Abstract

Recently, the research interest in indoor active millimeter wave (mmW) imaging by applying the synthetic aperture radar (SAR) technique is increasing. However, there is a lack of proper computer-aided design (CAD) tools at the system level, and almost all the R&D activities rely on experiments solely. The high cost of such a system stops many researchers from investigating such a fascinating research topic. Moreover, the experiment-oriented studies may blind the researchers to some details during the imaging process, since in most cases they are only interested in the readout from the receivers and do not know how the waves perform in reality. To bridge such a gap, we propose a modeling approach at mmW frequencies, which is able to simulate the physical process during SAR imaging. We are not going to discuss about advanced image reconstruction algorithms, since they have already been investigated intensively for decades. To distinguish from previous work, for the first time, we model the data acquisition process in a SAR imaging system successfully at mmW frequencies. We show how to perform some system-level studies based on such a simulator via a common PC, including the influence of reflectivity contrast between object and background, sampling step, and antenna's directivity on image quality. The simulator can serve system design purposes and it can be easily extended to THz frequencies.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. R. Fetterman, J. Grata, G. Jubic, W. L. Kiser, and A. Visnansky, “Simulation, acquisition and analysis of passive millimeter-wave images in remote sensing applications,” Opt. Express16(25), 20503–20515 (2008).
    [CrossRef] [PubMed]
  2. D. S. Lee, S. Yeom, J. Y. Son, and S. H. Kim, “Automatic image segmentation for concealed object detection using the expectation-maximization algorithm,” Opt. Express18(10), 10659–10667 (2010).
    [CrossRef] [PubMed]
  3. S. Yeom, D. S. Lee, J. Y. Son, M. K. Jung, Y. Jang, S. W. Jung, and S. J. Lee, “Real-time outdoor concealed-object detection with passive millimeter wave imaging,” Opt. Express19(3), 2530–2536 (2011).
    [CrossRef] [PubMed]
  4. B. Recur, A. Younus, S. Salort, P. Mounaix, B. Chassagne, P. Desbarats, J. P. Caumes, and E. Abraham, “Investigation on reconstruction methods applied to 3D terahertz computed tomography,” Opt. Express19(6), 5105–5117 (2011).
    [CrossRef] [PubMed]
  5. L. Zhang, Y. Hao, C. G. Parni, and J. Dupuy, “An investigation of antenna element spacing on the quality of millimeter wave imaging,” IEEE Int. Sym. AP-S, San Diego, USA (2008).
  6. L. Zhang, Y. Hao, and C. G. Parni, “Woodpile EBG structure for millimeter wave imaging enhancement,” IEEE Int. Workshop on Ant. Tech., Santa Monica, USA (2009).
  7. F. Qi, V. Tavakol, D. Schreurs, and B. Nauwelaers, “Limitations of approximations towards Fourier optics for indoor millimeter wave imaging systems,” Prog. In Elec. Res. 109, 245–262 (2010).
  8. W. L. Stuzman and G. A. Terry, Antenna Theory and Design, 2nd ed. (John Wiley & Sons, Inc., 1998)
  9. F. Qi, V. Tavakol, D. Schreurs, and B. Nauwelaers, “Discussion on validity of Hadamard speckle contrast reduction in coherent imaging systems,” Prog. In Elec. Res. 104, 125–143 (2010).
  10. F. Qi, “Active millimeter wave imaging: noise and system issues,” Ph. D dissertation (Katholieke Universiteit Leuven, 2011)
  11. Y. Lee, X. Lu, Y. Hao, S. Yang, R. Ubic, J. R. G. Evans, and C. G. Parini, “Directive millimeter-wave antenna based on freeformed woodpile EBG structure,” Electron. Lett.43(4), 1–2 (2007).
    [CrossRef]
  12. D. M. Sheen, D. L. McMakin, and T. E. Hall, “Three-dimensional millimeter-wave imaging for concealed weapon detection,” IEEE Trans. Microw. Theory Tech.49(9), 1581–1592 (2001).
    [CrossRef]
  13. F. Qi, V. Tavakol, I. Ocket, P. Xu, D. Schreurs, J. Wang, and B. Nauwelaers, “Millimeter wave imaging system modeling: spatial frequency domain calculation versus spatial domain calculation,” J. Opt. Soc. Am. A27(1), 131–140 (2010).
    [CrossRef] [PubMed]
  14. P. F. Goldsmith, C.-T. Hsieh, G. R. Huguenin, J. Kapitzky, and E. L. Moore, “Focal plane imaging system for millimeter wavelengths,” IEEE Trans. Microw. Theory Tech.41(10), 1664–1675 (1993).
    [CrossRef]
  15. R. Appleby and H. B. Wallace, “Standoff detection of weapons and contraband in the 100 GHz to 1 THz,” IEEE Trans. Antenn. Propag.55(11), 2944–2956 (2007).
    [CrossRef]
  16. Terahertz Database, http:// www.thzdb.org
  17. D. T. Paris, M. Leach, and E. B. Joy, “Basic theory of probe-compensated near-field measurements,” IEEE Trans. Antenn. Propag.26(3), 373–379 (1978).
    [CrossRef]

2011 (2)

2010 (2)

2008 (1)

2007 (2)

Y. Lee, X. Lu, Y. Hao, S. Yang, R. Ubic, J. R. G. Evans, and C. G. Parini, “Directive millimeter-wave antenna based on freeformed woodpile EBG structure,” Electron. Lett.43(4), 1–2 (2007).
[CrossRef]

R. Appleby and H. B. Wallace, “Standoff detection of weapons and contraband in the 100 GHz to 1 THz,” IEEE Trans. Antenn. Propag.55(11), 2944–2956 (2007).
[CrossRef]

2001 (1)

D. M. Sheen, D. L. McMakin, and T. E. Hall, “Three-dimensional millimeter-wave imaging for concealed weapon detection,” IEEE Trans. Microw. Theory Tech.49(9), 1581–1592 (2001).
[CrossRef]

1993 (1)

P. F. Goldsmith, C.-T. Hsieh, G. R. Huguenin, J. Kapitzky, and E. L. Moore, “Focal plane imaging system for millimeter wavelengths,” IEEE Trans. Microw. Theory Tech.41(10), 1664–1675 (1993).
[CrossRef]

1978 (1)

D. T. Paris, M. Leach, and E. B. Joy, “Basic theory of probe-compensated near-field measurements,” IEEE Trans. Antenn. Propag.26(3), 373–379 (1978).
[CrossRef]

Abraham, E.

Appleby, R.

R. Appleby and H. B. Wallace, “Standoff detection of weapons and contraband in the 100 GHz to 1 THz,” IEEE Trans. Antenn. Propag.55(11), 2944–2956 (2007).
[CrossRef]

Caumes, J. P.

Chassagne, B.

Desbarats, P.

Evans, J. R. G.

Y. Lee, X. Lu, Y. Hao, S. Yang, R. Ubic, J. R. G. Evans, and C. G. Parini, “Directive millimeter-wave antenna based on freeformed woodpile EBG structure,” Electron. Lett.43(4), 1–2 (2007).
[CrossRef]

Fetterman, M. R.

Goldsmith, P. F.

P. F. Goldsmith, C.-T. Hsieh, G. R. Huguenin, J. Kapitzky, and E. L. Moore, “Focal plane imaging system for millimeter wavelengths,” IEEE Trans. Microw. Theory Tech.41(10), 1664–1675 (1993).
[CrossRef]

Grata, J.

Hall, T. E.

D. M. Sheen, D. L. McMakin, and T. E. Hall, “Three-dimensional millimeter-wave imaging for concealed weapon detection,” IEEE Trans. Microw. Theory Tech.49(9), 1581–1592 (2001).
[CrossRef]

Hao, Y.

Y. Lee, X. Lu, Y. Hao, S. Yang, R. Ubic, J. R. G. Evans, and C. G. Parini, “Directive millimeter-wave antenna based on freeformed woodpile EBG structure,” Electron. Lett.43(4), 1–2 (2007).
[CrossRef]

Hsieh, C.-T.

P. F. Goldsmith, C.-T. Hsieh, G. R. Huguenin, J. Kapitzky, and E. L. Moore, “Focal plane imaging system for millimeter wavelengths,” IEEE Trans. Microw. Theory Tech.41(10), 1664–1675 (1993).
[CrossRef]

Huguenin, G. R.

P. F. Goldsmith, C.-T. Hsieh, G. R. Huguenin, J. Kapitzky, and E. L. Moore, “Focal plane imaging system for millimeter wavelengths,” IEEE Trans. Microw. Theory Tech.41(10), 1664–1675 (1993).
[CrossRef]

Jang, Y.

Joy, E. B.

D. T. Paris, M. Leach, and E. B. Joy, “Basic theory of probe-compensated near-field measurements,” IEEE Trans. Antenn. Propag.26(3), 373–379 (1978).
[CrossRef]

Jubic, G.

Jung, M. K.

Jung, S. W.

Kapitzky, J.

P. F. Goldsmith, C.-T. Hsieh, G. R. Huguenin, J. Kapitzky, and E. L. Moore, “Focal plane imaging system for millimeter wavelengths,” IEEE Trans. Microw. Theory Tech.41(10), 1664–1675 (1993).
[CrossRef]

Kim, S. H.

Kiser, W. L.

Leach, M.

D. T. Paris, M. Leach, and E. B. Joy, “Basic theory of probe-compensated near-field measurements,” IEEE Trans. Antenn. Propag.26(3), 373–379 (1978).
[CrossRef]

Lee, D. S.

Lee, S. J.

Lee, Y.

Y. Lee, X. Lu, Y. Hao, S. Yang, R. Ubic, J. R. G. Evans, and C. G. Parini, “Directive millimeter-wave antenna based on freeformed woodpile EBG structure,” Electron. Lett.43(4), 1–2 (2007).
[CrossRef]

Lu, X.

Y. Lee, X. Lu, Y. Hao, S. Yang, R. Ubic, J. R. G. Evans, and C. G. Parini, “Directive millimeter-wave antenna based on freeformed woodpile EBG structure,” Electron. Lett.43(4), 1–2 (2007).
[CrossRef]

McMakin, D. L.

D. M. Sheen, D. L. McMakin, and T. E. Hall, “Three-dimensional millimeter-wave imaging for concealed weapon detection,” IEEE Trans. Microw. Theory Tech.49(9), 1581–1592 (2001).
[CrossRef]

Moore, E. L.

P. F. Goldsmith, C.-T. Hsieh, G. R. Huguenin, J. Kapitzky, and E. L. Moore, “Focal plane imaging system for millimeter wavelengths,” IEEE Trans. Microw. Theory Tech.41(10), 1664–1675 (1993).
[CrossRef]

Mounaix, P.

Nauwelaers, B.

Ocket, I.

Parini, C. G.

Y. Lee, X. Lu, Y. Hao, S. Yang, R. Ubic, J. R. G. Evans, and C. G. Parini, “Directive millimeter-wave antenna based on freeformed woodpile EBG structure,” Electron. Lett.43(4), 1–2 (2007).
[CrossRef]

Paris, D. T.

D. T. Paris, M. Leach, and E. B. Joy, “Basic theory of probe-compensated near-field measurements,” IEEE Trans. Antenn. Propag.26(3), 373–379 (1978).
[CrossRef]

Qi, F.

Recur, B.

Salort, S.

Schreurs, D.

Sheen, D. M.

D. M. Sheen, D. L. McMakin, and T. E. Hall, “Three-dimensional millimeter-wave imaging for concealed weapon detection,” IEEE Trans. Microw. Theory Tech.49(9), 1581–1592 (2001).
[CrossRef]

Son, J. Y.

Tavakol, V.

Ubic, R.

Y. Lee, X. Lu, Y. Hao, S. Yang, R. Ubic, J. R. G. Evans, and C. G. Parini, “Directive millimeter-wave antenna based on freeformed woodpile EBG structure,” Electron. Lett.43(4), 1–2 (2007).
[CrossRef]

Visnansky, A.

Wallace, H. B.

R. Appleby and H. B. Wallace, “Standoff detection of weapons and contraband in the 100 GHz to 1 THz,” IEEE Trans. Antenn. Propag.55(11), 2944–2956 (2007).
[CrossRef]

Wang, J.

Xu, P.

Yang, S.

Y. Lee, X. Lu, Y. Hao, S. Yang, R. Ubic, J. R. G. Evans, and C. G. Parini, “Directive millimeter-wave antenna based on freeformed woodpile EBG structure,” Electron. Lett.43(4), 1–2 (2007).
[CrossRef]

Yeom, S.

Younus, A.

Electron. Lett. (1)

Y. Lee, X. Lu, Y. Hao, S. Yang, R. Ubic, J. R. G. Evans, and C. G. Parini, “Directive millimeter-wave antenna based on freeformed woodpile EBG structure,” Electron. Lett.43(4), 1–2 (2007).
[CrossRef]

IEEE Trans. Antenn. Propag. (2)

R. Appleby and H. B. Wallace, “Standoff detection of weapons and contraband in the 100 GHz to 1 THz,” IEEE Trans. Antenn. Propag.55(11), 2944–2956 (2007).
[CrossRef]

D. T. Paris, M. Leach, and E. B. Joy, “Basic theory of probe-compensated near-field measurements,” IEEE Trans. Antenn. Propag.26(3), 373–379 (1978).
[CrossRef]

IEEE Trans. Microw. Theory Tech. (2)

P. F. Goldsmith, C.-T. Hsieh, G. R. Huguenin, J. Kapitzky, and E. L. Moore, “Focal plane imaging system for millimeter wavelengths,” IEEE Trans. Microw. Theory Tech.41(10), 1664–1675 (1993).
[CrossRef]

D. M. Sheen, D. L. McMakin, and T. E. Hall, “Three-dimensional millimeter-wave imaging for concealed weapon detection,” IEEE Trans. Microw. Theory Tech.49(9), 1581–1592 (2001).
[CrossRef]

J. Opt. Soc. Am. A (1)

Opt. Express (4)

Other (7)

L. Zhang, Y. Hao, C. G. Parni, and J. Dupuy, “An investigation of antenna element spacing on the quality of millimeter wave imaging,” IEEE Int. Sym. AP-S, San Diego, USA (2008).

L. Zhang, Y. Hao, and C. G. Parni, “Woodpile EBG structure for millimeter wave imaging enhancement,” IEEE Int. Workshop on Ant. Tech., Santa Monica, USA (2009).

F. Qi, V. Tavakol, D. Schreurs, and B. Nauwelaers, “Limitations of approximations towards Fourier optics for indoor millimeter wave imaging systems,” Prog. In Elec. Res. 109, 245–262 (2010).

W. L. Stuzman and G. A. Terry, Antenna Theory and Design, 2nd ed. (John Wiley & Sons, Inc., 1998)

F. Qi, V. Tavakol, D. Schreurs, and B. Nauwelaers, “Discussion on validity of Hadamard speckle contrast reduction in coherent imaging systems,” Prog. In Elec. Res. 104, 125–143 (2010).

F. Qi, “Active millimeter wave imaging: noise and system issues,” Ph. D dissertation (Katholieke Universiteit Leuven, 2011)

Terahertz Database, http:// www.thzdb.org

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

(a) SAR imaging system configuration; (b) flow chart of the model.

Fig. 2
Fig. 2

Influence of reflectivity contrast on imaging results; upper row: amplitude of simulated sampling data; bottom row: reconstructed images; (a) −1dB; (b) −3 dB; (c) −0.05 dB.

Fig. 3
Fig. 3

Influence of sampling step on imaging results; upper row: amplitude of simulated sampling data; bottom row: reconstructed images; (a) 0.5 lambda; (b) 1 lambda; (c) 3.5 lambda.

Fig. 4
Fig. 4

Influence of antenna`s directivity on imaging results; upper row: amplitude of simulated sampling data; bottom row: reconstructed images; (a) horn-horn; (b) horn-probe; (c) probe-probe.

Fig. 5
Fig. 5

Enlarged figure of the reconstructed image by using the probe-probe combination.

Fig. 6
Fig. 6

Object illuminations by antennas (a) horn antenna, worst illumination; (b) horn antenna, best illumination; (c) probe, worst illumination; (d) probe, best illumination.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

U( P 0 )= 1 jλ S U( P 1 ) exp(jkr) r cosθds,
C ab = S E a E b * ds S | E a | 2 ds S | E b | 2 ds ,
f ' (x,y)=F T 2D 1 [ F T 2D [s(x,y)] e j 4 k 2 k x 2 k y 2 z 0 ],

Metrics