt. Express16(2), 1300–1320 (2008).
[CrossRef] [PubMed]

N. Sherwood-Droz and M. Lipson, “Scalable 3D dense integration of photonics on bulk silicon,” Opt. Express19(18), 17758–17765 (2011).
[CrossRef] [PubMed]

Z.-F. Bi, L. Wang, X.-H. Liu, S.-M. Zhang, M.-M. Dong, Q.-Z. Zhao, X.-L. Wu, and K.-M. Wang, “Optical waveguides in TiO₂ formed by He ion implantation,” Opt. Express20(6), 6712–6719 (2012).
[CrossRef] [PubMed]

C. C. Evans, J. D. B. Bradley, E. A. Martí-Panameño, and E. Mazur, “Mixed two- and three-photon absorption in bulk rutile (TiO2) around 800 nm,” Opt. Express20(3), 3118–3128 (2012).
[CrossRef] [PubMed]

K. Ikeda, R. E. Saperstein, N. Alic, and Y. Fainman, “Thermal and Kerr nonlinear properties of plasma-deposited silicon nitride/ silicon dioxide waveguides,” Opt. Express16(17), 12987–12994 (2008).
[CrossRef] [PubMed]

Y. Vlasov and S. J. McNab, “Losses in single-mode silicon-on-insulator strip waveguides and bends,” Opt. Express12(8), 1622–1631 (2004).
[CrossRef] [PubMed]

J. Cardenas, C. B. Poitras, J. T. Robinson, K. Preston, L. Chen, and M. Lipson, “Low loss etchless silicon photonic waveguides,” Opt. Express17(6), 4752–4757 (2009).
[CrossRef] [PubMed]

Opt. Lett.

Opt. Mater.

R. Mechiakh, F. Meriche, R. Kremer, R. Bensaha, B. Boudine, and A. Boudrioua, “TiO2 thin films prepared by sol-gel method for waveguiding applications: Correlation between the structural and optical properties,” Opt. Mater.30(4), 645–651 (2007).
[CrossRef]

Phys. Rev.

S. P. S. Porto, P. A. Fleury, and T. C. Damen, “Raman spectra of TiO2, MgF2, ZnF2, FeF2, and MnF2,” Phys. Rev.154(2), 522–526 (1967).
[CrossRef]

Phys. Rev. B Condens. Matter

R. Adair, L. L. Chase, and S. A. Payne, “Nonlinear refractive index of optical crystals,” Phys. Rev. B Condens. Matter39(5), 3337–3350 (1989).
[CrossRef] [PubMed]

Thin Solid Films

H. Long, A. P. Chen, G. Yang, Y. H. Li, and P. X. Lu, “Third-order optical nonlinearities in anatase and rutile TiO2 thin films,” Thin Solid Films517(19), 5601–5604 (2009).
[CrossRef]

N. Martin, C. Rousselot, D. Rondot, F. Palmino, and R. Mercier, “Microstructure modification of amorphous titanium dioxide thin films during annealing treatment,” Thin Solid Films300(1-2), 113–121 (1997).
[CrossRef]

Other

J. D. B. Bradley, C. C. Evans, F. Parsy, K. C. Phillips, R. Senaratne, E. Marti, and E. Mazur, “Low-loss TiO2 planar waveguides for nanophotonic applications,” in Proceedings of the 23rd Annual Meeting of the IEEE Photonics Society (Institute of Electrical and Electronics Engineers, Denver, Colorado, 2010), pp. 313−314.

M. Furuhashi, M. Fujiwara, T. Ohshiro, M. Tsutsui, K. Matsubara, M. Taniguchi, S. Takeuchi, and T. Kawai, “Development of microfabricated TiO2 channel waveguides,” AIP Advances 1, 032102/1−5 (2011).

K. Abe, E. Y. M. Teraoka, T. Kita, and H. Yamada, “Nonlinear optical waveguides with rutile TiO2,” Proc. SPIE 7940, 79401G/1−7 (2011).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Raman spectra of TiO2 thin-films deposited by reactive RF magnetron sputtering at 290 K (top) and 625 K (bottom). The film deposited at 290 K has no measurable Raman peaks, indicating an amorphous structure, while the film deposited at 625 K shows peaks at 144, 194, 399, 514, and 639 cm–1, which correspond to the anatase crystalline phase of TiO2.

Fig. 2
Fig. 2

Surface morphology of TiO2 thin films: SEM images of (a) amorphous and (b) polycrystalline anatase thin-film surfaces; and AFM surface scans of (c) amorphous and (d) polycrystalline anatase thin-films showing RMS roughness of 0.4 and 2.7 nm, respectively.

Fig. 3
Fig. 3

SEM images of 0.3-μm-wide (a) amorphous and (b) polycrystalline anatase TiO2 waveguides fabricated on oxidized silicon wafers using e-beam lithography and reactive ion etching.

Fig. 4
Fig. 4

Top-view CMOS (633 nm and 780 nm) and InGaAs (1550 nm) camera images showing light propagation at different wavelengths λ in amorphous and polycrystalline anatase TiO2 waveguides. The waveguides are 0.2-μm wide (a−d) and 0.5-μm wide (e and f).

Fig. 5
Fig. 5

Propagation losses in (a) amorphous and (b) polycrystalline anatase TiO2 strip waveguides measured using the top-view camera method. The input light is TE-polarized and the waveguide widths are 0.2 μm (633 and 780 nm) and 0.5 μm (1550 nm).

Fig. 6
Fig. 6

(a) Calculated TE-like field profile of the fundamental 780-nm mode in a straight 0.25 μm × 0.3 μm amorphous TiO2 waveguide; (b) SEM top-view image of a bend-transmission test-feature consisting of a 0.25 μm × 0.3 μm amorphous TiO2 waveguide with fourteen consecutive 90°-bends with a radius r of 5 μm; (c) CMOS camera images showing light transmission through test features with r = 20 μm (top), r = 10 μm (middle), and r = 5 μm (bottom); (d) measured and simulated transmission for varying bend radii.

Fig. 7
Fig. 7

TiO2 microphotonic couplers: (a) SEM image of a TiO2 optical-coupler with adiabatic input/output transitions and a parallel interaction region with a waveguide spacing of 0.2 μm and length, L, of 4 μm; (b) CMOS images showing splitting ratios (light transferred to the upper waveguide divided by the total transmitted intensity) of 0.3 (top), 0.6 (middle), and 0.9 (bottom) for L = 0, 2 and 4 μm, respectively (780-nm light, TE polarization).

Tables (3)

Tables Icon

Table 1 Reactive RF Sputtering Parameters

Tables Icon

Table 2 Refractive Indices and Propagation Losses of TiO2 Thin Films*

Tables Icon

Table 3 Propagation Losses in Amorphous and Anatase TiO2 Waveguides*

Metrics