Abstract

A nanophotonic polarization-independent visible wavelength filter is presented, incorporating a symmetric metal-dielectric resonant structure on quartz substrate, where a sub-wavelength grating, made up of a two-dimensional array of Al square sheets, is integrated with a Si3N4 slab waveguide via an oxide layer. Incident light is orthogonally diffracted by the symmetric grating towards two directions of the grating groove, and then resonantly coupled to both transverse electric and transverse magnetic guided modes associated with the underlying waveguide, irrespective of light polarization. Polarization independent bandpass filtering was thus achieved around specific wavelengths, determined by the grating pitch and the effective index of the waveguide. Three devices, operating in the blue, green and red spectral bands, were built through design and analysis drawing upon the finite-difference time-domain method. The devices, DEV I, II, and III, were constructed with grating pitches of 285, 355 and 395 nm, respectively, while the core was 100 nm thick. They were inspected to function as an efficient bandpass filter, centered at 460, 560 and 610 nm, with bandwidths of about 13, 14 and 17 nm, respectively; the peak transmission efficiencies were consistently over 85%. Furthermore, the transfer characteristics, insensitive to light polarization, were satisfactorily confirmed for normal incidence.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. B. Catrysse, W. Suh, S. Fan, and M. Peeters, “One-mode model for patterned metal layers inside integrated color pixels,” Opt. Lett.29(9), 974–976 (2004).
    [CrossRef] [PubMed]
  2. F. J. Ko and H. P. D. Shieh, “High-efficiency micro-optical color filter for liquid-crystal projection system applications,” Appl. Opt.39(7), 1159–1163 (2000).
    [CrossRef] [PubMed]
  3. Y. Cho, Y. K. Choi, and S. H. Sohn, “Optical properties of neodymium-containing polymethylmethacrylate films for the organic light emitting diode color filter,” Appl. Phys. Lett.89(5), 051102 (2006).
    [CrossRef]
  4. G. Zhang, C. Wang, B. Cao, Z. Huang, J. Wang, B. Zhang, and K. Xu, “Polarized GaN-based LED with an integrated multi-layer subwavelength structure,” Opt. Express18(7), 7019–7030 (2010).
    [CrossRef] [PubMed]
  5. Q. Wang, D. Zhang, B. Xu, Y. Huang, C. Tao, C. Wang, B. Li, Z. Ni, and S. Zhuang, “Colored image produced with guided-mode resonance filter array,” Opt. Lett.36(23), 4698–4700 (2011).
    [CrossRef] [PubMed]
  6. R. R. Singh, D. Ho, A. Nilchi, G. Gulak, P. Yau, and R. Genov, “A CMOS/thin-film fluorescence contact imaging microsystem for DNA analysis,” IEEE Trans. Circuits Syst. I Regul. Pap.57(5), 1029–1038 (2010).
    [CrossRef]
  7. T. Katchalski, G. Levy-Yurista, A. A. Friesem, G. Martin, R. Hierle, and J. Zyss, “Light modulation with electro-optic polymer-based resonant grating waveguide structures,” Opt. Express13(12), 4645–4650 (2005).
    [CrossRef] [PubMed]
  8. H. J. Park, T. Xu, J. Y. Lee, A. Ledbetter, and L. J. Guo, “Photonic color filters integrated with organic solar cells for energy harvesting,” ACS Nano5(9), 7055–7060 (2011).
    [CrossRef] [PubMed]
  9. Z. S. Liu, S. Tibuleac, D. Shin, P. P. Young, and R. Magnusson, “High-efficiency guided-mode resonance filter,” Opt. Lett.23(19), 1556–1558 (1998).
    [CrossRef] [PubMed]
  10. Z. Wang, T. Sang, L. Wang, J. Zhu, Y. Wu, and L. Chen, “Guided-mode resonance Brewster filters with multiple channels,” Appl. Phys. Lett.88(25), 251115 (2006).
    [CrossRef]
  11. J. Ma, S. Liu, D. Zhang, J. Yao, C. Xu, J. Shao, Y. Jin, and Z. Fan, “Guided-mode resonant grating filter with an antireflective surface for the multiple channels,” J. Opt. A, Pure Appl. Opt.10(2), 025302 (2008).
    [CrossRef]
  12. E. Cho, B. Kim, S. Choi, J. Han, J. Jin, J. Han, J. Lim, Y. Heo, S. Kim, G. Y. Sung, and S. Kang, “Design and Fabrication of Label-free biochip using a guided mode resonance filter with nano grating structures by injection molding process,” J. Nanosci. Nanotechnol.11(1), 417–421 (2011).
    [CrossRef] [PubMed]
  13. S. Tibuleac and R. Magnusson, “Narrow-linewidth bandpass filters with diffractive thin-film layers,” Opt. Lett.26(9), 584–586 (2001).
    [CrossRef] [PubMed]
  14. R. Magnusson and S. S. Wang, “Transmission bandpass guided-mode resonance filters,” Appl. Opt.34(35), 8106–8109 (1995).
    [CrossRef] [PubMed]
  15. Y. Ding and R. Magnusson, “Doubly resonant single-layer bandpass optical filters,” Opt. Lett.29(10), 1135–1137 (2004).
    [CrossRef] [PubMed]
  16. E. Sakat, G. Vincent, P. Ghenuche, N. Bardou, S. Collin, F. Pardo, J. L. Pelouard, and R. Haïdar, “Guided mode resonance in subwavelength metallodielectric free-standing grating for bandpass filtering,” Opt. Lett.36(16), 3054–3056 (2011).
    [CrossRef] [PubMed]
  17. A. F. Kaplan, T. Xu, and L. J. Guo, “High efficiency resonance-based spectrum filters with tunable transmission bandwidth fabricated using nanoimprint lithography,” Appl. Phys. Lett.99(14), 143111 (2011).
    [CrossRef]
  18. Y. T. Yoon, C. H. Park, and S. S. Lee, “Highly efficient color filter incorporating a thin metal-dielectric resonant structure,” Appl. Phys. Express5(2), 022501 (2012).
    [CrossRef]
  19. B. H. Cheong, O. H. Prudnikov, E. Cho, H. S. Kim, J. Yu, Y. S. Cho, H. Y. Choi, and S. T. Shin, “High angular tolerant color filter using subwavelength grating,” Appl. Phys. Lett.94(21), 213104 (2009).
    [CrossRef]
  20. S. Boonruang, A. Greenwell, and M. G. Moharam, “Multiline two-dimensional guided-mode resonant filters,” Appl. Opt.45(22), 5740–5747 (2006).
    [CrossRef] [PubMed]
  21. D. Zhang, P. Wang, X. Jiao, C. Min, G. Yuan, Y. Deng, H. Ming, L. Zhang, and W. Liu, “Polarization properties of subwavelength metallic gratings in visible light band,” Appl. Phys. B85(1), 139–143 (2006).
    [CrossRef]

2012

Y. T. Yoon, C. H. Park, and S. S. Lee, “Highly efficient color filter incorporating a thin metal-dielectric resonant structure,” Appl. Phys. Express5(2), 022501 (2012).
[CrossRef]

2011

E. Cho, B. Kim, S. Choi, J. Han, J. Jin, J. Han, J. Lim, Y. Heo, S. Kim, G. Y. Sung, and S. Kang, “Design and Fabrication of Label-free biochip using a guided mode resonance filter with nano grating structures by injection molding process,” J. Nanosci. Nanotechnol.11(1), 417–421 (2011).
[CrossRef] [PubMed]

Q. Wang, D. Zhang, B. Xu, Y. Huang, C. Tao, C. Wang, B. Li, Z. Ni, and S. Zhuang, “Colored image produced with guided-mode resonance filter array,” Opt. Lett.36(23), 4698–4700 (2011).
[CrossRef] [PubMed]

H. J. Park, T. Xu, J. Y. Lee, A. Ledbetter, and L. J. Guo, “Photonic color filters integrated with organic solar cells for energy harvesting,” ACS Nano5(9), 7055–7060 (2011).
[CrossRef] [PubMed]

E. Sakat, G. Vincent, P. Ghenuche, N. Bardou, S. Collin, F. Pardo, J. L. Pelouard, and R. Haïdar, “Guided mode resonance in subwavelength metallodielectric free-standing grating for bandpass filtering,” Opt. Lett.36(16), 3054–3056 (2011).
[CrossRef] [PubMed]

A. F. Kaplan, T. Xu, and L. J. Guo, “High efficiency resonance-based spectrum filters with tunable transmission bandwidth fabricated using nanoimprint lithography,” Appl. Phys. Lett.99(14), 143111 (2011).
[CrossRef]

2010

R. R. Singh, D. Ho, A. Nilchi, G. Gulak, P. Yau, and R. Genov, “A CMOS/thin-film fluorescence contact imaging microsystem for DNA analysis,” IEEE Trans. Circuits Syst. I Regul. Pap.57(5), 1029–1038 (2010).
[CrossRef]

G. Zhang, C. Wang, B. Cao, Z. Huang, J. Wang, B. Zhang, and K. Xu, “Polarized GaN-based LED with an integrated multi-layer subwavelength structure,” Opt. Express18(7), 7019–7030 (2010).
[CrossRef] [PubMed]

2009

B. H. Cheong, O. H. Prudnikov, E. Cho, H. S. Kim, J. Yu, Y. S. Cho, H. Y. Choi, and S. T. Shin, “High angular tolerant color filter using subwavelength grating,” Appl. Phys. Lett.94(21), 213104 (2009).
[CrossRef]

2008

J. Ma, S. Liu, D. Zhang, J. Yao, C. Xu, J. Shao, Y. Jin, and Z. Fan, “Guided-mode resonant grating filter with an antireflective surface for the multiple channels,” J. Opt. A, Pure Appl. Opt.10(2), 025302 (2008).
[CrossRef]

2006

Z. Wang, T. Sang, L. Wang, J. Zhu, Y. Wu, and L. Chen, “Guided-mode resonance Brewster filters with multiple channels,” Appl. Phys. Lett.88(25), 251115 (2006).
[CrossRef]

S. Boonruang, A. Greenwell, and M. G. Moharam, “Multiline two-dimensional guided-mode resonant filters,” Appl. Opt.45(22), 5740–5747 (2006).
[CrossRef] [PubMed]

D. Zhang, P. Wang, X. Jiao, C. Min, G. Yuan, Y. Deng, H. Ming, L. Zhang, and W. Liu, “Polarization properties of subwavelength metallic gratings in visible light band,” Appl. Phys. B85(1), 139–143 (2006).
[CrossRef]

Y. Cho, Y. K. Choi, and S. H. Sohn, “Optical properties of neodymium-containing polymethylmethacrylate films for the organic light emitting diode color filter,” Appl. Phys. Lett.89(5), 051102 (2006).
[CrossRef]

2005

2004

2001

2000

1998

1995

Bardou, N.

Boonruang, S.

Cao, B.

Catrysse, P. B.

Chen, L.

Z. Wang, T. Sang, L. Wang, J. Zhu, Y. Wu, and L. Chen, “Guided-mode resonance Brewster filters with multiple channels,” Appl. Phys. Lett.88(25), 251115 (2006).
[CrossRef]

Cheong, B. H.

B. H. Cheong, O. H. Prudnikov, E. Cho, H. S. Kim, J. Yu, Y. S. Cho, H. Y. Choi, and S. T. Shin, “High angular tolerant color filter using subwavelength grating,” Appl. Phys. Lett.94(21), 213104 (2009).
[CrossRef]

Cho, E.

E. Cho, B. Kim, S. Choi, J. Han, J. Jin, J. Han, J. Lim, Y. Heo, S. Kim, G. Y. Sung, and S. Kang, “Design and Fabrication of Label-free biochip using a guided mode resonance filter with nano grating structures by injection molding process,” J. Nanosci. Nanotechnol.11(1), 417–421 (2011).
[CrossRef] [PubMed]

B. H. Cheong, O. H. Prudnikov, E. Cho, H. S. Kim, J. Yu, Y. S. Cho, H. Y. Choi, and S. T. Shin, “High angular tolerant color filter using subwavelength grating,” Appl. Phys. Lett.94(21), 213104 (2009).
[CrossRef]

Cho, Y.

Y. Cho, Y. K. Choi, and S. H. Sohn, “Optical properties of neodymium-containing polymethylmethacrylate films for the organic light emitting diode color filter,” Appl. Phys. Lett.89(5), 051102 (2006).
[CrossRef]

Cho, Y. S.

B. H. Cheong, O. H. Prudnikov, E. Cho, H. S. Kim, J. Yu, Y. S. Cho, H. Y. Choi, and S. T. Shin, “High angular tolerant color filter using subwavelength grating,” Appl. Phys. Lett.94(21), 213104 (2009).
[CrossRef]

Choi, H. Y.

B. H. Cheong, O. H. Prudnikov, E. Cho, H. S. Kim, J. Yu, Y. S. Cho, H. Y. Choi, and S. T. Shin, “High angular tolerant color filter using subwavelength grating,” Appl. Phys. Lett.94(21), 213104 (2009).
[CrossRef]

Choi, S.

E. Cho, B. Kim, S. Choi, J. Han, J. Jin, J. Han, J. Lim, Y. Heo, S. Kim, G. Y. Sung, and S. Kang, “Design and Fabrication of Label-free biochip using a guided mode resonance filter with nano grating structures by injection molding process,” J. Nanosci. Nanotechnol.11(1), 417–421 (2011).
[CrossRef] [PubMed]

Choi, Y. K.

Y. Cho, Y. K. Choi, and S. H. Sohn, “Optical properties of neodymium-containing polymethylmethacrylate films for the organic light emitting diode color filter,” Appl. Phys. Lett.89(5), 051102 (2006).
[CrossRef]

Collin, S.

Deng, Y.

D. Zhang, P. Wang, X. Jiao, C. Min, G. Yuan, Y. Deng, H. Ming, L. Zhang, and W. Liu, “Polarization properties of subwavelength metallic gratings in visible light band,” Appl. Phys. B85(1), 139–143 (2006).
[CrossRef]

Ding, Y.

Fan, S.

Fan, Z.

J. Ma, S. Liu, D. Zhang, J. Yao, C. Xu, J. Shao, Y. Jin, and Z. Fan, “Guided-mode resonant grating filter with an antireflective surface for the multiple channels,” J. Opt. A, Pure Appl. Opt.10(2), 025302 (2008).
[CrossRef]

Friesem, A. A.

Genov, R.

R. R. Singh, D. Ho, A. Nilchi, G. Gulak, P. Yau, and R. Genov, “A CMOS/thin-film fluorescence contact imaging microsystem for DNA analysis,” IEEE Trans. Circuits Syst. I Regul. Pap.57(5), 1029–1038 (2010).
[CrossRef]

Ghenuche, P.

Greenwell, A.

Gulak, G.

R. R. Singh, D. Ho, A. Nilchi, G. Gulak, P. Yau, and R. Genov, “A CMOS/thin-film fluorescence contact imaging microsystem for DNA analysis,” IEEE Trans. Circuits Syst. I Regul. Pap.57(5), 1029–1038 (2010).
[CrossRef]

Guo, L. J.

A. F. Kaplan, T. Xu, and L. J. Guo, “High efficiency resonance-based spectrum filters with tunable transmission bandwidth fabricated using nanoimprint lithography,” Appl. Phys. Lett.99(14), 143111 (2011).
[CrossRef]

H. J. Park, T. Xu, J. Y. Lee, A. Ledbetter, and L. J. Guo, “Photonic color filters integrated with organic solar cells for energy harvesting,” ACS Nano5(9), 7055–7060 (2011).
[CrossRef] [PubMed]

Haïdar, R.

Han, J.

E. Cho, B. Kim, S. Choi, J. Han, J. Jin, J. Han, J. Lim, Y. Heo, S. Kim, G. Y. Sung, and S. Kang, “Design and Fabrication of Label-free biochip using a guided mode resonance filter with nano grating structures by injection molding process,” J. Nanosci. Nanotechnol.11(1), 417–421 (2011).
[CrossRef] [PubMed]

E. Cho, B. Kim, S. Choi, J. Han, J. Jin, J. Han, J. Lim, Y. Heo, S. Kim, G. Y. Sung, and S. Kang, “Design and Fabrication of Label-free biochip using a guided mode resonance filter with nano grating structures by injection molding process,” J. Nanosci. Nanotechnol.11(1), 417–421 (2011).
[CrossRef] [PubMed]

Heo, Y.

E. Cho, B. Kim, S. Choi, J. Han, J. Jin, J. Han, J. Lim, Y. Heo, S. Kim, G. Y. Sung, and S. Kang, “Design and Fabrication of Label-free biochip using a guided mode resonance filter with nano grating structures by injection molding process,” J. Nanosci. Nanotechnol.11(1), 417–421 (2011).
[CrossRef] [PubMed]

Hierle, R.

Ho, D.

R. R. Singh, D. Ho, A. Nilchi, G. Gulak, P. Yau, and R. Genov, “A CMOS/thin-film fluorescence contact imaging microsystem for DNA analysis,” IEEE Trans. Circuits Syst. I Regul. Pap.57(5), 1029–1038 (2010).
[CrossRef]

Huang, Y.

Huang, Z.

Jiao, X.

D. Zhang, P. Wang, X. Jiao, C. Min, G. Yuan, Y. Deng, H. Ming, L. Zhang, and W. Liu, “Polarization properties of subwavelength metallic gratings in visible light band,” Appl. Phys. B85(1), 139–143 (2006).
[CrossRef]

Jin, J.

E. Cho, B. Kim, S. Choi, J. Han, J. Jin, J. Han, J. Lim, Y. Heo, S. Kim, G. Y. Sung, and S. Kang, “Design and Fabrication of Label-free biochip using a guided mode resonance filter with nano grating structures by injection molding process,” J. Nanosci. Nanotechnol.11(1), 417–421 (2011).
[CrossRef] [PubMed]

Jin, Y.

J. Ma, S. Liu, D. Zhang, J. Yao, C. Xu, J. Shao, Y. Jin, and Z. Fan, “Guided-mode resonant grating filter with an antireflective surface for the multiple channels,” J. Opt. A, Pure Appl. Opt.10(2), 025302 (2008).
[CrossRef]

Kang, S.

E. Cho, B. Kim, S. Choi, J. Han, J. Jin, J. Han, J. Lim, Y. Heo, S. Kim, G. Y. Sung, and S. Kang, “Design and Fabrication of Label-free biochip using a guided mode resonance filter with nano grating structures by injection molding process,” J. Nanosci. Nanotechnol.11(1), 417–421 (2011).
[CrossRef] [PubMed]

Kaplan, A. F.

A. F. Kaplan, T. Xu, and L. J. Guo, “High efficiency resonance-based spectrum filters with tunable transmission bandwidth fabricated using nanoimprint lithography,” Appl. Phys. Lett.99(14), 143111 (2011).
[CrossRef]

Katchalski, T.

Kim, B.

E. Cho, B. Kim, S. Choi, J. Han, J. Jin, J. Han, J. Lim, Y. Heo, S. Kim, G. Y. Sung, and S. Kang, “Design and Fabrication of Label-free biochip using a guided mode resonance filter with nano grating structures by injection molding process,” J. Nanosci. Nanotechnol.11(1), 417–421 (2011).
[CrossRef] [PubMed]

Kim, H. S.

B. H. Cheong, O. H. Prudnikov, E. Cho, H. S. Kim, J. Yu, Y. S. Cho, H. Y. Choi, and S. T. Shin, “High angular tolerant color filter using subwavelength grating,” Appl. Phys. Lett.94(21), 213104 (2009).
[CrossRef]

Kim, S.

E. Cho, B. Kim, S. Choi, J. Han, J. Jin, J. Han, J. Lim, Y. Heo, S. Kim, G. Y. Sung, and S. Kang, “Design and Fabrication of Label-free biochip using a guided mode resonance filter with nano grating structures by injection molding process,” J. Nanosci. Nanotechnol.11(1), 417–421 (2011).
[CrossRef] [PubMed]

Ko, F. J.

Ledbetter, A.

H. J. Park, T. Xu, J. Y. Lee, A. Ledbetter, and L. J. Guo, “Photonic color filters integrated with organic solar cells for energy harvesting,” ACS Nano5(9), 7055–7060 (2011).
[CrossRef] [PubMed]

Lee, J. Y.

H. J. Park, T. Xu, J. Y. Lee, A. Ledbetter, and L. J. Guo, “Photonic color filters integrated with organic solar cells for energy harvesting,” ACS Nano5(9), 7055–7060 (2011).
[CrossRef] [PubMed]

Lee, S. S.

Y. T. Yoon, C. H. Park, and S. S. Lee, “Highly efficient color filter incorporating a thin metal-dielectric resonant structure,” Appl. Phys. Express5(2), 022501 (2012).
[CrossRef]

Levy-Yurista, G.

Li, B.

Lim, J.

E. Cho, B. Kim, S. Choi, J. Han, J. Jin, J. Han, J. Lim, Y. Heo, S. Kim, G. Y. Sung, and S. Kang, “Design and Fabrication of Label-free biochip using a guided mode resonance filter with nano grating structures by injection molding process,” J. Nanosci. Nanotechnol.11(1), 417–421 (2011).
[CrossRef] [PubMed]

Liu, S.

J. Ma, S. Liu, D. Zhang, J. Yao, C. Xu, J. Shao, Y. Jin, and Z. Fan, “Guided-mode resonant grating filter with an antireflective surface for the multiple channels,” J. Opt. A, Pure Appl. Opt.10(2), 025302 (2008).
[CrossRef]

Liu, W.

D. Zhang, P. Wang, X. Jiao, C. Min, G. Yuan, Y. Deng, H. Ming, L. Zhang, and W. Liu, “Polarization properties of subwavelength metallic gratings in visible light band,” Appl. Phys. B85(1), 139–143 (2006).
[CrossRef]

Liu, Z. S.

Ma, J.

J. Ma, S. Liu, D. Zhang, J. Yao, C. Xu, J. Shao, Y. Jin, and Z. Fan, “Guided-mode resonant grating filter with an antireflective surface for the multiple channels,” J. Opt. A, Pure Appl. Opt.10(2), 025302 (2008).
[CrossRef]

Magnusson, R.

Martin, G.

Min, C.

D. Zhang, P. Wang, X. Jiao, C. Min, G. Yuan, Y. Deng, H. Ming, L. Zhang, and W. Liu, “Polarization properties of subwavelength metallic gratings in visible light band,” Appl. Phys. B85(1), 139–143 (2006).
[CrossRef]

Ming, H.

D. Zhang, P. Wang, X. Jiao, C. Min, G. Yuan, Y. Deng, H. Ming, L. Zhang, and W. Liu, “Polarization properties of subwavelength metallic gratings in visible light band,” Appl. Phys. B85(1), 139–143 (2006).
[CrossRef]

Moharam, M. G.

Ni, Z.

Nilchi, A.

R. R. Singh, D. Ho, A. Nilchi, G. Gulak, P. Yau, and R. Genov, “A CMOS/thin-film fluorescence contact imaging microsystem for DNA analysis,” IEEE Trans. Circuits Syst. I Regul. Pap.57(5), 1029–1038 (2010).
[CrossRef]

Pardo, F.

Park, C. H.

Y. T. Yoon, C. H. Park, and S. S. Lee, “Highly efficient color filter incorporating a thin metal-dielectric resonant structure,” Appl. Phys. Express5(2), 022501 (2012).
[CrossRef]

Park, H. J.

H. J. Park, T. Xu, J. Y. Lee, A. Ledbetter, and L. J. Guo, “Photonic color filters integrated with organic solar cells for energy harvesting,” ACS Nano5(9), 7055–7060 (2011).
[CrossRef] [PubMed]

Peeters, M.

Pelouard, J. L.

Prudnikov, O. H.

B. H. Cheong, O. H. Prudnikov, E. Cho, H. S. Kim, J. Yu, Y. S. Cho, H. Y. Choi, and S. T. Shin, “High angular tolerant color filter using subwavelength grating,” Appl. Phys. Lett.94(21), 213104 (2009).
[CrossRef]

Sakat, E.

Sang, T.

Z. Wang, T. Sang, L. Wang, J. Zhu, Y. Wu, and L. Chen, “Guided-mode resonance Brewster filters with multiple channels,” Appl. Phys. Lett.88(25), 251115 (2006).
[CrossRef]

Shao, J.

J. Ma, S. Liu, D. Zhang, J. Yao, C. Xu, J. Shao, Y. Jin, and Z. Fan, “Guided-mode resonant grating filter with an antireflective surface for the multiple channels,” J. Opt. A, Pure Appl. Opt.10(2), 025302 (2008).
[CrossRef]

Shieh, H. P. D.

Shin, D.

Shin, S. T.

B. H. Cheong, O. H. Prudnikov, E. Cho, H. S. Kim, J. Yu, Y. S. Cho, H. Y. Choi, and S. T. Shin, “High angular tolerant color filter using subwavelength grating,” Appl. Phys. Lett.94(21), 213104 (2009).
[CrossRef]

Singh, R. R.

R. R. Singh, D. Ho, A. Nilchi, G. Gulak, P. Yau, and R. Genov, “A CMOS/thin-film fluorescence contact imaging microsystem for DNA analysis,” IEEE Trans. Circuits Syst. I Regul. Pap.57(5), 1029–1038 (2010).
[CrossRef]

Sohn, S. H.

Y. Cho, Y. K. Choi, and S. H. Sohn, “Optical properties of neodymium-containing polymethylmethacrylate films for the organic light emitting diode color filter,” Appl. Phys. Lett.89(5), 051102 (2006).
[CrossRef]

Suh, W.

Sung, G. Y.

E. Cho, B. Kim, S. Choi, J. Han, J. Jin, J. Han, J. Lim, Y. Heo, S. Kim, G. Y. Sung, and S. Kang, “Design and Fabrication of Label-free biochip using a guided mode resonance filter with nano grating structures by injection molding process,” J. Nanosci. Nanotechnol.11(1), 417–421 (2011).
[CrossRef] [PubMed]

Tao, C.

Tibuleac, S.

Vincent, G.

Wang, C.

Wang, J.

Wang, L.

Z. Wang, T. Sang, L. Wang, J. Zhu, Y. Wu, and L. Chen, “Guided-mode resonance Brewster filters with multiple channels,” Appl. Phys. Lett.88(25), 251115 (2006).
[CrossRef]

Wang, P.

D. Zhang, P. Wang, X. Jiao, C. Min, G. Yuan, Y. Deng, H. Ming, L. Zhang, and W. Liu, “Polarization properties of subwavelength metallic gratings in visible light band,” Appl. Phys. B85(1), 139–143 (2006).
[CrossRef]

Wang, Q.

Wang, S. S.

Wang, Z.

Z. Wang, T. Sang, L. Wang, J. Zhu, Y. Wu, and L. Chen, “Guided-mode resonance Brewster filters with multiple channels,” Appl. Phys. Lett.88(25), 251115 (2006).
[CrossRef]

Wu, Y.

Z. Wang, T. Sang, L. Wang, J. Zhu, Y. Wu, and L. Chen, “Guided-mode resonance Brewster filters with multiple channels,” Appl. Phys. Lett.88(25), 251115 (2006).
[CrossRef]

Xu, B.

Xu, C.

J. Ma, S. Liu, D. Zhang, J. Yao, C. Xu, J. Shao, Y. Jin, and Z. Fan, “Guided-mode resonant grating filter with an antireflective surface for the multiple channels,” J. Opt. A, Pure Appl. Opt.10(2), 025302 (2008).
[CrossRef]

Xu, K.

Xu, T.

H. J. Park, T. Xu, J. Y. Lee, A. Ledbetter, and L. J. Guo, “Photonic color filters integrated with organic solar cells for energy harvesting,” ACS Nano5(9), 7055–7060 (2011).
[CrossRef] [PubMed]

A. F. Kaplan, T. Xu, and L. J. Guo, “High efficiency resonance-based spectrum filters with tunable transmission bandwidth fabricated using nanoimprint lithography,” Appl. Phys. Lett.99(14), 143111 (2011).
[CrossRef]

Yao, J.

J. Ma, S. Liu, D. Zhang, J. Yao, C. Xu, J. Shao, Y. Jin, and Z. Fan, “Guided-mode resonant grating filter with an antireflective surface for the multiple channels,” J. Opt. A, Pure Appl. Opt.10(2), 025302 (2008).
[CrossRef]

Yau, P.

R. R. Singh, D. Ho, A. Nilchi, G. Gulak, P. Yau, and R. Genov, “A CMOS/thin-film fluorescence contact imaging microsystem for DNA analysis,” IEEE Trans. Circuits Syst. I Regul. Pap.57(5), 1029–1038 (2010).
[CrossRef]

Yoon, Y. T.

Y. T. Yoon, C. H. Park, and S. S. Lee, “Highly efficient color filter incorporating a thin metal-dielectric resonant structure,” Appl. Phys. Express5(2), 022501 (2012).
[CrossRef]

Young, P. P.

Yu, J.

B. H. Cheong, O. H. Prudnikov, E. Cho, H. S. Kim, J. Yu, Y. S. Cho, H. Y. Choi, and S. T. Shin, “High angular tolerant color filter using subwavelength grating,” Appl. Phys. Lett.94(21), 213104 (2009).
[CrossRef]

Yuan, G.

D. Zhang, P. Wang, X. Jiao, C. Min, G. Yuan, Y. Deng, H. Ming, L. Zhang, and W. Liu, “Polarization properties of subwavelength metallic gratings in visible light band,” Appl. Phys. B85(1), 139–143 (2006).
[CrossRef]

Zhang, B.

Zhang, D.

Q. Wang, D. Zhang, B. Xu, Y. Huang, C. Tao, C. Wang, B. Li, Z. Ni, and S. Zhuang, “Colored image produced with guided-mode resonance filter array,” Opt. Lett.36(23), 4698–4700 (2011).
[CrossRef] [PubMed]

J. Ma, S. Liu, D. Zhang, J. Yao, C. Xu, J. Shao, Y. Jin, and Z. Fan, “Guided-mode resonant grating filter with an antireflective surface for the multiple channels,” J. Opt. A, Pure Appl. Opt.10(2), 025302 (2008).
[CrossRef]

D. Zhang, P. Wang, X. Jiao, C. Min, G. Yuan, Y. Deng, H. Ming, L. Zhang, and W. Liu, “Polarization properties of subwavelength metallic gratings in visible light band,” Appl. Phys. B85(1), 139–143 (2006).
[CrossRef]

Zhang, G.

Zhang, L.

D. Zhang, P. Wang, X. Jiao, C. Min, G. Yuan, Y. Deng, H. Ming, L. Zhang, and W. Liu, “Polarization properties of subwavelength metallic gratings in visible light band,” Appl. Phys. B85(1), 139–143 (2006).
[CrossRef]

Zhu, J.

Z. Wang, T. Sang, L. Wang, J. Zhu, Y. Wu, and L. Chen, “Guided-mode resonance Brewster filters with multiple channels,” Appl. Phys. Lett.88(25), 251115 (2006).
[CrossRef]

Zhuang, S.

Zyss, J.

ACS Nano

H. J. Park, T. Xu, J. Y. Lee, A. Ledbetter, and L. J. Guo, “Photonic color filters integrated with organic solar cells for energy harvesting,” ACS Nano5(9), 7055–7060 (2011).
[CrossRef] [PubMed]

Appl. Opt.

Appl. Phys. B

D. Zhang, P. Wang, X. Jiao, C. Min, G. Yuan, Y. Deng, H. Ming, L. Zhang, and W. Liu, “Polarization properties of subwavelength metallic gratings in visible light band,” Appl. Phys. B85(1), 139–143 (2006).
[CrossRef]

Appl. Phys. Express

Y. T. Yoon, C. H. Park, and S. S. Lee, “Highly efficient color filter incorporating a thin metal-dielectric resonant structure,” Appl. Phys. Express5(2), 022501 (2012).
[CrossRef]

Appl. Phys. Lett.

B. H. Cheong, O. H. Prudnikov, E. Cho, H. S. Kim, J. Yu, Y. S. Cho, H. Y. Choi, and S. T. Shin, “High angular tolerant color filter using subwavelength grating,” Appl. Phys. Lett.94(21), 213104 (2009).
[CrossRef]

A. F. Kaplan, T. Xu, and L. J. Guo, “High efficiency resonance-based spectrum filters with tunable transmission bandwidth fabricated using nanoimprint lithography,” Appl. Phys. Lett.99(14), 143111 (2011).
[CrossRef]

Z. Wang, T. Sang, L. Wang, J. Zhu, Y. Wu, and L. Chen, “Guided-mode resonance Brewster filters with multiple channels,” Appl. Phys. Lett.88(25), 251115 (2006).
[CrossRef]

Y. Cho, Y. K. Choi, and S. H. Sohn, “Optical properties of neodymium-containing polymethylmethacrylate films for the organic light emitting diode color filter,” Appl. Phys. Lett.89(5), 051102 (2006).
[CrossRef]

IEEE Trans. Circuits Syst. I Regul. Pap.

R. R. Singh, D. Ho, A. Nilchi, G. Gulak, P. Yau, and R. Genov, “A CMOS/thin-film fluorescence contact imaging microsystem for DNA analysis,” IEEE Trans. Circuits Syst. I Regul. Pap.57(5), 1029–1038 (2010).
[CrossRef]

J. Nanosci. Nanotechnol.

E. Cho, B. Kim, S. Choi, J. Han, J. Jin, J. Han, J. Lim, Y. Heo, S. Kim, G. Y. Sung, and S. Kang, “Design and Fabrication of Label-free biochip using a guided mode resonance filter with nano grating structures by injection molding process,” J. Nanosci. Nanotechnol.11(1), 417–421 (2011).
[CrossRef] [PubMed]

J. Opt. A, Pure Appl. Opt.

J. Ma, S. Liu, D. Zhang, J. Yao, C. Xu, J. Shao, Y. Jin, and Z. Fan, “Guided-mode resonant grating filter with an antireflective surface for the multiple channels,” J. Opt. A, Pure Appl. Opt.10(2), 025302 (2008).
[CrossRef]

Opt. Express

Opt. Lett.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Polarization-insensitive visible filter utilizing a symmetric metal grating integrated with a waveguide structure.

Fig. 2
Fig. 2

Excitation of the TE and TM guided modes of the waveguide, through the GMR that is driven by the 2D sub-wavelength metal grating, for the Lx-polarization.

Fig. 3
Fig. 3

Transfer characteristics induced by the GMR effect. (a) Calculated dispersion relation for a dielectric planar waveguide. (b) Calculated transfer characteristics of the proposed filter with structural parameters: Hd1 = 110 nm, Hd2 = 100 nm, nd1 = 1.47 and Λ = 314 nm, for nd2 = 1.65, 2 and 2.5. (c) Distribution of the magnetic H-field intensity |Hy|2 observed at a resonant wavelength λ = 550 nm for nd2 = 2.5.

Fig. 4
Fig. 4

(a) Resonant wavelength with the grating pitch for the TE and TM guided modes of the dielectric waveguide. (b) Effect of the thickness of the oxide cladding upon the optical transmission for the proposed device with Λ = 350 nm, Hm = 40 nm, and Hd2 = 100 nm.

Fig. 5
Fig. 5

(a) Calculated spectral responses of the designed three devices. Demonstrated and calculated transfer characteristics for unpolarized light for (b) DEV I. (c) DEV II. (d) DEV III.

Fig. 6
Fig. 6

Transfer characteristics in terms of the light polarization. Three linear polarizations are considered, including Lx-, Lxy- and Ly-polarizations, as indicated in (a). Transfer curves are obtained for (b) DEV I. (c) DEV II. (d) DEV III.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

mπ= H d2 n d2 2 k 0 2 β 2 2 tan 1 [ ( n d2 / n d1 ) 2ρ ( β 2 n d1 2 k 0 2 )/( n d2 2 k 0 2 β 2 ) ]

Metrics