Abstract

A fiber-optic interferometric probe based on a two-mode fiber (TMF) is proposed and demonstrated for measuring the thermo-optic coefficients (TOCs) of liquid samples. The proposed probe can be simply fabricated by fusion-splicing a short piece of TMF to a lead single mode fiber (SMF) with small lateral offset, which makes interference between LP01 and LP02 modes. The sensing responses of the probe to temperature and surrounding refractive index (SRI) have been experimentally investigated to show the capability of simultaneous measurements; the phase change of the reflection spectrum was related to temperature variation and the intensity change was to SRI variation. The data analysis is made not only in the spectral domain but in the Fourier domain also to effectively quantify the measurements. The TOCs of several liquid samples including water, ethanol, and acetone have been obtained with the proposed method.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Kumar, R. Jindal, R. K. Varshney, and S. K. Sharma, “A fiber-optic temperature sensor based on LP01-LP02 mode interference,” Opt. Fiber Technol.6(1), 83–90 (2000).
    [CrossRef]
  2. J. S. Sirkis, D. D. Brennan, M. A. Putman, T. A. Berkoff, A. D. Kersey, and E. J. Friebele, “In-line fiber etalon for strain measurement,” Opt. Lett.18(22), 1973–1975 (1993).
    [CrossRef] [PubMed]
  3. X. Wang, J. Xu, Y. Zhu, K. L. Cooper, and A. Wang, “All-fused-silica miniature optical fiber tip pressure sensor,” Opt. Lett.31(7), 885–887 (2006).
    [CrossRef] [PubMed]
  4. J. R. Zhao, X. G. Huang, W. X. He, and J. H. Chen, “High-resolution and temperature-insensitive fiber optic refractive index sensor base on Fresnel reflection modulated by Fabry-Perot interference,” J. Lightwave Technol.28(19), 2799–2803 (2010).
    [CrossRef]
  5. J. Y. Cho, J. H. Lim, and K. H. Lee; “Optical fiber twist sensor with two orthogonally oriented mechanically induced long-period grating sections,” IEEE Photon. Technol. Lett.17(2), 453–455 (2005).
    [CrossRef]
  6. B. H. Lee, Y. H. Kim, K. S. Park, J. B. Eom, M. J. Kim, B. S. Rho, and H. Y. Choi, “Interferometric fiber optic sensors,” Sensors (Basel Switzerland)12(3), 2467–2486 (2012).
    [CrossRef]
  7. M. J. Kim, Y. H. Kim, G. Mudhana, and B. H. Lee, “Simultaneous measurement of temperature and strain based on double cladding fiber interferometer assisted by fiber grating pair,” IEEE Photon. Technol. Lett.20(15), 1290–1292 (2008).
    [CrossRef]
  8. A. van Brakel and P. L. Swart, “Temperature-compensated optical fiber Michelson refractometer,” Opt. Eng.44(2), 020504 (2005).
    [CrossRef]
  9. M. N. Ng, Z. Chen, and K. S. Chiang, “Temperature compensation of long-period fiber grating for refractive-index sensing with bending effect,” IEEE Photon. Technol. Lett.14(3), 361–362 (2002).
    [CrossRef]
  10. H. Y. Choi, G. Mudhana, K. S. Park, U. C. Paek, and B. H. Lee, “Cross-talk free and ultra-compact fiber optic sensor for simultaneous measurement of temperature and refractive index,” Opt. Express18(1), 141–149 (2010).
    [CrossRef] [PubMed]
  11. O. Frazao, J. L. Santos, and J. M. Baptista, “Strain and temperature discrimination using concatenated high-birefringence fiber loop mirrors,” IEEE Photon. Technol. Lett.19(16), 1260–1262 (2007).
    [CrossRef]
  12. C. L. Zhao, X. Yang, and M. S. Demokan, “Simultaneous temperature and refractive index measurement using 3° slanted multimode fiber Bragg grating,” J. Lightwave Technol.24(2), 879–883 (2006).
    [CrossRef]
  13. A. Iadicicco, S. Campopiano, A. Cutolo, M. Giordano, and A. Cusano, “Nonuniform thinned fiber Bragg gratings for simultaneous refractive index and temperature measurements,” IEEE Photon. Technol. Lett.17(7), 1495–1497 (2005).
    [CrossRef]
  14. T. Zhu, Y. J. Rao, and Q. J. Mo, “Simultaneous measurement of refractive index and temperature using a single ultralong-period fiber grating,” IEEE Photon. Technol. Lett.17(12), 2700–2702 (2005).
    [CrossRef]
  15. D. A. C. Enríquez, A. R. da Cruz, and M. T. M. R. Giraldi, “Hybrid FBG–LPG sensor for surrounding refractive index and temperature simultaneous discrimination,” Opt. Laser Technol.44(4), 981–986 (2012).
    [CrossRef]
  16. S. M. Lee, S. S. Saini, and M. Y. Jeong, “Simultaneous measurement of refractive index, temperature, and strain using etched-core fiber Bragg grating sensors,” IEEE Photon. Technol. Lett.22(19), 1431–1433 (2010).
    [CrossRef]
  17. X. Chen, K. Zhou, L. Zhang, and I. Bennion, “Simultaneous measurement of temperature and external refractive index by use of a hybrid grating in D fiber with enhanced sensitivity by HF etching,” Appl. Opt.44(2), 178–182 (2005).
    [CrossRef] [PubMed]
  18. P. Lu, L. Men, K. Sooley, and Q. Chen, “Tapered fiber Mach-Zehnder interferometer for simultaneous measurement of refractive index and temperature,” Appl. Phys. Lett.94(13), 131110 (2009).
    [CrossRef]
  19. S. Yaltkaya and R. Aydin, “Experimental investigation of temperature effect on the refractive index of dye laser liquids,” Turk. J. Phys.26, 41–47 (2002).
  20. J. Jasny, B. Nickel, and P. Borowicz, “Wavelength- and temperature-dependent measurement of refractive indices,” J. Opt. Soc. Am. B21(4), 729–738 (2004).
    [CrossRef]
  21. S. D. Nicola, P. Mormile, and G. Pierattini, “The temperature dependence of refractive index of an aqueous suspension of polystyrene microspheres,” Appl. Phys. B53(5-6), 350–352 (1991).
    [CrossRef]
  22. A. M. Vengsarkar and K. L. Walker, “Article comprising a dispersion-compensating optical waveguide,” U.S. patent 5,448,674 (1995).
  23. S. W. Jeon, T. Y. Kim, W. B. Kwon, and C. S. Park, “All-optical clock extraction from 10-Gbit/s NRZ-DPSK data using modal interference in a two-mode fiber,” Opt. Commun.283(4), 522–527 (2010).
    [CrossRef]
  24. S. Ramachandran, S. Ghalmi, J. W. Nicholson, M. F. Yan, P. Wisk, E. Monberg, and F. V. Dimarcello, “Anomalous dispersion in a solid, silica-based fiber,” Opt. Lett.31(17), 2532–2534 (2006).
    [CrossRef] [PubMed]
  25. S. Choi and K. Oh, “A new LP02 mode dispersion compensation scheme based on mode converter using hollow optical fiber,” Opt. Commun.222(1-6), 213–219 (2003).
    [CrossRef]
  26. G. Lin and X. Dong, “Design of broadband LP01↔LP02 mode converter based on special dual-core fiber for dispersion compensation,” Appl. Opt.51(19), 4388–4393 (2012).
    [CrossRef] [PubMed]
  27. T. Yokokawa, T. Kato, T. Fujii, Y. Yamamoto, N. Honma, A. Kataoka, M. Onishi, E. Sasaoka, and K. Okamoto, “Dispersion compensating fiber with large negative dispersion around −300 ps/km/nm and its application to compact module for dispersion adjustment,” Optical Fiber Communications Conference 2003 2, 717–718 (2003).
  28. F. D. Nunes, C. A. de Souza Melo, and H. F. da Silva Filho, “Theoretical study of coaxial fibers,” Appl. Opt.35(3), 388–399 (1996).
    [CrossRef] [PubMed]
  29. H. Y. Choi, M. J. Kim, and B. H. Lee, “All-fiber Mach-Zehnder type interferometers formed in photonic crystal fiber,” Opt. Express15(9), 5711–5720 (2007).
    [CrossRef] [PubMed]
  30. J. Villatoro, V. Finazzi, V. P. Minkovich, V. Pruneri, and G. Badenes, “Temperature-insensitive photonic crystal fiber interferometer for absolute strain sensing,” Appl. Phys. Lett.91(9), 091109 (2007).
    [CrossRef]
  31. R. C. Kamikawachi, I. Abe, A. S. Paterno, H. J. Kalinowski, M. Muller, J. L. Pinto, and J. L. Fabris, “Determination of thermo-optic coefficient in liquids with fiber Bragg grating refractometer,” Opt. Commun.281(4), 621–625 (2008).
    [CrossRef]
  32. A. H. Harveym, J. J. S. Gallagher, and M. H. L. Sengers, “Revised formulation for the refractive index of water and steam as a function of wavelength, temperature and density,” J. Phys. Chem. Ref. Data27(4), 761–774 (1998).
  33. D. Solimini, “Loss measurement of organic materials at 6328 Å,” J. Appl. Phys.37(8), 3314–3315 (1966).
    [CrossRef]

2012

B. H. Lee, Y. H. Kim, K. S. Park, J. B. Eom, M. J. Kim, B. S. Rho, and H. Y. Choi, “Interferometric fiber optic sensors,” Sensors (Basel Switzerland)12(3), 2467–2486 (2012).
[CrossRef]

D. A. C. Enríquez, A. R. da Cruz, and M. T. M. R. Giraldi, “Hybrid FBG–LPG sensor for surrounding refractive index and temperature simultaneous discrimination,” Opt. Laser Technol.44(4), 981–986 (2012).
[CrossRef]

G. Lin and X. Dong, “Design of broadband LP01↔LP02 mode converter based on special dual-core fiber for dispersion compensation,” Appl. Opt.51(19), 4388–4393 (2012).
[CrossRef] [PubMed]

2010

S. W. Jeon, T. Y. Kim, W. B. Kwon, and C. S. Park, “All-optical clock extraction from 10-Gbit/s NRZ-DPSK data using modal interference in a two-mode fiber,” Opt. Commun.283(4), 522–527 (2010).
[CrossRef]

S. M. Lee, S. S. Saini, and M. Y. Jeong, “Simultaneous measurement of refractive index, temperature, and strain using etched-core fiber Bragg grating sensors,” IEEE Photon. Technol. Lett.22(19), 1431–1433 (2010).
[CrossRef]

H. Y. Choi, G. Mudhana, K. S. Park, U. C. Paek, and B. H. Lee, “Cross-talk free and ultra-compact fiber optic sensor for simultaneous measurement of temperature and refractive index,” Opt. Express18(1), 141–149 (2010).
[CrossRef] [PubMed]

J. R. Zhao, X. G. Huang, W. X. He, and J. H. Chen, “High-resolution and temperature-insensitive fiber optic refractive index sensor base on Fresnel reflection modulated by Fabry-Perot interference,” J. Lightwave Technol.28(19), 2799–2803 (2010).
[CrossRef]

2009

P. Lu, L. Men, K. Sooley, and Q. Chen, “Tapered fiber Mach-Zehnder interferometer for simultaneous measurement of refractive index and temperature,” Appl. Phys. Lett.94(13), 131110 (2009).
[CrossRef]

2008

M. J. Kim, Y. H. Kim, G. Mudhana, and B. H. Lee, “Simultaneous measurement of temperature and strain based on double cladding fiber interferometer assisted by fiber grating pair,” IEEE Photon. Technol. Lett.20(15), 1290–1292 (2008).
[CrossRef]

R. C. Kamikawachi, I. Abe, A. S. Paterno, H. J. Kalinowski, M. Muller, J. L. Pinto, and J. L. Fabris, “Determination of thermo-optic coefficient in liquids with fiber Bragg grating refractometer,” Opt. Commun.281(4), 621–625 (2008).
[CrossRef]

2007

H. Y. Choi, M. J. Kim, and B. H. Lee, “All-fiber Mach-Zehnder type interferometers formed in photonic crystal fiber,” Opt. Express15(9), 5711–5720 (2007).
[CrossRef] [PubMed]

J. Villatoro, V. Finazzi, V. P. Minkovich, V. Pruneri, and G. Badenes, “Temperature-insensitive photonic crystal fiber interferometer for absolute strain sensing,” Appl. Phys. Lett.91(9), 091109 (2007).
[CrossRef]

O. Frazao, J. L. Santos, and J. M. Baptista, “Strain and temperature discrimination using concatenated high-birefringence fiber loop mirrors,” IEEE Photon. Technol. Lett.19(16), 1260–1262 (2007).
[CrossRef]

2006

2005

A. Iadicicco, S. Campopiano, A. Cutolo, M. Giordano, and A. Cusano, “Nonuniform thinned fiber Bragg gratings for simultaneous refractive index and temperature measurements,” IEEE Photon. Technol. Lett.17(7), 1495–1497 (2005).
[CrossRef]

T. Zhu, Y. J. Rao, and Q. J. Mo, “Simultaneous measurement of refractive index and temperature using a single ultralong-period fiber grating,” IEEE Photon. Technol. Lett.17(12), 2700–2702 (2005).
[CrossRef]

X. Chen, K. Zhou, L. Zhang, and I. Bennion, “Simultaneous measurement of temperature and external refractive index by use of a hybrid grating in D fiber with enhanced sensitivity by HF etching,” Appl. Opt.44(2), 178–182 (2005).
[CrossRef] [PubMed]

A. van Brakel and P. L. Swart, “Temperature-compensated optical fiber Michelson refractometer,” Opt. Eng.44(2), 020504 (2005).
[CrossRef]

J. Y. Cho, J. H. Lim, and K. H. Lee; “Optical fiber twist sensor with two orthogonally oriented mechanically induced long-period grating sections,” IEEE Photon. Technol. Lett.17(2), 453–455 (2005).
[CrossRef]

2004

2003

S. Choi and K. Oh, “A new LP02 mode dispersion compensation scheme based on mode converter using hollow optical fiber,” Opt. Commun.222(1-6), 213–219 (2003).
[CrossRef]

2002

M. N. Ng, Z. Chen, and K. S. Chiang, “Temperature compensation of long-period fiber grating for refractive-index sensing with bending effect,” IEEE Photon. Technol. Lett.14(3), 361–362 (2002).
[CrossRef]

S. Yaltkaya and R. Aydin, “Experimental investigation of temperature effect on the refractive index of dye laser liquids,” Turk. J. Phys.26, 41–47 (2002).

2000

A. Kumar, R. Jindal, R. K. Varshney, and S. K. Sharma, “A fiber-optic temperature sensor based on LP01-LP02 mode interference,” Opt. Fiber Technol.6(1), 83–90 (2000).
[CrossRef]

1998

A. H. Harveym, J. J. S. Gallagher, and M. H. L. Sengers, “Revised formulation for the refractive index of water and steam as a function of wavelength, temperature and density,” J. Phys. Chem. Ref. Data27(4), 761–774 (1998).

1996

1993

1991

S. D. Nicola, P. Mormile, and G. Pierattini, “The temperature dependence of refractive index of an aqueous suspension of polystyrene microspheres,” Appl. Phys. B53(5-6), 350–352 (1991).
[CrossRef]

1966

D. Solimini, “Loss measurement of organic materials at 6328 Å,” J. Appl. Phys.37(8), 3314–3315 (1966).
[CrossRef]

Abe, I.

R. C. Kamikawachi, I. Abe, A. S. Paterno, H. J. Kalinowski, M. Muller, J. L. Pinto, and J. L. Fabris, “Determination of thermo-optic coefficient in liquids with fiber Bragg grating refractometer,” Opt. Commun.281(4), 621–625 (2008).
[CrossRef]

Aydin, R.

S. Yaltkaya and R. Aydin, “Experimental investigation of temperature effect on the refractive index of dye laser liquids,” Turk. J. Phys.26, 41–47 (2002).

Badenes, G.

J. Villatoro, V. Finazzi, V. P. Minkovich, V. Pruneri, and G. Badenes, “Temperature-insensitive photonic crystal fiber interferometer for absolute strain sensing,” Appl. Phys. Lett.91(9), 091109 (2007).
[CrossRef]

Baptista, J. M.

O. Frazao, J. L. Santos, and J. M. Baptista, “Strain and temperature discrimination using concatenated high-birefringence fiber loop mirrors,” IEEE Photon. Technol. Lett.19(16), 1260–1262 (2007).
[CrossRef]

Bennion, I.

Berkoff, T. A.

Borowicz, P.

Brennan, D. D.

Campopiano, S.

A. Iadicicco, S. Campopiano, A. Cutolo, M. Giordano, and A. Cusano, “Nonuniform thinned fiber Bragg gratings for simultaneous refractive index and temperature measurements,” IEEE Photon. Technol. Lett.17(7), 1495–1497 (2005).
[CrossRef]

Chen, J. H.

Chen, Q.

P. Lu, L. Men, K. Sooley, and Q. Chen, “Tapered fiber Mach-Zehnder interferometer for simultaneous measurement of refractive index and temperature,” Appl. Phys. Lett.94(13), 131110 (2009).
[CrossRef]

Chen, X.

Chen, Z.

M. N. Ng, Z. Chen, and K. S. Chiang, “Temperature compensation of long-period fiber grating for refractive-index sensing with bending effect,” IEEE Photon. Technol. Lett.14(3), 361–362 (2002).
[CrossRef]

Chiang, K. S.

M. N. Ng, Z. Chen, and K. S. Chiang, “Temperature compensation of long-period fiber grating for refractive-index sensing with bending effect,” IEEE Photon. Technol. Lett.14(3), 361–362 (2002).
[CrossRef]

Cho, J. Y.

J. Y. Cho, J. H. Lim, and K. H. Lee; “Optical fiber twist sensor with two orthogonally oriented mechanically induced long-period grating sections,” IEEE Photon. Technol. Lett.17(2), 453–455 (2005).
[CrossRef]

Choi, H. Y.

Choi, S.

S. Choi and K. Oh, “A new LP02 mode dispersion compensation scheme based on mode converter using hollow optical fiber,” Opt. Commun.222(1-6), 213–219 (2003).
[CrossRef]

Cooper, K. L.

Cusano, A.

A. Iadicicco, S. Campopiano, A. Cutolo, M. Giordano, and A. Cusano, “Nonuniform thinned fiber Bragg gratings for simultaneous refractive index and temperature measurements,” IEEE Photon. Technol. Lett.17(7), 1495–1497 (2005).
[CrossRef]

Cutolo, A.

A. Iadicicco, S. Campopiano, A. Cutolo, M. Giordano, and A. Cusano, “Nonuniform thinned fiber Bragg gratings for simultaneous refractive index and temperature measurements,” IEEE Photon. Technol. Lett.17(7), 1495–1497 (2005).
[CrossRef]

da Cruz, A. R.

D. A. C. Enríquez, A. R. da Cruz, and M. T. M. R. Giraldi, “Hybrid FBG–LPG sensor for surrounding refractive index and temperature simultaneous discrimination,” Opt. Laser Technol.44(4), 981–986 (2012).
[CrossRef]

da Silva Filho, H. F.

de Souza Melo, C. A.

Demokan, M. S.

Dimarcello, F. V.

Dong, X.

Enríquez, D. A. C.

D. A. C. Enríquez, A. R. da Cruz, and M. T. M. R. Giraldi, “Hybrid FBG–LPG sensor for surrounding refractive index and temperature simultaneous discrimination,” Opt. Laser Technol.44(4), 981–986 (2012).
[CrossRef]

Eom, J. B.

B. H. Lee, Y. H. Kim, K. S. Park, J. B. Eom, M. J. Kim, B. S. Rho, and H. Y. Choi, “Interferometric fiber optic sensors,” Sensors (Basel Switzerland)12(3), 2467–2486 (2012).
[CrossRef]

Fabris, J. L.

R. C. Kamikawachi, I. Abe, A. S. Paterno, H. J. Kalinowski, M. Muller, J. L. Pinto, and J. L. Fabris, “Determination of thermo-optic coefficient in liquids with fiber Bragg grating refractometer,” Opt. Commun.281(4), 621–625 (2008).
[CrossRef]

Finazzi, V.

J. Villatoro, V. Finazzi, V. P. Minkovich, V. Pruneri, and G. Badenes, “Temperature-insensitive photonic crystal fiber interferometer for absolute strain sensing,” Appl. Phys. Lett.91(9), 091109 (2007).
[CrossRef]

Frazao, O.

O. Frazao, J. L. Santos, and J. M. Baptista, “Strain and temperature discrimination using concatenated high-birefringence fiber loop mirrors,” IEEE Photon. Technol. Lett.19(16), 1260–1262 (2007).
[CrossRef]

Friebele, E. J.

Gallagher, J. J. S.

A. H. Harveym, J. J. S. Gallagher, and M. H. L. Sengers, “Revised formulation for the refractive index of water and steam as a function of wavelength, temperature and density,” J. Phys. Chem. Ref. Data27(4), 761–774 (1998).

Ghalmi, S.

Giordano, M.

A. Iadicicco, S. Campopiano, A. Cutolo, M. Giordano, and A. Cusano, “Nonuniform thinned fiber Bragg gratings for simultaneous refractive index and temperature measurements,” IEEE Photon. Technol. Lett.17(7), 1495–1497 (2005).
[CrossRef]

Giraldi, M. T. M. R.

D. A. C. Enríquez, A. R. da Cruz, and M. T. M. R. Giraldi, “Hybrid FBG–LPG sensor for surrounding refractive index and temperature simultaneous discrimination,” Opt. Laser Technol.44(4), 981–986 (2012).
[CrossRef]

Harveym, A. H.

A. H. Harveym, J. J. S. Gallagher, and M. H. L. Sengers, “Revised formulation for the refractive index of water and steam as a function of wavelength, temperature and density,” J. Phys. Chem. Ref. Data27(4), 761–774 (1998).

He, W. X.

Huang, X. G.

Iadicicco, A.

A. Iadicicco, S. Campopiano, A. Cutolo, M. Giordano, and A. Cusano, “Nonuniform thinned fiber Bragg gratings for simultaneous refractive index and temperature measurements,” IEEE Photon. Technol. Lett.17(7), 1495–1497 (2005).
[CrossRef]

Jasny, J.

Jeon, S. W.

S. W. Jeon, T. Y. Kim, W. B. Kwon, and C. S. Park, “All-optical clock extraction from 10-Gbit/s NRZ-DPSK data using modal interference in a two-mode fiber,” Opt. Commun.283(4), 522–527 (2010).
[CrossRef]

Jeong, M. Y.

S. M. Lee, S. S. Saini, and M. Y. Jeong, “Simultaneous measurement of refractive index, temperature, and strain using etched-core fiber Bragg grating sensors,” IEEE Photon. Technol. Lett.22(19), 1431–1433 (2010).
[CrossRef]

Jindal, R.

A. Kumar, R. Jindal, R. K. Varshney, and S. K. Sharma, “A fiber-optic temperature sensor based on LP01-LP02 mode interference,” Opt. Fiber Technol.6(1), 83–90 (2000).
[CrossRef]

Kalinowski, H. J.

R. C. Kamikawachi, I. Abe, A. S. Paterno, H. J. Kalinowski, M. Muller, J. L. Pinto, and J. L. Fabris, “Determination of thermo-optic coefficient in liquids with fiber Bragg grating refractometer,” Opt. Commun.281(4), 621–625 (2008).
[CrossRef]

Kamikawachi, R. C.

R. C. Kamikawachi, I. Abe, A. S. Paterno, H. J. Kalinowski, M. Muller, J. L. Pinto, and J. L. Fabris, “Determination of thermo-optic coefficient in liquids with fiber Bragg grating refractometer,” Opt. Commun.281(4), 621–625 (2008).
[CrossRef]

Kersey, A. D.

Kim, M. J.

B. H. Lee, Y. H. Kim, K. S. Park, J. B. Eom, M. J. Kim, B. S. Rho, and H. Y. Choi, “Interferometric fiber optic sensors,” Sensors (Basel Switzerland)12(3), 2467–2486 (2012).
[CrossRef]

M. J. Kim, Y. H. Kim, G. Mudhana, and B. H. Lee, “Simultaneous measurement of temperature and strain based on double cladding fiber interferometer assisted by fiber grating pair,” IEEE Photon. Technol. Lett.20(15), 1290–1292 (2008).
[CrossRef]

H. Y. Choi, M. J. Kim, and B. H. Lee, “All-fiber Mach-Zehnder type interferometers formed in photonic crystal fiber,” Opt. Express15(9), 5711–5720 (2007).
[CrossRef] [PubMed]

Kim, T. Y.

S. W. Jeon, T. Y. Kim, W. B. Kwon, and C. S. Park, “All-optical clock extraction from 10-Gbit/s NRZ-DPSK data using modal interference in a two-mode fiber,” Opt. Commun.283(4), 522–527 (2010).
[CrossRef]

Kim, Y. H.

B. H. Lee, Y. H. Kim, K. S. Park, J. B. Eom, M. J. Kim, B. S. Rho, and H. Y. Choi, “Interferometric fiber optic sensors,” Sensors (Basel Switzerland)12(3), 2467–2486 (2012).
[CrossRef]

M. J. Kim, Y. H. Kim, G. Mudhana, and B. H. Lee, “Simultaneous measurement of temperature and strain based on double cladding fiber interferometer assisted by fiber grating pair,” IEEE Photon. Technol. Lett.20(15), 1290–1292 (2008).
[CrossRef]

Kumar, A.

A. Kumar, R. Jindal, R. K. Varshney, and S. K. Sharma, “A fiber-optic temperature sensor based on LP01-LP02 mode interference,” Opt. Fiber Technol.6(1), 83–90 (2000).
[CrossRef]

Kwon, W. B.

S. W. Jeon, T. Y. Kim, W. B. Kwon, and C. S. Park, “All-optical clock extraction from 10-Gbit/s NRZ-DPSK data using modal interference in a two-mode fiber,” Opt. Commun.283(4), 522–527 (2010).
[CrossRef]

Lee, B. H.

B. H. Lee, Y. H. Kim, K. S. Park, J. B. Eom, M. J. Kim, B. S. Rho, and H. Y. Choi, “Interferometric fiber optic sensors,” Sensors (Basel Switzerland)12(3), 2467–2486 (2012).
[CrossRef]

H. Y. Choi, G. Mudhana, K. S. Park, U. C. Paek, and B. H. Lee, “Cross-talk free and ultra-compact fiber optic sensor for simultaneous measurement of temperature and refractive index,” Opt. Express18(1), 141–149 (2010).
[CrossRef] [PubMed]

M. J. Kim, Y. H. Kim, G. Mudhana, and B. H. Lee, “Simultaneous measurement of temperature and strain based on double cladding fiber interferometer assisted by fiber grating pair,” IEEE Photon. Technol. Lett.20(15), 1290–1292 (2008).
[CrossRef]

H. Y. Choi, M. J. Kim, and B. H. Lee, “All-fiber Mach-Zehnder type interferometers formed in photonic crystal fiber,” Opt. Express15(9), 5711–5720 (2007).
[CrossRef] [PubMed]

Lee, K. H.

J. Y. Cho, J. H. Lim, and K. H. Lee; “Optical fiber twist sensor with two orthogonally oriented mechanically induced long-period grating sections,” IEEE Photon. Technol. Lett.17(2), 453–455 (2005).
[CrossRef]

Lee, S. M.

S. M. Lee, S. S. Saini, and M. Y. Jeong, “Simultaneous measurement of refractive index, temperature, and strain using etched-core fiber Bragg grating sensors,” IEEE Photon. Technol. Lett.22(19), 1431–1433 (2010).
[CrossRef]

Lim, J. H.

J. Y. Cho, J. H. Lim, and K. H. Lee; “Optical fiber twist sensor with two orthogonally oriented mechanically induced long-period grating sections,” IEEE Photon. Technol. Lett.17(2), 453–455 (2005).
[CrossRef]

Lin, G.

Lu, P.

P. Lu, L. Men, K. Sooley, and Q. Chen, “Tapered fiber Mach-Zehnder interferometer for simultaneous measurement of refractive index and temperature,” Appl. Phys. Lett.94(13), 131110 (2009).
[CrossRef]

Men, L.

P. Lu, L. Men, K. Sooley, and Q. Chen, “Tapered fiber Mach-Zehnder interferometer for simultaneous measurement of refractive index and temperature,” Appl. Phys. Lett.94(13), 131110 (2009).
[CrossRef]

Minkovich, V. P.

J. Villatoro, V. Finazzi, V. P. Minkovich, V. Pruneri, and G. Badenes, “Temperature-insensitive photonic crystal fiber interferometer for absolute strain sensing,” Appl. Phys. Lett.91(9), 091109 (2007).
[CrossRef]

Mo, Q. J.

T. Zhu, Y. J. Rao, and Q. J. Mo, “Simultaneous measurement of refractive index and temperature using a single ultralong-period fiber grating,” IEEE Photon. Technol. Lett.17(12), 2700–2702 (2005).
[CrossRef]

Monberg, E.

Mormile, P.

S. D. Nicola, P. Mormile, and G. Pierattini, “The temperature dependence of refractive index of an aqueous suspension of polystyrene microspheres,” Appl. Phys. B53(5-6), 350–352 (1991).
[CrossRef]

Mudhana, G.

H. Y. Choi, G. Mudhana, K. S. Park, U. C. Paek, and B. H. Lee, “Cross-talk free and ultra-compact fiber optic sensor for simultaneous measurement of temperature and refractive index,” Opt. Express18(1), 141–149 (2010).
[CrossRef] [PubMed]

M. J. Kim, Y. H. Kim, G. Mudhana, and B. H. Lee, “Simultaneous measurement of temperature and strain based on double cladding fiber interferometer assisted by fiber grating pair,” IEEE Photon. Technol. Lett.20(15), 1290–1292 (2008).
[CrossRef]

Muller, M.

R. C. Kamikawachi, I. Abe, A. S. Paterno, H. J. Kalinowski, M. Muller, J. L. Pinto, and J. L. Fabris, “Determination of thermo-optic coefficient in liquids with fiber Bragg grating refractometer,” Opt. Commun.281(4), 621–625 (2008).
[CrossRef]

Ng, M. N.

M. N. Ng, Z. Chen, and K. S. Chiang, “Temperature compensation of long-period fiber grating for refractive-index sensing with bending effect,” IEEE Photon. Technol. Lett.14(3), 361–362 (2002).
[CrossRef]

Nicholson, J. W.

Nickel, B.

Nicola, S. D.

S. D. Nicola, P. Mormile, and G. Pierattini, “The temperature dependence of refractive index of an aqueous suspension of polystyrene microspheres,” Appl. Phys. B53(5-6), 350–352 (1991).
[CrossRef]

Nunes, F. D.

Oh, K.

S. Choi and K. Oh, “A new LP02 mode dispersion compensation scheme based on mode converter using hollow optical fiber,” Opt. Commun.222(1-6), 213–219 (2003).
[CrossRef]

Paek, U. C.

Park, C. S.

S. W. Jeon, T. Y. Kim, W. B. Kwon, and C. S. Park, “All-optical clock extraction from 10-Gbit/s NRZ-DPSK data using modal interference in a two-mode fiber,” Opt. Commun.283(4), 522–527 (2010).
[CrossRef]

Park, K. S.

B. H. Lee, Y. H. Kim, K. S. Park, J. B. Eom, M. J. Kim, B. S. Rho, and H. Y. Choi, “Interferometric fiber optic sensors,” Sensors (Basel Switzerland)12(3), 2467–2486 (2012).
[CrossRef]

H. Y. Choi, G. Mudhana, K. S. Park, U. C. Paek, and B. H. Lee, “Cross-talk free and ultra-compact fiber optic sensor for simultaneous measurement of temperature and refractive index,” Opt. Express18(1), 141–149 (2010).
[CrossRef] [PubMed]

Paterno, A. S.

R. C. Kamikawachi, I. Abe, A. S. Paterno, H. J. Kalinowski, M. Muller, J. L. Pinto, and J. L. Fabris, “Determination of thermo-optic coefficient in liquids with fiber Bragg grating refractometer,” Opt. Commun.281(4), 621–625 (2008).
[CrossRef]

Pierattini, G.

S. D. Nicola, P. Mormile, and G. Pierattini, “The temperature dependence of refractive index of an aqueous suspension of polystyrene microspheres,” Appl. Phys. B53(5-6), 350–352 (1991).
[CrossRef]

Pinto, J. L.

R. C. Kamikawachi, I. Abe, A. S. Paterno, H. J. Kalinowski, M. Muller, J. L. Pinto, and J. L. Fabris, “Determination of thermo-optic coefficient in liquids with fiber Bragg grating refractometer,” Opt. Commun.281(4), 621–625 (2008).
[CrossRef]

Pruneri, V.

J. Villatoro, V. Finazzi, V. P. Minkovich, V. Pruneri, and G. Badenes, “Temperature-insensitive photonic crystal fiber interferometer for absolute strain sensing,” Appl. Phys. Lett.91(9), 091109 (2007).
[CrossRef]

Putman, M. A.

Ramachandran, S.

Rao, Y. J.

T. Zhu, Y. J. Rao, and Q. J. Mo, “Simultaneous measurement of refractive index and temperature using a single ultralong-period fiber grating,” IEEE Photon. Technol. Lett.17(12), 2700–2702 (2005).
[CrossRef]

Rho, B. S.

B. H. Lee, Y. H. Kim, K. S. Park, J. B. Eom, M. J. Kim, B. S. Rho, and H. Y. Choi, “Interferometric fiber optic sensors,” Sensors (Basel Switzerland)12(3), 2467–2486 (2012).
[CrossRef]

Saini, S. S.

S. M. Lee, S. S. Saini, and M. Y. Jeong, “Simultaneous measurement of refractive index, temperature, and strain using etched-core fiber Bragg grating sensors,” IEEE Photon. Technol. Lett.22(19), 1431–1433 (2010).
[CrossRef]

Santos, J. L.

O. Frazao, J. L. Santos, and J. M. Baptista, “Strain and temperature discrimination using concatenated high-birefringence fiber loop mirrors,” IEEE Photon. Technol. Lett.19(16), 1260–1262 (2007).
[CrossRef]

Sengers, M. H. L.

A. H. Harveym, J. J. S. Gallagher, and M. H. L. Sengers, “Revised formulation for the refractive index of water and steam as a function of wavelength, temperature and density,” J. Phys. Chem. Ref. Data27(4), 761–774 (1998).

Sharma, S. K.

A. Kumar, R. Jindal, R. K. Varshney, and S. K. Sharma, “A fiber-optic temperature sensor based on LP01-LP02 mode interference,” Opt. Fiber Technol.6(1), 83–90 (2000).
[CrossRef]

Sirkis, J. S.

Solimini, D.

D. Solimini, “Loss measurement of organic materials at 6328 Å,” J. Appl. Phys.37(8), 3314–3315 (1966).
[CrossRef]

Sooley, K.

P. Lu, L. Men, K. Sooley, and Q. Chen, “Tapered fiber Mach-Zehnder interferometer for simultaneous measurement of refractive index and temperature,” Appl. Phys. Lett.94(13), 131110 (2009).
[CrossRef]

Swart, P. L.

A. van Brakel and P. L. Swart, “Temperature-compensated optical fiber Michelson refractometer,” Opt. Eng.44(2), 020504 (2005).
[CrossRef]

van Brakel, A.

A. van Brakel and P. L. Swart, “Temperature-compensated optical fiber Michelson refractometer,” Opt. Eng.44(2), 020504 (2005).
[CrossRef]

Varshney, R. K.

A. Kumar, R. Jindal, R. K. Varshney, and S. K. Sharma, “A fiber-optic temperature sensor based on LP01-LP02 mode interference,” Opt. Fiber Technol.6(1), 83–90 (2000).
[CrossRef]

Villatoro, J.

J. Villatoro, V. Finazzi, V. P. Minkovich, V. Pruneri, and G. Badenes, “Temperature-insensitive photonic crystal fiber interferometer for absolute strain sensing,” Appl. Phys. Lett.91(9), 091109 (2007).
[CrossRef]

Wang, A.

Wang, X.

Wisk, P.

Xu, J.

Yaltkaya, S.

S. Yaltkaya and R. Aydin, “Experimental investigation of temperature effect on the refractive index of dye laser liquids,” Turk. J. Phys.26, 41–47 (2002).

Yan, M. F.

Yang, X.

Zhang, L.

Zhao, C. L.

Zhao, J. R.

Zhou, K.

Zhu, T.

T. Zhu, Y. J. Rao, and Q. J. Mo, “Simultaneous measurement of refractive index and temperature using a single ultralong-period fiber grating,” IEEE Photon. Technol. Lett.17(12), 2700–2702 (2005).
[CrossRef]

Zhu, Y.

Appl. Opt.

Appl. Phys. B

S. D. Nicola, P. Mormile, and G. Pierattini, “The temperature dependence of refractive index of an aqueous suspension of polystyrene microspheres,” Appl. Phys. B53(5-6), 350–352 (1991).
[CrossRef]

Appl. Phys. Lett.

J. Villatoro, V. Finazzi, V. P. Minkovich, V. Pruneri, and G. Badenes, “Temperature-insensitive photonic crystal fiber interferometer for absolute strain sensing,” Appl. Phys. Lett.91(9), 091109 (2007).
[CrossRef]

P. Lu, L. Men, K. Sooley, and Q. Chen, “Tapered fiber Mach-Zehnder interferometer for simultaneous measurement of refractive index and temperature,” Appl. Phys. Lett.94(13), 131110 (2009).
[CrossRef]

IEEE Photon. Technol. Lett.

S. M. Lee, S. S. Saini, and M. Y. Jeong, “Simultaneous measurement of refractive index, temperature, and strain using etched-core fiber Bragg grating sensors,” IEEE Photon. Technol. Lett.22(19), 1431–1433 (2010).
[CrossRef]

O. Frazao, J. L. Santos, and J. M. Baptista, “Strain and temperature discrimination using concatenated high-birefringence fiber loop mirrors,” IEEE Photon. Technol. Lett.19(16), 1260–1262 (2007).
[CrossRef]

A. Iadicicco, S. Campopiano, A. Cutolo, M. Giordano, and A. Cusano, “Nonuniform thinned fiber Bragg gratings for simultaneous refractive index and temperature measurements,” IEEE Photon. Technol. Lett.17(7), 1495–1497 (2005).
[CrossRef]

T. Zhu, Y. J. Rao, and Q. J. Mo, “Simultaneous measurement of refractive index and temperature using a single ultralong-period fiber grating,” IEEE Photon. Technol. Lett.17(12), 2700–2702 (2005).
[CrossRef]

J. Y. Cho, J. H. Lim, and K. H. Lee; “Optical fiber twist sensor with two orthogonally oriented mechanically induced long-period grating sections,” IEEE Photon. Technol. Lett.17(2), 453–455 (2005).
[CrossRef]

M. J. Kim, Y. H. Kim, G. Mudhana, and B. H. Lee, “Simultaneous measurement of temperature and strain based on double cladding fiber interferometer assisted by fiber grating pair,” IEEE Photon. Technol. Lett.20(15), 1290–1292 (2008).
[CrossRef]

M. N. Ng, Z. Chen, and K. S. Chiang, “Temperature compensation of long-period fiber grating for refractive-index sensing with bending effect,” IEEE Photon. Technol. Lett.14(3), 361–362 (2002).
[CrossRef]

J. Appl. Phys.

D. Solimini, “Loss measurement of organic materials at 6328 Å,” J. Appl. Phys.37(8), 3314–3315 (1966).
[CrossRef]

J. Lightwave Technol.

J. Opt. Soc. Am. B

J. Phys. Chem. Ref. Data

A. H. Harveym, J. J. S. Gallagher, and M. H. L. Sengers, “Revised formulation for the refractive index of water and steam as a function of wavelength, temperature and density,” J. Phys. Chem. Ref. Data27(4), 761–774 (1998).

Opt. Commun.

R. C. Kamikawachi, I. Abe, A. S. Paterno, H. J. Kalinowski, M. Muller, J. L. Pinto, and J. L. Fabris, “Determination of thermo-optic coefficient in liquids with fiber Bragg grating refractometer,” Opt. Commun.281(4), 621–625 (2008).
[CrossRef]

S. Choi and K. Oh, “A new LP02 mode dispersion compensation scheme based on mode converter using hollow optical fiber,” Opt. Commun.222(1-6), 213–219 (2003).
[CrossRef]

S. W. Jeon, T. Y. Kim, W. B. Kwon, and C. S. Park, “All-optical clock extraction from 10-Gbit/s NRZ-DPSK data using modal interference in a two-mode fiber,” Opt. Commun.283(4), 522–527 (2010).
[CrossRef]

Opt. Eng.

A. van Brakel and P. L. Swart, “Temperature-compensated optical fiber Michelson refractometer,” Opt. Eng.44(2), 020504 (2005).
[CrossRef]

Opt. Express

Opt. Fiber Technol.

A. Kumar, R. Jindal, R. K. Varshney, and S. K. Sharma, “A fiber-optic temperature sensor based on LP01-LP02 mode interference,” Opt. Fiber Technol.6(1), 83–90 (2000).
[CrossRef]

Opt. Laser Technol.

D. A. C. Enríquez, A. R. da Cruz, and M. T. M. R. Giraldi, “Hybrid FBG–LPG sensor for surrounding refractive index and temperature simultaneous discrimination,” Opt. Laser Technol.44(4), 981–986 (2012).
[CrossRef]

Opt. Lett.

Sensors (Basel Switzerland)

B. H. Lee, Y. H. Kim, K. S. Park, J. B. Eom, M. J. Kim, B. S. Rho, and H. Y. Choi, “Interferometric fiber optic sensors,” Sensors (Basel Switzerland)12(3), 2467–2486 (2012).
[CrossRef]

Turk. J. Phys.

S. Yaltkaya and R. Aydin, “Experimental investigation of temperature effect on the refractive index of dye laser liquids,” Turk. J. Phys.26, 41–47 (2002).

Other

A. M. Vengsarkar and K. L. Walker, “Article comprising a dispersion-compensating optical waveguide,” U.S. patent 5,448,674 (1995).

T. Yokokawa, T. Kato, T. Fujii, Y. Yamamoto, N. Honma, A. Kataoka, M. Onishi, E. Sasaoka, and K. Okamoto, “Dispersion compensating fiber with large negative dispersion around −300 ps/km/nm and its application to compact module for dispersion adjustment,” Optical Fiber Communications Conference 2003 2, 717–718 (2003).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Structure of the proposed TMF probe; Mode coupling arises at the offset region. The coupled two modes (LP01 (red) and LP02 (blue)) in TMF are reflected at the end surface of the TMF and finally combined into the core mode of the SMF. L is the TMF length.

Fig. 2
Fig. 2

(a) Refractive index profile of the TMF along the radial direction and (b) the effective indices of LP02 and LP11 modes calculated in terms of wavelength. The inset of (a) is a near field image of the coupled modes, which is captured with an infra-red camera at 1550 nm.

Fig. 3
Fig. 3

Measured spectra of the fabricated interferometric probes having TMF lengths of (a) 10 mm and (b) 14 mm, respectively. Sinusoidal fringe patterns are well developed.

Fig. 4
Fig. 4

Measured spectra with (a) temperature variations and (b) SRI variations. As increasing the temperature, the fringe peaks were shifted to the longer wavelength direction with almost no intensity change. With the SRI variations, on the other hands, both the DC level and the fringe contrast were reduced without macroscopic phase change.

Fig. 5
Fig. 5

(a) Fourier domain spectra obtained from inverse Fourier transform (IFFT) of Fig. 4(a) and (b) obtained from IFFT of Fig. 4(b). Intensity level was more quantitatively determined by IFFT compared to wavelength spectra.

Fig. 6
Fig. 6

(a) Wavelength response to the temperature and (b) Intensity variations of the DC and Fourier peak with respect to SRIs. Measured three peak wavelengths were almost linearly shifted with the increasing temperature while intensity variations were well fitted to polynomial curves.

Fig. 7
Fig. 7

(a) Variations in wavelength spectra with the increasing temperature of deionized water (DIW) and (b) their Fourier-transformed spectra. Peak wavelength was gradually shifted and at the same time intensity level was increased.

Fig. 8
Fig. 8

Measured liquid RIs versus their temperature; (a) DIW, (b) ethanol, and (c) Acetone. RIs were reduced with the temperature and their dependencies were different to each other. Simulated relation for DIW is similar to the experimental result.

Fig. 9
Fig. 9

Comparison of wavelength variations for three liquid solutions. They show almost similar slopes.

Tables (1)

Tables Icon

Table 1 Measured Thermo-optic coefficients (TOCs) for three liquid solutions.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

I out (λ)= R 2 ( n sur ) | E in (λ)[1+exp(iϕ)] | 2
ϕ= 2π λ Δz(T) 2π λ 0 [ 1 Δλ λ 0 ]Δz(T)
Δz(T)=Δ n eff (T)2L(T), dΔz dT =2( dΔ n eff dT L+ dL dT Δ n eff )=Δz(α+β)
I out (z)= R 2 ( n sur )[Γ(z)+ 1 2 Γ(z+Δz(T))+ 1 2 Γ(zΔz(T))]

Metrics