Abstract

In this paper, the dynamic mechanical stability of the liquid-filled lenses was studied, in which acoustic excitation was used as broad band perturbation sources and the resultant response of the lens was characterized using non-contact laser Doppler vibrometer. To the best of our knowledge, it’s the first time that the mechanical stability of liquid-filled lenses was experimentally reported. Both experimental results and theoretical analysis demonstrate that the resonance of the lens will shift to higher frequency while the vibration velocity as well as its magnitude will be reduced accordingly when the pressure in the lens cavity is increased to shorten the focal length. All of these results will provide useful references to help researchers design their own liquid-filled lenses for various applications.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. K. Tyson, Adaptive Optics Engineering Handbook (Marcel Dekker, 2000).
  2. . Divoux, O. Cugat, G. Reyne, J. Boussey-Said, and S. Basrour, “Deformable mirror using magnetic membranes: application to adaptive optics in astrophysics,” IEEE Trans. Magn.34(5), 3564–3567 (1998).
    [CrossRef]
  3. E. Dalimier and C. Dainty, “Comparative analysis of deformable mirrors for ocular adaptive optics,” Opt. Express13(11), 4275–4285 (2005).
    [CrossRef] [PubMed]
  4. M. Mujat, R. D. Ferguson, A. H. Patel, N. Iftimia, N. Lue, and D. X. Hammer, “High resolution multimodal clinical ophthalmic imaging system,” Opt. Express18(11), 11607–11621 (2010).
    [CrossRef] [PubMed]
  5. Y. Zhang, S. Poonja, and A. Roorda, “MEMS-based adaptive optics scanning laser ophthalmoscopy,” Opt. Lett.31(9), 1268–1270 (2006).
    [CrossRef] [PubMed]
  6. G. Vdovin and V. Kiyko, “Intracavity control of a 200-W continuous-wave Nd:YAG laser by a micromachined deformable mirror,” Opt. Lett.26(11), 798–800 (2001).
    [CrossRef] [PubMed]
  7. W. Lubeigt, G. Valentine, and D. Burns, “Enhancement of laser performance using an intracavity deformable membrane mirror,” Opt. Express16(15), 10943–10955 (2008).
    [CrossRef] [PubMed]
  8. H. Ren and S. T. Wu, “Adaptive liquid crystal lens with large focal length tunability,” Opt. Express14(23), 11292–11298 (2006).
    [CrossRef] [PubMed]
  9. D. Psaltis, S. R. Quake, and C. Yang, “Developing optofluidic technology through the fusion of microfluidics and optics,” Nature442(7101), 381–386 (2006).
    [CrossRef] [PubMed]
  10. X. F. Zeng and H. R. Jiang, “Polydimethylsiloxane microlens arraya fabricated through liquid-phase photopolymerization and molding,” J. Microelectromech. Syst.17(5), 1210–1217 (2008).
    [CrossRef]
  11. N. Chronis, G. L. Liu, K. H. Jeong, and L. P. Lee, “Tunable liquid-filled microlens array integrated with microfluidic network,” Opt. Express11(19), 2370–2378 (2003).
    [CrossRef] [PubMed]
  12. Y. Hongbin, Z. Guangya, C. F. Siong, L. Feiwen, and W. Shouhua, “A tunable Shack-Hartmann wavefront sensor based on a liquid-filled microlens array,” J. Micromech. Microeng.18(10), 105017 (2008).
    [CrossRef]
  13. H. B. Yu, G. Y. Zhou, F. K. Chau, F. W. Lee, S. H. Wang, and H. M. Leung, “A liquid-filled tunable double-focus microlens,” Opt. Express17(6), 4782–4790 (2009).
    [CrossRef] [PubMed]
  14. H. M. Leung, G. Zhou, H. Yu, F. S. Chau, and A. S. Kumar, “Diamond turning and soft lithography processes for liquid tunable lenses,” J. Micromech. Microeng.20(2), 025021 (2010).
    [CrossRef]
  15. W. Zhang, K. Aljasem, H. Zappe, and A. Seifert, “Completely integrated, thermo-pneumatically tunable microlens,” Opt. Express19(3), 2347–2362 (2011).
    [CrossRef] [PubMed]
  16. H. Yu, G. Zhou, H. M. Leung, and F. S. Chau, “Tunable liquid-filled lens integrated with aspherical surface for spherical aberration compensation,” Opt. Express18(10), 9945–9954 (2010).
    [CrossRef] [PubMed]
  17. P. Waibel, D. Mader, P. Liebetraut, H. Zappe, and A. Seifert, “Chromatic aberration control for tunable all-silicone membrane microlenses,” Opt. Express19(19), 18584–18592 (2011).
    [CrossRef] [PubMed]
  18. D. Y. Zhang, N. Justis, and Y. H. Lo, “Integrated fluidic adaptive zoom lens,” Opt. Lett.29(24), 2855–2857 (2004).
    [CrossRef] [PubMed]
  19. S. Timoshenko and S. Woinowsky-Krieger, Theory of Plates and Shells, 2nd edition (McGraw-Hill, 1959)
  20. E. Ventsel and T. Krauthammer, Thin Plates and Shells (Marcel Dekker, 2001)
  21. Q. Yang, P. Kobrin, C. Seabury, S. Narayanaswamy, and W. Christian, “Mechanical modeling of fluid-driven polymer lenses,” Appl. Opt.47(20), 3658–3668 (2008).
    [CrossRef] [PubMed]
  22. M. Olfatnia, V. R. Singh, T. Xu, J. M. Miao, and L. S. Ong, “Analysis of the vibration modes of piezoelectric circular microdiaphragms,” J. Micromech. Microeng.20(8), 085013 (2010).
    [CrossRef]

2011 (2)

2010 (4)

H. M. Leung, G. Zhou, H. Yu, F. S. Chau, and A. S. Kumar, “Diamond turning and soft lithography processes for liquid tunable lenses,” J. Micromech. Microeng.20(2), 025021 (2010).
[CrossRef]

M. Olfatnia, V. R. Singh, T. Xu, J. M. Miao, and L. S. Ong, “Analysis of the vibration modes of piezoelectric circular microdiaphragms,” J. Micromech. Microeng.20(8), 085013 (2010).
[CrossRef]

H. Yu, G. Zhou, H. M. Leung, and F. S. Chau, “Tunable liquid-filled lens integrated with aspherical surface for spherical aberration compensation,” Opt. Express18(10), 9945–9954 (2010).
[CrossRef] [PubMed]

M. Mujat, R. D. Ferguson, A. H. Patel, N. Iftimia, N. Lue, and D. X. Hammer, “High resolution multimodal clinical ophthalmic imaging system,” Opt. Express18(11), 11607–11621 (2010).
[CrossRef] [PubMed]

2009 (1)

2008 (4)

Q. Yang, P. Kobrin, C. Seabury, S. Narayanaswamy, and W. Christian, “Mechanical modeling of fluid-driven polymer lenses,” Appl. Opt.47(20), 3658–3668 (2008).
[CrossRef] [PubMed]

W. Lubeigt, G. Valentine, and D. Burns, “Enhancement of laser performance using an intracavity deformable membrane mirror,” Opt. Express16(15), 10943–10955 (2008).
[CrossRef] [PubMed]

X. F. Zeng and H. R. Jiang, “Polydimethylsiloxane microlens arraya fabricated through liquid-phase photopolymerization and molding,” J. Microelectromech. Syst.17(5), 1210–1217 (2008).
[CrossRef]

Y. Hongbin, Z. Guangya, C. F. Siong, L. Feiwen, and W. Shouhua, “A tunable Shack-Hartmann wavefront sensor based on a liquid-filled microlens array,” J. Micromech. Microeng.18(10), 105017 (2008).
[CrossRef]

2006 (3)

2005 (1)

2004 (1)

2003 (1)

2001 (1)

1998 (1)

. Divoux, O. Cugat, G. Reyne, J. Boussey-Said, and S. Basrour, “Deformable mirror using magnetic membranes: application to adaptive optics in astrophysics,” IEEE Trans. Magn.34(5), 3564–3567 (1998).
[CrossRef]

Aljasem, K.

Basrour, S.

. Divoux, O. Cugat, G. Reyne, J. Boussey-Said, and S. Basrour, “Deformable mirror using magnetic membranes: application to adaptive optics in astrophysics,” IEEE Trans. Magn.34(5), 3564–3567 (1998).
[CrossRef]

Boussey-Said, J.

. Divoux, O. Cugat, G. Reyne, J. Boussey-Said, and S. Basrour, “Deformable mirror using magnetic membranes: application to adaptive optics in astrophysics,” IEEE Trans. Magn.34(5), 3564–3567 (1998).
[CrossRef]

Burns, D.

Chau, F. K.

Chau, F. S.

H. Yu, G. Zhou, H. M. Leung, and F. S. Chau, “Tunable liquid-filled lens integrated with aspherical surface for spherical aberration compensation,” Opt. Express18(10), 9945–9954 (2010).
[CrossRef] [PubMed]

H. M. Leung, G. Zhou, H. Yu, F. S. Chau, and A. S. Kumar, “Diamond turning and soft lithography processes for liquid tunable lenses,” J. Micromech. Microeng.20(2), 025021 (2010).
[CrossRef]

Christian, W.

Chronis, N.

Cugat, O.

. Divoux, O. Cugat, G. Reyne, J. Boussey-Said, and S. Basrour, “Deformable mirror using magnetic membranes: application to adaptive optics in astrophysics,” IEEE Trans. Magn.34(5), 3564–3567 (1998).
[CrossRef]

Dainty, C.

Dalimier, E.

Divoux, .

. Divoux, O. Cugat, G. Reyne, J. Boussey-Said, and S. Basrour, “Deformable mirror using magnetic membranes: application to adaptive optics in astrophysics,” IEEE Trans. Magn.34(5), 3564–3567 (1998).
[CrossRef]

Feiwen, L.

Y. Hongbin, Z. Guangya, C. F. Siong, L. Feiwen, and W. Shouhua, “A tunable Shack-Hartmann wavefront sensor based on a liquid-filled microlens array,” J. Micromech. Microeng.18(10), 105017 (2008).
[CrossRef]

Ferguson, R. D.

Guangya, Z.

Y. Hongbin, Z. Guangya, C. F. Siong, L. Feiwen, and W. Shouhua, “A tunable Shack-Hartmann wavefront sensor based on a liquid-filled microlens array,” J. Micromech. Microeng.18(10), 105017 (2008).
[CrossRef]

Hammer, D. X.

Hongbin, Y.

Y. Hongbin, Z. Guangya, C. F. Siong, L. Feiwen, and W. Shouhua, “A tunable Shack-Hartmann wavefront sensor based on a liquid-filled microlens array,” J. Micromech. Microeng.18(10), 105017 (2008).
[CrossRef]

Iftimia, N.

Jeong, K. H.

Jiang, H. R.

X. F. Zeng and H. R. Jiang, “Polydimethylsiloxane microlens arraya fabricated through liquid-phase photopolymerization and molding,” J. Microelectromech. Syst.17(5), 1210–1217 (2008).
[CrossRef]

Justis, N.

Kiyko, V.

Kobrin, P.

Kumar, A. S.

H. M. Leung, G. Zhou, H. Yu, F. S. Chau, and A. S. Kumar, “Diamond turning and soft lithography processes for liquid tunable lenses,” J. Micromech. Microeng.20(2), 025021 (2010).
[CrossRef]

Lee, F. W.

Lee, L. P.

Leung, H. M.

Liebetraut, P.

Liu, G. L.

Lo, Y. H.

Lubeigt, W.

Lue, N.

Mader, D.

Miao, J. M.

M. Olfatnia, V. R. Singh, T. Xu, J. M. Miao, and L. S. Ong, “Analysis of the vibration modes of piezoelectric circular microdiaphragms,” J. Micromech. Microeng.20(8), 085013 (2010).
[CrossRef]

Mujat, M.

Narayanaswamy, S.

Olfatnia, M.

M. Olfatnia, V. R. Singh, T. Xu, J. M. Miao, and L. S. Ong, “Analysis of the vibration modes of piezoelectric circular microdiaphragms,” J. Micromech. Microeng.20(8), 085013 (2010).
[CrossRef]

Ong, L. S.

M. Olfatnia, V. R. Singh, T. Xu, J. M. Miao, and L. S. Ong, “Analysis of the vibration modes of piezoelectric circular microdiaphragms,” J. Micromech. Microeng.20(8), 085013 (2010).
[CrossRef]

Patel, A. H.

Poonja, S.

Psaltis, D.

D. Psaltis, S. R. Quake, and C. Yang, “Developing optofluidic technology through the fusion of microfluidics and optics,” Nature442(7101), 381–386 (2006).
[CrossRef] [PubMed]

Quake, S. R.

D. Psaltis, S. R. Quake, and C. Yang, “Developing optofluidic technology through the fusion of microfluidics and optics,” Nature442(7101), 381–386 (2006).
[CrossRef] [PubMed]

Ren, H.

Reyne, G.

. Divoux, O. Cugat, G. Reyne, J. Boussey-Said, and S. Basrour, “Deformable mirror using magnetic membranes: application to adaptive optics in astrophysics,” IEEE Trans. Magn.34(5), 3564–3567 (1998).
[CrossRef]

Roorda, A.

Seabury, C.

Seifert, A.

Shouhua, W.

Y. Hongbin, Z. Guangya, C. F. Siong, L. Feiwen, and W. Shouhua, “A tunable Shack-Hartmann wavefront sensor based on a liquid-filled microlens array,” J. Micromech. Microeng.18(10), 105017 (2008).
[CrossRef]

Singh, V. R.

M. Olfatnia, V. R. Singh, T. Xu, J. M. Miao, and L. S. Ong, “Analysis of the vibration modes of piezoelectric circular microdiaphragms,” J. Micromech. Microeng.20(8), 085013 (2010).
[CrossRef]

Siong, C. F.

Y. Hongbin, Z. Guangya, C. F. Siong, L. Feiwen, and W. Shouhua, “A tunable Shack-Hartmann wavefront sensor based on a liquid-filled microlens array,” J. Micromech. Microeng.18(10), 105017 (2008).
[CrossRef]

Valentine, G.

Vdovin, G.

Waibel, P.

Wang, S. H.

Wu, S. T.

Xu, T.

M. Olfatnia, V. R. Singh, T. Xu, J. M. Miao, and L. S. Ong, “Analysis of the vibration modes of piezoelectric circular microdiaphragms,” J. Micromech. Microeng.20(8), 085013 (2010).
[CrossRef]

Yang, C.

D. Psaltis, S. R. Quake, and C. Yang, “Developing optofluidic technology through the fusion of microfluidics and optics,” Nature442(7101), 381–386 (2006).
[CrossRef] [PubMed]

Yang, Q.

Yu, H.

H. Yu, G. Zhou, H. M. Leung, and F. S. Chau, “Tunable liquid-filled lens integrated with aspherical surface for spherical aberration compensation,” Opt. Express18(10), 9945–9954 (2010).
[CrossRef] [PubMed]

H. M. Leung, G. Zhou, H. Yu, F. S. Chau, and A. S. Kumar, “Diamond turning and soft lithography processes for liquid tunable lenses,” J. Micromech. Microeng.20(2), 025021 (2010).
[CrossRef]

Yu, H. B.

Zappe, H.

Zeng, X. F.

X. F. Zeng and H. R. Jiang, “Polydimethylsiloxane microlens arraya fabricated through liquid-phase photopolymerization and molding,” J. Microelectromech. Syst.17(5), 1210–1217 (2008).
[CrossRef]

Zhang, D. Y.

Zhang, W.

Zhang, Y.

Zhou, G.

H. M. Leung, G. Zhou, H. Yu, F. S. Chau, and A. S. Kumar, “Diamond turning and soft lithography processes for liquid tunable lenses,” J. Micromech. Microeng.20(2), 025021 (2010).
[CrossRef]

H. Yu, G. Zhou, H. M. Leung, and F. S. Chau, “Tunable liquid-filled lens integrated with aspherical surface for spherical aberration compensation,” Opt. Express18(10), 9945–9954 (2010).
[CrossRef] [PubMed]

Zhou, G. Y.

Appl. Opt. (1)

IEEE Trans. Magn. (1)

. Divoux, O. Cugat, G. Reyne, J. Boussey-Said, and S. Basrour, “Deformable mirror using magnetic membranes: application to adaptive optics in astrophysics,” IEEE Trans. Magn.34(5), 3564–3567 (1998).
[CrossRef]

J. Microelectromech. Syst. (1)

X. F. Zeng and H. R. Jiang, “Polydimethylsiloxane microlens arraya fabricated through liquid-phase photopolymerization and molding,” J. Microelectromech. Syst.17(5), 1210–1217 (2008).
[CrossRef]

J. Micromech. Microeng. (3)

Y. Hongbin, Z. Guangya, C. F. Siong, L. Feiwen, and W. Shouhua, “A tunable Shack-Hartmann wavefront sensor based on a liquid-filled microlens array,” J. Micromech. Microeng.18(10), 105017 (2008).
[CrossRef]

H. M. Leung, G. Zhou, H. Yu, F. S. Chau, and A. S. Kumar, “Diamond turning and soft lithography processes for liquid tunable lenses,” J. Micromech. Microeng.20(2), 025021 (2010).
[CrossRef]

M. Olfatnia, V. R. Singh, T. Xu, J. M. Miao, and L. S. Ong, “Analysis of the vibration modes of piezoelectric circular microdiaphragms,” J. Micromech. Microeng.20(8), 085013 (2010).
[CrossRef]

Nature (1)

D. Psaltis, S. R. Quake, and C. Yang, “Developing optofluidic technology through the fusion of microfluidics and optics,” Nature442(7101), 381–386 (2006).
[CrossRef] [PubMed]

Opt. Express (9)

W. Lubeigt, G. Valentine, and D. Burns, “Enhancement of laser performance using an intracavity deformable membrane mirror,” Opt. Express16(15), 10943–10955 (2008).
[CrossRef] [PubMed]

H. B. Yu, G. Y. Zhou, F. K. Chau, F. W. Lee, S. H. Wang, and H. M. Leung, “A liquid-filled tunable double-focus microlens,” Opt. Express17(6), 4782–4790 (2009).
[CrossRef] [PubMed]

H. Yu, G. Zhou, H. M. Leung, and F. S. Chau, “Tunable liquid-filled lens integrated with aspherical surface for spherical aberration compensation,” Opt. Express18(10), 9945–9954 (2010).
[CrossRef] [PubMed]

M. Mujat, R. D. Ferguson, A. H. Patel, N. Iftimia, N. Lue, and D. X. Hammer, “High resolution multimodal clinical ophthalmic imaging system,” Opt. Express18(11), 11607–11621 (2010).
[CrossRef] [PubMed]

W. Zhang, K. Aljasem, H. Zappe, and A. Seifert, “Completely integrated, thermo-pneumatically tunable microlens,” Opt. Express19(3), 2347–2362 (2011).
[CrossRef] [PubMed]

P. Waibel, D. Mader, P. Liebetraut, H. Zappe, and A. Seifert, “Chromatic aberration control for tunable all-silicone membrane microlenses,” Opt. Express19(19), 18584–18592 (2011).
[CrossRef] [PubMed]

N. Chronis, G. L. Liu, K. H. Jeong, and L. P. Lee, “Tunable liquid-filled microlens array integrated with microfluidic network,” Opt. Express11(19), 2370–2378 (2003).
[CrossRef] [PubMed]

E. Dalimier and C. Dainty, “Comparative analysis of deformable mirrors for ocular adaptive optics,” Opt. Express13(11), 4275–4285 (2005).
[CrossRef] [PubMed]

H. Ren and S. T. Wu, “Adaptive liquid crystal lens with large focal length tunability,” Opt. Express14(23), 11292–11298 (2006).
[CrossRef] [PubMed]

Opt. Lett. (3)

Other (3)

S. Timoshenko and S. Woinowsky-Krieger, Theory of Plates and Shells, 2nd edition (McGraw-Hill, 1959)

E. Ventsel and T. Krauthammer, Thin Plates and Shells (Marcel Dekker, 2001)

R. K. Tyson, Adaptive Optics Engineering Handbook (Marcel Dekker, 2000).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Schematic of the process flow for fabricating liquid-filled lens.

Fig. 2
Fig. 2

Schematic of testing setup.

Fig. 3
Fig. 3

Experiment results about the responses of the liquid-filled lens to external acoustic excitations. (a) and (b) are the frequency response spectrums of the vibration amplitude of the lens under exposure to different acoustic perturbation levels when its intracavity pressures are 5603Pa (resultant focal length of 18mm) and 6821Pa (resultant focal length of 17.28mm), respectively. (c) is the variation of the frequency response spectrum of the vibration amplitude of the lens with respect to the intracavity pressure in the lens. (d) is the partially enlarged region from the whole frequency response spectrum, which demonstrates the vibration of lens membrane.(e) is the frequency shift as a function of the pressure in lens cavity. (*Insets in (a) and (b) show the variation of the vibration amplitude of the 1st peak as a function of acoustic level).

Fig. 4
Fig. 4

Theoretical and measured frequency shift as a function of the pressure in lens cavity.

Tables (1)

Tables Icon

Table 1 Designed structure parameters of liquid-filled lens

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

Δf=2V/λ
dOPD dt = 2ndx(t) dt =2n2πfXsin(φ2πft)=2VV=n2πfX
X(f)= v r (f) 2πf = v(f) 2πfn
σ E P intra 2 r 2 h 2 3
f mn =α μ mn 2πr σ ρ
δ ( 1υ ) P acous r 2 / ( 4σhζ )

Metrics