Abstract

This work reports on the implementation of different absorption micro-filters based on a dye-doped hybrid organic-inorganic xerogel polymeric material synthesized by the sol-gel process. Microstructures containing eight different filter widths were fabricated in polydimethylsiloxane (PDMS), bonded to glass substrates and filled with the corresponding dye doped polymeric material by a soft lithography approach. The filtering capacity as a function of dye concentration and filter width was studied and revealed a linear dependence with both parameters, as expected according to the Beer-Lambert law. Zero passband transmittance values and relatively sharp stopband regions were achieved with all the filters, also showing rejection levels between −6 dB and −55 dB. Finally, such filters were monolithically integrated into a disposable fluorescence-based photonic lab-on-a-chip (PhLoC) approach. Calibration curves carried out with a model fluorophore target analyte showed an over two-fold increase in sensitivity and a thirty-fold decrease of the limit of detection (LOD) compared with the values recorded using the same PhLoC system but without the polymeric filter structure. The results presented herein clearly indicate the feasibility of these xerogel-based absorbance filtering structures for being applied as low-cost optical components that can be easily incorporated into disposable fluorescence-based photonic lab on a chip systems.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. M. Borisov and O. S. Wolfbeis, “Optical biosensors,” Chem. Rev. 108(2), 423–461 (2008).
    [CrossRef] [PubMed]
  2. M. Dandin, P. Abshire, and E. Smela, “Optical filtering technologies for integrated fluorescence sensors,” Lab Chip 7(8), 955–977 (2007).
    [CrossRef] [PubMed]
  3. H. A. Macleod, “Thin Film Optical Filters” (Institute of Physics Publishing, London, 2001)
  4. M. L. Chabinyc, D. T. Chiu, J. C. McDonald, A. D. Stroock, J. F. Christian, A. M. Karger, and G. M. Whitesides, “An integrated fluorescence detection system in poly(dimethylsiloxane) for microfluidic applications,” Anal. Chem. 73(18), 4491–4498 (2001).
    [CrossRef] [PubMed]
  5. A. H. Mahan, R. Biswas, L. M. Gedvilas, D. L. Williamson, and B. C. Pan, “On the influence of short and medium range order on the material band gap in hydrogenated amorphous silicon,” J. Appl. Phys. 96(7), 3818–3826 (2004).
    [CrossRef]
  6. O. Hofmann, X. Wang, A. Cornwell, S. Beecher, A. Raja, D. D. Bradley, A. J. Demello, and J. C. Demello, “Monolithically integrated dye-doped PDMS long-pass filters for disposable on-chip fluorescence detection,” Lab Chip 6(8), 981–987 (2006).
    [CrossRef] [PubMed]
  7. A. Llobera, S. Demming, H. N. Joensson, J. Vila-Planas, H. Andersson-Svahn, and S. Büttgenbach, “Monolithic PDMS passband filters for fluorescence detection,” Lab Chip 10(15), 1987–1992 (2010).
    [CrossRef] [PubMed]
  8. M. Yamazaki, O. Hofmann, G. Ryu, L. Xiaoe, T. K. Lee, A. J. deMello, and J. C. deMello, “Non-emissive colour filters for fluorescence detection,” Lab Chip 11(7), 1228–1233 (2011).
    [CrossRef] [PubMed]
  9. C. Richard, A. Renaudin, V. Aimez, and P. G. Charette, “An integrated hybrid interference and absorption filter for fluorescence detection in lab-on-a-chip devices,” Lab Chip 9(10), 1371–1376 (2009).
    [CrossRef] [PubMed]
  10. L. L. Hench and J. K. West, “The sol-gel process,” Chem. Rev. 90(1), 33–72 (1990).
    [CrossRef]
  11. J. Y. Wen and G. L. Wilkes, “Organic/inorganic hybrid network materials by the sol-gel approach,” Chem. Mater. 8(8), 1667–1681 (1996).
    [CrossRef]
  12. C. Sanchez and F. Ribot, “Design of hybrid organic-inorganic materials synthesized via sol-gel chemistry,” New J. Chem. 18, 1007–1047 (1994).
  13. B. Lebeau and P. Innocenzi, “Hybrid materials for optics and photonics,” Chem. Soc. Rev. 40(2), 886–906 (2011).
    [CrossRef] [PubMed]
  14. A. Llobera, V. J. Cadarso, E. Carregal-Romero, J. Brugger, C. Domínguez, and C. Fernández-Sánchez, “Fluorophore-doped xerogelantiresonant reflecting optical waveguides,” Opt. Express 19(6), 5026–5039 (2011).
    [CrossRef] [PubMed]
  15. N. Tohge, M. Hasegawa, N. Noma, K. Kintaka, and J. Nishii, “Fabrication of two-dimensional gratings using photosensitive gel films and their characterization,” J. Sol-Gel Sci. Technol. 26(1/3), 903–907 (2003).
    [CrossRef]
  16. X. H. Zhang, W. Que, C. Y. Jia, J. X. Hu, and W. G. Liu, “Fabrication of micro-lens arrays built in photosensitive hybrid films by UV-cured imprinting technique,” J. Sol-Gel Sci. Technol. 60(1), 71–80 (2011).
    [CrossRef]
  17. C. Fernández-Sánchez, V. J. Cadarso, M. Darder, C. Dominguez, and A. Llobera, “Patterning high-aspect-ratio sol-gel structures by microtransfer molding,” Chem. Mater. 20(8), 2662–2668 (2008).
    [CrossRef]
  18. C. Sanchez, P. Belleville, M. Popall, and L. Nicole, “Applications of advanced hybrid organic-inorganic nanomaterials: from laboratory to market,” Chem. Soc. Rev. 40(2), 696–753 (2011).
    [CrossRef] [PubMed]
  19. Y. N. Xia and G. M. Whitesides, “Soft lithography,” Angew. Chem. Int. Ed. 37(5), 550–575 (1998).
    [CrossRef]
  20. D. Avnir, D. Levy, and R. Reisfeld, “The nature of the silica cage as reflected by spectral changes and enhanced photostability of trapped Rhodamine-6G,” J. Phys. Chem. 88(24), 5956–5959 (1984).
    [CrossRef]
  21. G. Schottner, “Hybrid sol-gel-derived polymers: Applications of multifunctional materials,” Chem. Mater. 13(10), 3422–3435 (2001).
    [CrossRef]
  22. M. Zayat, R. Pardo, E. Castellón, L. Torres, D. Almendro, P. G. Parejo, A. Álvarez, T. Belenguer, S. García-Revilla, R. Balda, J. Fernández, and D. Levy, “Optical and Electro-optical Materials Prepared by the Sol-Gel Method,” Adv. Mater. (Deerfield Beach Fla.) 23(44), 5318–5323 (2011).
    [CrossRef]
  23. P. Escribano, B. Julian-Lopez, J. Planelles-Arago, E. Cordoncillo, B. Viana, and C. Sanchez, “Photonic and anobiophotonic properties of luminescent lanthanide-doped hybrid organic-inorganic materials,” J. Mater. Chem. 18(1), 23–40 (2007).
    [CrossRef]
  24. R. Pardo, M. Zayat, and D. Levy, “Photochromic organic-inorganic hybrid materials,” Chem. Soc. Rev. 40(2), 672–687 (2011).
    [CrossRef] [PubMed]
  25. A. Llobera, R. Wilke, and S. Büttgenbach, “Poly(dimethylsiloxane) hollow Abbe prism with microlenses for detection based on absorption and refractive index shift,” Lab Chip 4(1), 24–27 (2004).
    [CrossRef] [PubMed]
  26. A. Llobera, S. Demming, R. Wilke, and S. Büttgenbach, “Multiple internal reflection poly(dimethylsiloxane) systems for optical sensing,” Lab Chip 7(11), 1560–1566 (2007).
    [CrossRef] [PubMed]
  27. B. H. Jo, L. M. Van Lerberghe, K. M. Motsegood, and D. J. Beebe, “Three-dimensional micro-channel fabrication in polydimethylsiloxane (PDMS) elastomer,” J. Microelectromech. Syst. 9(1), 76–81 (2000).
    [CrossRef]
  28. R. Ulrich and R. Torge, “Measurement of thin film parameters with a prism coupler,” Appl. Opt. 12(12), 2901–2908 (1973).
    [CrossRef] [PubMed]
  29. R. H. Glaser, G. L. Wilkes, and C. E. Bronnimann, “Solid-state 29Si NMR of TEOS-based multifunctional sol-gel materials,” J. Non-Cryst. Solids 113(1), 73–87 (1989).
    [CrossRef]
  30. P. Lacan, C. Guizard, and L. Cot, “Chemical and rheological investigations of the sol-gel transition in organically-modified siloxanes,” J. Sol-Gel Sci. Technol. 4(2), 151–162 (1995).
    [CrossRef]
  31. A. Llobera, R. Wilke, and S. Büttgenbach, “Optimization of poly(dimethylsiloxane) hollow prisms for optical sensing,” Lab Chip 5(5), 506–511 (2005).
    [CrossRef] [PubMed]
  32. V. Thomsen, D. Shatzlein, and D. Mercuro, “Limits of Detection in Spectroscopy,” Spectroscopy 18, 112–114 (2003).
  33. A. Pais, A. Banerjee, D. Klotzkin, and I. Papautsky, “High-sensitivity, disposable lab-on-a-chip with thin-film organic electronics for fluorescence detection,” Lab Chip 8(5), 794–800 (2008).
    [CrossRef] [PubMed]
  34. B. Yao, G. Luo, L. Wang, Y. Gao, G. Lei, K. Ren, L. Chen, Y. Wang, Y. Hu, and Y. Qiu, “A microfluidic device using a green organic light emitting diode as an integrated excitation source,” Lab Chip 5(10), 1041–1047 (2005).
    [CrossRef] [PubMed]

2011 (7)

M. Yamazaki, O. Hofmann, G. Ryu, L. Xiaoe, T. K. Lee, A. J. deMello, and J. C. deMello, “Non-emissive colour filters for fluorescence detection,” Lab Chip 11(7), 1228–1233 (2011).
[CrossRef] [PubMed]

B. Lebeau and P. Innocenzi, “Hybrid materials for optics and photonics,” Chem. Soc. Rev. 40(2), 886–906 (2011).
[CrossRef] [PubMed]

X. H. Zhang, W. Que, C. Y. Jia, J. X. Hu, and W. G. Liu, “Fabrication of micro-lens arrays built in photosensitive hybrid films by UV-cured imprinting technique,” J. Sol-Gel Sci. Technol. 60(1), 71–80 (2011).
[CrossRef]

C. Sanchez, P. Belleville, M. Popall, and L. Nicole, “Applications of advanced hybrid organic-inorganic nanomaterials: from laboratory to market,” Chem. Soc. Rev. 40(2), 696–753 (2011).
[CrossRef] [PubMed]

M. Zayat, R. Pardo, E. Castellón, L. Torres, D. Almendro, P. G. Parejo, A. Álvarez, T. Belenguer, S. García-Revilla, R. Balda, J. Fernández, and D. Levy, “Optical and Electro-optical Materials Prepared by the Sol-Gel Method,” Adv. Mater. (Deerfield Beach Fla.) 23(44), 5318–5323 (2011).
[CrossRef]

R. Pardo, M. Zayat, and D. Levy, “Photochromic organic-inorganic hybrid materials,” Chem. Soc. Rev. 40(2), 672–687 (2011).
[CrossRef] [PubMed]

A. Llobera, V. J. Cadarso, E. Carregal-Romero, J. Brugger, C. Domínguez, and C. Fernández-Sánchez, “Fluorophore-doped xerogelantiresonant reflecting optical waveguides,” Opt. Express 19(6), 5026–5039 (2011).
[CrossRef] [PubMed]

2010 (1)

A. Llobera, S. Demming, H. N. Joensson, J. Vila-Planas, H. Andersson-Svahn, and S. Büttgenbach, “Monolithic PDMS passband filters for fluorescence detection,” Lab Chip 10(15), 1987–1992 (2010).
[CrossRef] [PubMed]

2009 (1)

C. Richard, A. Renaudin, V. Aimez, and P. G. Charette, “An integrated hybrid interference and absorption filter for fluorescence detection in lab-on-a-chip devices,” Lab Chip 9(10), 1371–1376 (2009).
[CrossRef] [PubMed]

2008 (3)

S. M. Borisov and O. S. Wolfbeis, “Optical biosensors,” Chem. Rev. 108(2), 423–461 (2008).
[CrossRef] [PubMed]

C. Fernández-Sánchez, V. J. Cadarso, M. Darder, C. Dominguez, and A. Llobera, “Patterning high-aspect-ratio sol-gel structures by microtransfer molding,” Chem. Mater. 20(8), 2662–2668 (2008).
[CrossRef]

A. Pais, A. Banerjee, D. Klotzkin, and I. Papautsky, “High-sensitivity, disposable lab-on-a-chip with thin-film organic electronics for fluorescence detection,” Lab Chip 8(5), 794–800 (2008).
[CrossRef] [PubMed]

2007 (3)

P. Escribano, B. Julian-Lopez, J. Planelles-Arago, E. Cordoncillo, B. Viana, and C. Sanchez, “Photonic and anobiophotonic properties of luminescent lanthanide-doped hybrid organic-inorganic materials,” J. Mater. Chem. 18(1), 23–40 (2007).
[CrossRef]

A. Llobera, S. Demming, R. Wilke, and S. Büttgenbach, “Multiple internal reflection poly(dimethylsiloxane) systems for optical sensing,” Lab Chip 7(11), 1560–1566 (2007).
[CrossRef] [PubMed]

M. Dandin, P. Abshire, and E. Smela, “Optical filtering technologies for integrated fluorescence sensors,” Lab Chip 7(8), 955–977 (2007).
[CrossRef] [PubMed]

2006 (1)

O. Hofmann, X. Wang, A. Cornwell, S. Beecher, A. Raja, D. D. Bradley, A. J. Demello, and J. C. Demello, “Monolithically integrated dye-doped PDMS long-pass filters for disposable on-chip fluorescence detection,” Lab Chip 6(8), 981–987 (2006).
[CrossRef] [PubMed]

2005 (2)

A. Llobera, R. Wilke, and S. Büttgenbach, “Optimization of poly(dimethylsiloxane) hollow prisms for optical sensing,” Lab Chip 5(5), 506–511 (2005).
[CrossRef] [PubMed]

B. Yao, G. Luo, L. Wang, Y. Gao, G. Lei, K. Ren, L. Chen, Y. Wang, Y. Hu, and Y. Qiu, “A microfluidic device using a green organic light emitting diode as an integrated excitation source,” Lab Chip 5(10), 1041–1047 (2005).
[CrossRef] [PubMed]

2004 (2)

A. Llobera, R. Wilke, and S. Büttgenbach, “Poly(dimethylsiloxane) hollow Abbe prism with microlenses for detection based on absorption and refractive index shift,” Lab Chip 4(1), 24–27 (2004).
[CrossRef] [PubMed]

A. H. Mahan, R. Biswas, L. M. Gedvilas, D. L. Williamson, and B. C. Pan, “On the influence of short and medium range order on the material band gap in hydrogenated amorphous silicon,” J. Appl. Phys. 96(7), 3818–3826 (2004).
[CrossRef]

2003 (2)

N. Tohge, M. Hasegawa, N. Noma, K. Kintaka, and J. Nishii, “Fabrication of two-dimensional gratings using photosensitive gel films and their characterization,” J. Sol-Gel Sci. Technol. 26(1/3), 903–907 (2003).
[CrossRef]

V. Thomsen, D. Shatzlein, and D. Mercuro, “Limits of Detection in Spectroscopy,” Spectroscopy 18, 112–114 (2003).

2001 (2)

G. Schottner, “Hybrid sol-gel-derived polymers: Applications of multifunctional materials,” Chem. Mater. 13(10), 3422–3435 (2001).
[CrossRef]

M. L. Chabinyc, D. T. Chiu, J. C. McDonald, A. D. Stroock, J. F. Christian, A. M. Karger, and G. M. Whitesides, “An integrated fluorescence detection system in poly(dimethylsiloxane) for microfluidic applications,” Anal. Chem. 73(18), 4491–4498 (2001).
[CrossRef] [PubMed]

2000 (1)

B. H. Jo, L. M. Van Lerberghe, K. M. Motsegood, and D. J. Beebe, “Three-dimensional micro-channel fabrication in polydimethylsiloxane (PDMS) elastomer,” J. Microelectromech. Syst. 9(1), 76–81 (2000).
[CrossRef]

1998 (1)

Y. N. Xia and G. M. Whitesides, “Soft lithography,” Angew. Chem. Int. Ed. 37(5), 550–575 (1998).
[CrossRef]

1996 (1)

J. Y. Wen and G. L. Wilkes, “Organic/inorganic hybrid network materials by the sol-gel approach,” Chem. Mater. 8(8), 1667–1681 (1996).
[CrossRef]

1995 (1)

P. Lacan, C. Guizard, and L. Cot, “Chemical and rheological investigations of the sol-gel transition in organically-modified siloxanes,” J. Sol-Gel Sci. Technol. 4(2), 151–162 (1995).
[CrossRef]

1994 (1)

C. Sanchez and F. Ribot, “Design of hybrid organic-inorganic materials synthesized via sol-gel chemistry,” New J. Chem. 18, 1007–1047 (1994).

1990 (1)

L. L. Hench and J. K. West, “The sol-gel process,” Chem. Rev. 90(1), 33–72 (1990).
[CrossRef]

1989 (1)

R. H. Glaser, G. L. Wilkes, and C. E. Bronnimann, “Solid-state 29Si NMR of TEOS-based multifunctional sol-gel materials,” J. Non-Cryst. Solids 113(1), 73–87 (1989).
[CrossRef]

1984 (1)

D. Avnir, D. Levy, and R. Reisfeld, “The nature of the silica cage as reflected by spectral changes and enhanced photostability of trapped Rhodamine-6G,” J. Phys. Chem. 88(24), 5956–5959 (1984).
[CrossRef]

1973 (1)

Abshire, P.

M. Dandin, P. Abshire, and E. Smela, “Optical filtering technologies for integrated fluorescence sensors,” Lab Chip 7(8), 955–977 (2007).
[CrossRef] [PubMed]

Aimez, V.

C. Richard, A. Renaudin, V. Aimez, and P. G. Charette, “An integrated hybrid interference and absorption filter for fluorescence detection in lab-on-a-chip devices,” Lab Chip 9(10), 1371–1376 (2009).
[CrossRef] [PubMed]

Almendro, D.

M. Zayat, R. Pardo, E. Castellón, L. Torres, D. Almendro, P. G. Parejo, A. Álvarez, T. Belenguer, S. García-Revilla, R. Balda, J. Fernández, and D. Levy, “Optical and Electro-optical Materials Prepared by the Sol-Gel Method,” Adv. Mater. (Deerfield Beach Fla.) 23(44), 5318–5323 (2011).
[CrossRef]

Álvarez, A.

M. Zayat, R. Pardo, E. Castellón, L. Torres, D. Almendro, P. G. Parejo, A. Álvarez, T. Belenguer, S. García-Revilla, R. Balda, J. Fernández, and D. Levy, “Optical and Electro-optical Materials Prepared by the Sol-Gel Method,” Adv. Mater. (Deerfield Beach Fla.) 23(44), 5318–5323 (2011).
[CrossRef]

Andersson-Svahn, H.

A. Llobera, S. Demming, H. N. Joensson, J. Vila-Planas, H. Andersson-Svahn, and S. Büttgenbach, “Monolithic PDMS passband filters for fluorescence detection,” Lab Chip 10(15), 1987–1992 (2010).
[CrossRef] [PubMed]

Avnir, D.

D. Avnir, D. Levy, and R. Reisfeld, “The nature of the silica cage as reflected by spectral changes and enhanced photostability of trapped Rhodamine-6G,” J. Phys. Chem. 88(24), 5956–5959 (1984).
[CrossRef]

Balda, R.

M. Zayat, R. Pardo, E. Castellón, L. Torres, D. Almendro, P. G. Parejo, A. Álvarez, T. Belenguer, S. García-Revilla, R. Balda, J. Fernández, and D. Levy, “Optical and Electro-optical Materials Prepared by the Sol-Gel Method,” Adv. Mater. (Deerfield Beach Fla.) 23(44), 5318–5323 (2011).
[CrossRef]

Banerjee, A.

A. Pais, A. Banerjee, D. Klotzkin, and I. Papautsky, “High-sensitivity, disposable lab-on-a-chip with thin-film organic electronics for fluorescence detection,” Lab Chip 8(5), 794–800 (2008).
[CrossRef] [PubMed]

Beebe, D. J.

B. H. Jo, L. M. Van Lerberghe, K. M. Motsegood, and D. J. Beebe, “Three-dimensional micro-channel fabrication in polydimethylsiloxane (PDMS) elastomer,” J. Microelectromech. Syst. 9(1), 76–81 (2000).
[CrossRef]

Beecher, S.

O. Hofmann, X. Wang, A. Cornwell, S. Beecher, A. Raja, D. D. Bradley, A. J. Demello, and J. C. Demello, “Monolithically integrated dye-doped PDMS long-pass filters for disposable on-chip fluorescence detection,” Lab Chip 6(8), 981–987 (2006).
[CrossRef] [PubMed]

Belenguer, T.

M. Zayat, R. Pardo, E. Castellón, L. Torres, D. Almendro, P. G. Parejo, A. Álvarez, T. Belenguer, S. García-Revilla, R. Balda, J. Fernández, and D. Levy, “Optical and Electro-optical Materials Prepared by the Sol-Gel Method,” Adv. Mater. (Deerfield Beach Fla.) 23(44), 5318–5323 (2011).
[CrossRef]

Belleville, P.

C. Sanchez, P. Belleville, M. Popall, and L. Nicole, “Applications of advanced hybrid organic-inorganic nanomaterials: from laboratory to market,” Chem. Soc. Rev. 40(2), 696–753 (2011).
[CrossRef] [PubMed]

Biswas, R.

A. H. Mahan, R. Biswas, L. M. Gedvilas, D. L. Williamson, and B. C. Pan, “On the influence of short and medium range order on the material band gap in hydrogenated amorphous silicon,” J. Appl. Phys. 96(7), 3818–3826 (2004).
[CrossRef]

Borisov, S. M.

S. M. Borisov and O. S. Wolfbeis, “Optical biosensors,” Chem. Rev. 108(2), 423–461 (2008).
[CrossRef] [PubMed]

Bradley, D. D.

O. Hofmann, X. Wang, A. Cornwell, S. Beecher, A. Raja, D. D. Bradley, A. J. Demello, and J. C. Demello, “Monolithically integrated dye-doped PDMS long-pass filters for disposable on-chip fluorescence detection,” Lab Chip 6(8), 981–987 (2006).
[CrossRef] [PubMed]

Bronnimann, C. E.

R. H. Glaser, G. L. Wilkes, and C. E. Bronnimann, “Solid-state 29Si NMR of TEOS-based multifunctional sol-gel materials,” J. Non-Cryst. Solids 113(1), 73–87 (1989).
[CrossRef]

Brugger, J.

Büttgenbach, S.

A. Llobera, S. Demming, H. N. Joensson, J. Vila-Planas, H. Andersson-Svahn, and S. Büttgenbach, “Monolithic PDMS passband filters for fluorescence detection,” Lab Chip 10(15), 1987–1992 (2010).
[CrossRef] [PubMed]

A. Llobera, S. Demming, R. Wilke, and S. Büttgenbach, “Multiple internal reflection poly(dimethylsiloxane) systems for optical sensing,” Lab Chip 7(11), 1560–1566 (2007).
[CrossRef] [PubMed]

A. Llobera, R. Wilke, and S. Büttgenbach, “Optimization of poly(dimethylsiloxane) hollow prisms for optical sensing,” Lab Chip 5(5), 506–511 (2005).
[CrossRef] [PubMed]

A. Llobera, R. Wilke, and S. Büttgenbach, “Poly(dimethylsiloxane) hollow Abbe prism with microlenses for detection based on absorption and refractive index shift,” Lab Chip 4(1), 24–27 (2004).
[CrossRef] [PubMed]

Cadarso, V. J.

A. Llobera, V. J. Cadarso, E. Carregal-Romero, J. Brugger, C. Domínguez, and C. Fernández-Sánchez, “Fluorophore-doped xerogelantiresonant reflecting optical waveguides,” Opt. Express 19(6), 5026–5039 (2011).
[CrossRef] [PubMed]

C. Fernández-Sánchez, V. J. Cadarso, M. Darder, C. Dominguez, and A. Llobera, “Patterning high-aspect-ratio sol-gel structures by microtransfer molding,” Chem. Mater. 20(8), 2662–2668 (2008).
[CrossRef]

Carregal-Romero, E.

Castellón, E.

M. Zayat, R. Pardo, E. Castellón, L. Torres, D. Almendro, P. G. Parejo, A. Álvarez, T. Belenguer, S. García-Revilla, R. Balda, J. Fernández, and D. Levy, “Optical and Electro-optical Materials Prepared by the Sol-Gel Method,” Adv. Mater. (Deerfield Beach Fla.) 23(44), 5318–5323 (2011).
[CrossRef]

Chabinyc, M. L.

M. L. Chabinyc, D. T. Chiu, J. C. McDonald, A. D. Stroock, J. F. Christian, A. M. Karger, and G. M. Whitesides, “An integrated fluorescence detection system in poly(dimethylsiloxane) for microfluidic applications,” Anal. Chem. 73(18), 4491–4498 (2001).
[CrossRef] [PubMed]

Charette, P. G.

C. Richard, A. Renaudin, V. Aimez, and P. G. Charette, “An integrated hybrid interference and absorption filter for fluorescence detection in lab-on-a-chip devices,” Lab Chip 9(10), 1371–1376 (2009).
[CrossRef] [PubMed]

Chen, L.

B. Yao, G. Luo, L. Wang, Y. Gao, G. Lei, K. Ren, L. Chen, Y. Wang, Y. Hu, and Y. Qiu, “A microfluidic device using a green organic light emitting diode as an integrated excitation source,” Lab Chip 5(10), 1041–1047 (2005).
[CrossRef] [PubMed]

Chiu, D. T.

M. L. Chabinyc, D. T. Chiu, J. C. McDonald, A. D. Stroock, J. F. Christian, A. M. Karger, and G. M. Whitesides, “An integrated fluorescence detection system in poly(dimethylsiloxane) for microfluidic applications,” Anal. Chem. 73(18), 4491–4498 (2001).
[CrossRef] [PubMed]

Christian, J. F.

M. L. Chabinyc, D. T. Chiu, J. C. McDonald, A. D. Stroock, J. F. Christian, A. M. Karger, and G. M. Whitesides, “An integrated fluorescence detection system in poly(dimethylsiloxane) for microfluidic applications,” Anal. Chem. 73(18), 4491–4498 (2001).
[CrossRef] [PubMed]

Cordoncillo, E.

P. Escribano, B. Julian-Lopez, J. Planelles-Arago, E. Cordoncillo, B. Viana, and C. Sanchez, “Photonic and anobiophotonic properties of luminescent lanthanide-doped hybrid organic-inorganic materials,” J. Mater. Chem. 18(1), 23–40 (2007).
[CrossRef]

Cornwell, A.

O. Hofmann, X. Wang, A. Cornwell, S. Beecher, A. Raja, D. D. Bradley, A. J. Demello, and J. C. Demello, “Monolithically integrated dye-doped PDMS long-pass filters for disposable on-chip fluorescence detection,” Lab Chip 6(8), 981–987 (2006).
[CrossRef] [PubMed]

Cot, L.

P. Lacan, C. Guizard, and L. Cot, “Chemical and rheological investigations of the sol-gel transition in organically-modified siloxanes,” J. Sol-Gel Sci. Technol. 4(2), 151–162 (1995).
[CrossRef]

Dandin, M.

M. Dandin, P. Abshire, and E. Smela, “Optical filtering technologies for integrated fluorescence sensors,” Lab Chip 7(8), 955–977 (2007).
[CrossRef] [PubMed]

Darder, M.

C. Fernández-Sánchez, V. J. Cadarso, M. Darder, C. Dominguez, and A. Llobera, “Patterning high-aspect-ratio sol-gel structures by microtransfer molding,” Chem. Mater. 20(8), 2662–2668 (2008).
[CrossRef]

deMello, A. J.

M. Yamazaki, O. Hofmann, G. Ryu, L. Xiaoe, T. K. Lee, A. J. deMello, and J. C. deMello, “Non-emissive colour filters for fluorescence detection,” Lab Chip 11(7), 1228–1233 (2011).
[CrossRef] [PubMed]

O. Hofmann, X. Wang, A. Cornwell, S. Beecher, A. Raja, D. D. Bradley, A. J. Demello, and J. C. Demello, “Monolithically integrated dye-doped PDMS long-pass filters for disposable on-chip fluorescence detection,” Lab Chip 6(8), 981–987 (2006).
[CrossRef] [PubMed]

deMello, J. C.

M. Yamazaki, O. Hofmann, G. Ryu, L. Xiaoe, T. K. Lee, A. J. deMello, and J. C. deMello, “Non-emissive colour filters for fluorescence detection,” Lab Chip 11(7), 1228–1233 (2011).
[CrossRef] [PubMed]

O. Hofmann, X. Wang, A. Cornwell, S. Beecher, A. Raja, D. D. Bradley, A. J. Demello, and J. C. Demello, “Monolithically integrated dye-doped PDMS long-pass filters for disposable on-chip fluorescence detection,” Lab Chip 6(8), 981–987 (2006).
[CrossRef] [PubMed]

Demming, S.

A. Llobera, S. Demming, H. N. Joensson, J. Vila-Planas, H. Andersson-Svahn, and S. Büttgenbach, “Monolithic PDMS passband filters for fluorescence detection,” Lab Chip 10(15), 1987–1992 (2010).
[CrossRef] [PubMed]

A. Llobera, S. Demming, R. Wilke, and S. Büttgenbach, “Multiple internal reflection poly(dimethylsiloxane) systems for optical sensing,” Lab Chip 7(11), 1560–1566 (2007).
[CrossRef] [PubMed]

Dominguez, C.

C. Fernández-Sánchez, V. J. Cadarso, M. Darder, C. Dominguez, and A. Llobera, “Patterning high-aspect-ratio sol-gel structures by microtransfer molding,” Chem. Mater. 20(8), 2662–2668 (2008).
[CrossRef]

Domínguez, C.

Escribano, P.

P. Escribano, B. Julian-Lopez, J. Planelles-Arago, E. Cordoncillo, B. Viana, and C. Sanchez, “Photonic and anobiophotonic properties of luminescent lanthanide-doped hybrid organic-inorganic materials,” J. Mater. Chem. 18(1), 23–40 (2007).
[CrossRef]

Fernández, J.

M. Zayat, R. Pardo, E. Castellón, L. Torres, D. Almendro, P. G. Parejo, A. Álvarez, T. Belenguer, S. García-Revilla, R. Balda, J. Fernández, and D. Levy, “Optical and Electro-optical Materials Prepared by the Sol-Gel Method,” Adv. Mater. (Deerfield Beach Fla.) 23(44), 5318–5323 (2011).
[CrossRef]

Fernández-Sánchez, C.

A. Llobera, V. J. Cadarso, E. Carregal-Romero, J. Brugger, C. Domínguez, and C. Fernández-Sánchez, “Fluorophore-doped xerogelantiresonant reflecting optical waveguides,” Opt. Express 19(6), 5026–5039 (2011).
[CrossRef] [PubMed]

C. Fernández-Sánchez, V. J. Cadarso, M. Darder, C. Dominguez, and A. Llobera, “Patterning high-aspect-ratio sol-gel structures by microtransfer molding,” Chem. Mater. 20(8), 2662–2668 (2008).
[CrossRef]

Gao, Y.

B. Yao, G. Luo, L. Wang, Y. Gao, G. Lei, K. Ren, L. Chen, Y. Wang, Y. Hu, and Y. Qiu, “A microfluidic device using a green organic light emitting diode as an integrated excitation source,” Lab Chip 5(10), 1041–1047 (2005).
[CrossRef] [PubMed]

García-Revilla, S.

M. Zayat, R. Pardo, E. Castellón, L. Torres, D. Almendro, P. G. Parejo, A. Álvarez, T. Belenguer, S. García-Revilla, R. Balda, J. Fernández, and D. Levy, “Optical and Electro-optical Materials Prepared by the Sol-Gel Method,” Adv. Mater. (Deerfield Beach Fla.) 23(44), 5318–5323 (2011).
[CrossRef]

Gedvilas, L. M.

A. H. Mahan, R. Biswas, L. M. Gedvilas, D. L. Williamson, and B. C. Pan, “On the influence of short and medium range order on the material band gap in hydrogenated amorphous silicon,” J. Appl. Phys. 96(7), 3818–3826 (2004).
[CrossRef]

Glaser, R. H.

R. H. Glaser, G. L. Wilkes, and C. E. Bronnimann, “Solid-state 29Si NMR of TEOS-based multifunctional sol-gel materials,” J. Non-Cryst. Solids 113(1), 73–87 (1989).
[CrossRef]

Guizard, C.

P. Lacan, C. Guizard, and L. Cot, “Chemical and rheological investigations of the sol-gel transition in organically-modified siloxanes,” J. Sol-Gel Sci. Technol. 4(2), 151–162 (1995).
[CrossRef]

Hasegawa, M.

N. Tohge, M. Hasegawa, N. Noma, K. Kintaka, and J. Nishii, “Fabrication of two-dimensional gratings using photosensitive gel films and their characterization,” J. Sol-Gel Sci. Technol. 26(1/3), 903–907 (2003).
[CrossRef]

Hench, L. L.

L. L. Hench and J. K. West, “The sol-gel process,” Chem. Rev. 90(1), 33–72 (1990).
[CrossRef]

Hofmann, O.

M. Yamazaki, O. Hofmann, G. Ryu, L. Xiaoe, T. K. Lee, A. J. deMello, and J. C. deMello, “Non-emissive colour filters for fluorescence detection,” Lab Chip 11(7), 1228–1233 (2011).
[CrossRef] [PubMed]

O. Hofmann, X. Wang, A. Cornwell, S. Beecher, A. Raja, D. D. Bradley, A. J. Demello, and J. C. Demello, “Monolithically integrated dye-doped PDMS long-pass filters for disposable on-chip fluorescence detection,” Lab Chip 6(8), 981–987 (2006).
[CrossRef] [PubMed]

Hu, J. X.

X. H. Zhang, W. Que, C. Y. Jia, J. X. Hu, and W. G. Liu, “Fabrication of micro-lens arrays built in photosensitive hybrid films by UV-cured imprinting technique,” J. Sol-Gel Sci. Technol. 60(1), 71–80 (2011).
[CrossRef]

Hu, Y.

B. Yao, G. Luo, L. Wang, Y. Gao, G. Lei, K. Ren, L. Chen, Y. Wang, Y. Hu, and Y. Qiu, “A microfluidic device using a green organic light emitting diode as an integrated excitation source,” Lab Chip 5(10), 1041–1047 (2005).
[CrossRef] [PubMed]

Innocenzi, P.

B. Lebeau and P. Innocenzi, “Hybrid materials for optics and photonics,” Chem. Soc. Rev. 40(2), 886–906 (2011).
[CrossRef] [PubMed]

Jia, C. Y.

X. H. Zhang, W. Que, C. Y. Jia, J. X. Hu, and W. G. Liu, “Fabrication of micro-lens arrays built in photosensitive hybrid films by UV-cured imprinting technique,” J. Sol-Gel Sci. Technol. 60(1), 71–80 (2011).
[CrossRef]

Jo, B. H.

B. H. Jo, L. M. Van Lerberghe, K. M. Motsegood, and D. J. Beebe, “Three-dimensional micro-channel fabrication in polydimethylsiloxane (PDMS) elastomer,” J. Microelectromech. Syst. 9(1), 76–81 (2000).
[CrossRef]

Joensson, H. N.

A. Llobera, S. Demming, H. N. Joensson, J. Vila-Planas, H. Andersson-Svahn, and S. Büttgenbach, “Monolithic PDMS passband filters for fluorescence detection,” Lab Chip 10(15), 1987–1992 (2010).
[CrossRef] [PubMed]

Julian-Lopez, B.

P. Escribano, B. Julian-Lopez, J. Planelles-Arago, E. Cordoncillo, B. Viana, and C. Sanchez, “Photonic and anobiophotonic properties of luminescent lanthanide-doped hybrid organic-inorganic materials,” J. Mater. Chem. 18(1), 23–40 (2007).
[CrossRef]

Karger, A. M.

M. L. Chabinyc, D. T. Chiu, J. C. McDonald, A. D. Stroock, J. F. Christian, A. M. Karger, and G. M. Whitesides, “An integrated fluorescence detection system in poly(dimethylsiloxane) for microfluidic applications,” Anal. Chem. 73(18), 4491–4498 (2001).
[CrossRef] [PubMed]

Kintaka, K.

N. Tohge, M. Hasegawa, N. Noma, K. Kintaka, and J. Nishii, “Fabrication of two-dimensional gratings using photosensitive gel films and their characterization,” J. Sol-Gel Sci. Technol. 26(1/3), 903–907 (2003).
[CrossRef]

Klotzkin, D.

A. Pais, A. Banerjee, D. Klotzkin, and I. Papautsky, “High-sensitivity, disposable lab-on-a-chip with thin-film organic electronics for fluorescence detection,” Lab Chip 8(5), 794–800 (2008).
[CrossRef] [PubMed]

Lacan, P.

P. Lacan, C. Guizard, and L. Cot, “Chemical and rheological investigations of the sol-gel transition in organically-modified siloxanes,” J. Sol-Gel Sci. Technol. 4(2), 151–162 (1995).
[CrossRef]

Lebeau, B.

B. Lebeau and P. Innocenzi, “Hybrid materials for optics and photonics,” Chem. Soc. Rev. 40(2), 886–906 (2011).
[CrossRef] [PubMed]

Lee, T. K.

M. Yamazaki, O. Hofmann, G. Ryu, L. Xiaoe, T. K. Lee, A. J. deMello, and J. C. deMello, “Non-emissive colour filters for fluorescence detection,” Lab Chip 11(7), 1228–1233 (2011).
[CrossRef] [PubMed]

Lei, G.

B. Yao, G. Luo, L. Wang, Y. Gao, G. Lei, K. Ren, L. Chen, Y. Wang, Y. Hu, and Y. Qiu, “A microfluidic device using a green organic light emitting diode as an integrated excitation source,” Lab Chip 5(10), 1041–1047 (2005).
[CrossRef] [PubMed]

Levy, D.

R. Pardo, M. Zayat, and D. Levy, “Photochromic organic-inorganic hybrid materials,” Chem. Soc. Rev. 40(2), 672–687 (2011).
[CrossRef] [PubMed]

M. Zayat, R. Pardo, E. Castellón, L. Torres, D. Almendro, P. G. Parejo, A. Álvarez, T. Belenguer, S. García-Revilla, R. Balda, J. Fernández, and D. Levy, “Optical and Electro-optical Materials Prepared by the Sol-Gel Method,” Adv. Mater. (Deerfield Beach Fla.) 23(44), 5318–5323 (2011).
[CrossRef]

D. Avnir, D. Levy, and R. Reisfeld, “The nature of the silica cage as reflected by spectral changes and enhanced photostability of trapped Rhodamine-6G,” J. Phys. Chem. 88(24), 5956–5959 (1984).
[CrossRef]

Liu, W. G.

X. H. Zhang, W. Que, C. Y. Jia, J. X. Hu, and W. G. Liu, “Fabrication of micro-lens arrays built in photosensitive hybrid films by UV-cured imprinting technique,” J. Sol-Gel Sci. Technol. 60(1), 71–80 (2011).
[CrossRef]

Llobera, A.

A. Llobera, V. J. Cadarso, E. Carregal-Romero, J. Brugger, C. Domínguez, and C. Fernández-Sánchez, “Fluorophore-doped xerogelantiresonant reflecting optical waveguides,” Opt. Express 19(6), 5026–5039 (2011).
[CrossRef] [PubMed]

A. Llobera, S. Demming, H. N. Joensson, J. Vila-Planas, H. Andersson-Svahn, and S. Büttgenbach, “Monolithic PDMS passband filters for fluorescence detection,” Lab Chip 10(15), 1987–1992 (2010).
[CrossRef] [PubMed]

C. Fernández-Sánchez, V. J. Cadarso, M. Darder, C. Dominguez, and A. Llobera, “Patterning high-aspect-ratio sol-gel structures by microtransfer molding,” Chem. Mater. 20(8), 2662–2668 (2008).
[CrossRef]

A. Llobera, S. Demming, R. Wilke, and S. Büttgenbach, “Multiple internal reflection poly(dimethylsiloxane) systems for optical sensing,” Lab Chip 7(11), 1560–1566 (2007).
[CrossRef] [PubMed]

A. Llobera, R. Wilke, and S. Büttgenbach, “Optimization of poly(dimethylsiloxane) hollow prisms for optical sensing,” Lab Chip 5(5), 506–511 (2005).
[CrossRef] [PubMed]

A. Llobera, R. Wilke, and S. Büttgenbach, “Poly(dimethylsiloxane) hollow Abbe prism with microlenses for detection based on absorption and refractive index shift,” Lab Chip 4(1), 24–27 (2004).
[CrossRef] [PubMed]

Luo, G.

B. Yao, G. Luo, L. Wang, Y. Gao, G. Lei, K. Ren, L. Chen, Y. Wang, Y. Hu, and Y. Qiu, “A microfluidic device using a green organic light emitting diode as an integrated excitation source,” Lab Chip 5(10), 1041–1047 (2005).
[CrossRef] [PubMed]

Mahan, A. H.

A. H. Mahan, R. Biswas, L. M. Gedvilas, D. L. Williamson, and B. C. Pan, “On the influence of short and medium range order on the material band gap in hydrogenated amorphous silicon,” J. Appl. Phys. 96(7), 3818–3826 (2004).
[CrossRef]

McDonald, J. C.

M. L. Chabinyc, D. T. Chiu, J. C. McDonald, A. D. Stroock, J. F. Christian, A. M. Karger, and G. M. Whitesides, “An integrated fluorescence detection system in poly(dimethylsiloxane) for microfluidic applications,” Anal. Chem. 73(18), 4491–4498 (2001).
[CrossRef] [PubMed]

Mercuro, D.

V. Thomsen, D. Shatzlein, and D. Mercuro, “Limits of Detection in Spectroscopy,” Spectroscopy 18, 112–114 (2003).

Motsegood, K. M.

B. H. Jo, L. M. Van Lerberghe, K. M. Motsegood, and D. J. Beebe, “Three-dimensional micro-channel fabrication in polydimethylsiloxane (PDMS) elastomer,” J. Microelectromech. Syst. 9(1), 76–81 (2000).
[CrossRef]

Nicole, L.

C. Sanchez, P. Belleville, M. Popall, and L. Nicole, “Applications of advanced hybrid organic-inorganic nanomaterials: from laboratory to market,” Chem. Soc. Rev. 40(2), 696–753 (2011).
[CrossRef] [PubMed]

Nishii, J.

N. Tohge, M. Hasegawa, N. Noma, K. Kintaka, and J. Nishii, “Fabrication of two-dimensional gratings using photosensitive gel films and their characterization,” J. Sol-Gel Sci. Technol. 26(1/3), 903–907 (2003).
[CrossRef]

Noma, N.

N. Tohge, M. Hasegawa, N. Noma, K. Kintaka, and J. Nishii, “Fabrication of two-dimensional gratings using photosensitive gel films and their characterization,” J. Sol-Gel Sci. Technol. 26(1/3), 903–907 (2003).
[CrossRef]

Pais, A.

A. Pais, A. Banerjee, D. Klotzkin, and I. Papautsky, “High-sensitivity, disposable lab-on-a-chip with thin-film organic electronics for fluorescence detection,” Lab Chip 8(5), 794–800 (2008).
[CrossRef] [PubMed]

Pan, B. C.

A. H. Mahan, R. Biswas, L. M. Gedvilas, D. L. Williamson, and B. C. Pan, “On the influence of short and medium range order on the material band gap in hydrogenated amorphous silicon,” J. Appl. Phys. 96(7), 3818–3826 (2004).
[CrossRef]

Papautsky, I.

A. Pais, A. Banerjee, D. Klotzkin, and I. Papautsky, “High-sensitivity, disposable lab-on-a-chip with thin-film organic electronics for fluorescence detection,” Lab Chip 8(5), 794–800 (2008).
[CrossRef] [PubMed]

Pardo, R.

M. Zayat, R. Pardo, E. Castellón, L. Torres, D. Almendro, P. G. Parejo, A. Álvarez, T. Belenguer, S. García-Revilla, R. Balda, J. Fernández, and D. Levy, “Optical and Electro-optical Materials Prepared by the Sol-Gel Method,” Adv. Mater. (Deerfield Beach Fla.) 23(44), 5318–5323 (2011).
[CrossRef]

R. Pardo, M. Zayat, and D. Levy, “Photochromic organic-inorganic hybrid materials,” Chem. Soc. Rev. 40(2), 672–687 (2011).
[CrossRef] [PubMed]

Parejo, P. G.

M. Zayat, R. Pardo, E. Castellón, L. Torres, D. Almendro, P. G. Parejo, A. Álvarez, T. Belenguer, S. García-Revilla, R. Balda, J. Fernández, and D. Levy, “Optical and Electro-optical Materials Prepared by the Sol-Gel Method,” Adv. Mater. (Deerfield Beach Fla.) 23(44), 5318–5323 (2011).
[CrossRef]

Planelles-Arago, J.

P. Escribano, B. Julian-Lopez, J. Planelles-Arago, E. Cordoncillo, B. Viana, and C. Sanchez, “Photonic and anobiophotonic properties of luminescent lanthanide-doped hybrid organic-inorganic materials,” J. Mater. Chem. 18(1), 23–40 (2007).
[CrossRef]

Popall, M.

C. Sanchez, P. Belleville, M. Popall, and L. Nicole, “Applications of advanced hybrid organic-inorganic nanomaterials: from laboratory to market,” Chem. Soc. Rev. 40(2), 696–753 (2011).
[CrossRef] [PubMed]

Qiu, Y.

B. Yao, G. Luo, L. Wang, Y. Gao, G. Lei, K. Ren, L. Chen, Y. Wang, Y. Hu, and Y. Qiu, “A microfluidic device using a green organic light emitting diode as an integrated excitation source,” Lab Chip 5(10), 1041–1047 (2005).
[CrossRef] [PubMed]

Que, W.

X. H. Zhang, W. Que, C. Y. Jia, J. X. Hu, and W. G. Liu, “Fabrication of micro-lens arrays built in photosensitive hybrid films by UV-cured imprinting technique,” J. Sol-Gel Sci. Technol. 60(1), 71–80 (2011).
[CrossRef]

Raja, A.

O. Hofmann, X. Wang, A. Cornwell, S. Beecher, A. Raja, D. D. Bradley, A. J. Demello, and J. C. Demello, “Monolithically integrated dye-doped PDMS long-pass filters for disposable on-chip fluorescence detection,” Lab Chip 6(8), 981–987 (2006).
[CrossRef] [PubMed]

Reisfeld, R.

D. Avnir, D. Levy, and R. Reisfeld, “The nature of the silica cage as reflected by spectral changes and enhanced photostability of trapped Rhodamine-6G,” J. Phys. Chem. 88(24), 5956–5959 (1984).
[CrossRef]

Ren, K.

B. Yao, G. Luo, L. Wang, Y. Gao, G. Lei, K. Ren, L. Chen, Y. Wang, Y. Hu, and Y. Qiu, “A microfluidic device using a green organic light emitting diode as an integrated excitation source,” Lab Chip 5(10), 1041–1047 (2005).
[CrossRef] [PubMed]

Renaudin, A.

C. Richard, A. Renaudin, V. Aimez, and P. G. Charette, “An integrated hybrid interference and absorption filter for fluorescence detection in lab-on-a-chip devices,” Lab Chip 9(10), 1371–1376 (2009).
[CrossRef] [PubMed]

Ribot, F.

C. Sanchez and F. Ribot, “Design of hybrid organic-inorganic materials synthesized via sol-gel chemistry,” New J. Chem. 18, 1007–1047 (1994).

Richard, C.

C. Richard, A. Renaudin, V. Aimez, and P. G. Charette, “An integrated hybrid interference and absorption filter for fluorescence detection in lab-on-a-chip devices,” Lab Chip 9(10), 1371–1376 (2009).
[CrossRef] [PubMed]

Ryu, G.

M. Yamazaki, O. Hofmann, G. Ryu, L. Xiaoe, T. K. Lee, A. J. deMello, and J. C. deMello, “Non-emissive colour filters for fluorescence detection,” Lab Chip 11(7), 1228–1233 (2011).
[CrossRef] [PubMed]

Sanchez, C.

C. Sanchez, P. Belleville, M. Popall, and L. Nicole, “Applications of advanced hybrid organic-inorganic nanomaterials: from laboratory to market,” Chem. Soc. Rev. 40(2), 696–753 (2011).
[CrossRef] [PubMed]

P. Escribano, B. Julian-Lopez, J. Planelles-Arago, E. Cordoncillo, B. Viana, and C. Sanchez, “Photonic and anobiophotonic properties of luminescent lanthanide-doped hybrid organic-inorganic materials,” J. Mater. Chem. 18(1), 23–40 (2007).
[CrossRef]

C. Sanchez and F. Ribot, “Design of hybrid organic-inorganic materials synthesized via sol-gel chemistry,” New J. Chem. 18, 1007–1047 (1994).

Schottner, G.

G. Schottner, “Hybrid sol-gel-derived polymers: Applications of multifunctional materials,” Chem. Mater. 13(10), 3422–3435 (2001).
[CrossRef]

Shatzlein, D.

V. Thomsen, D. Shatzlein, and D. Mercuro, “Limits of Detection in Spectroscopy,” Spectroscopy 18, 112–114 (2003).

Smela, E.

M. Dandin, P. Abshire, and E. Smela, “Optical filtering technologies for integrated fluorescence sensors,” Lab Chip 7(8), 955–977 (2007).
[CrossRef] [PubMed]

Stroock, A. D.

M. L. Chabinyc, D. T. Chiu, J. C. McDonald, A. D. Stroock, J. F. Christian, A. M. Karger, and G. M. Whitesides, “An integrated fluorescence detection system in poly(dimethylsiloxane) for microfluidic applications,” Anal. Chem. 73(18), 4491–4498 (2001).
[CrossRef] [PubMed]

Thomsen, V.

V. Thomsen, D. Shatzlein, and D. Mercuro, “Limits of Detection in Spectroscopy,” Spectroscopy 18, 112–114 (2003).

Tohge, N.

N. Tohge, M. Hasegawa, N. Noma, K. Kintaka, and J. Nishii, “Fabrication of two-dimensional gratings using photosensitive gel films and their characterization,” J. Sol-Gel Sci. Technol. 26(1/3), 903–907 (2003).
[CrossRef]

Torge, R.

Torres, L.

M. Zayat, R. Pardo, E. Castellón, L. Torres, D. Almendro, P. G. Parejo, A. Álvarez, T. Belenguer, S. García-Revilla, R. Balda, J. Fernández, and D. Levy, “Optical and Electro-optical Materials Prepared by the Sol-Gel Method,” Adv. Mater. (Deerfield Beach Fla.) 23(44), 5318–5323 (2011).
[CrossRef]

Ulrich, R.

Van Lerberghe, L. M.

B. H. Jo, L. M. Van Lerberghe, K. M. Motsegood, and D. J. Beebe, “Three-dimensional micro-channel fabrication in polydimethylsiloxane (PDMS) elastomer,” J. Microelectromech. Syst. 9(1), 76–81 (2000).
[CrossRef]

Viana, B.

P. Escribano, B. Julian-Lopez, J. Planelles-Arago, E. Cordoncillo, B. Viana, and C. Sanchez, “Photonic and anobiophotonic properties of luminescent lanthanide-doped hybrid organic-inorganic materials,” J. Mater. Chem. 18(1), 23–40 (2007).
[CrossRef]

Vila-Planas, J.

A. Llobera, S. Demming, H. N. Joensson, J. Vila-Planas, H. Andersson-Svahn, and S. Büttgenbach, “Monolithic PDMS passband filters for fluorescence detection,” Lab Chip 10(15), 1987–1992 (2010).
[CrossRef] [PubMed]

Wang, L.

B. Yao, G. Luo, L. Wang, Y. Gao, G. Lei, K. Ren, L. Chen, Y. Wang, Y. Hu, and Y. Qiu, “A microfluidic device using a green organic light emitting diode as an integrated excitation source,” Lab Chip 5(10), 1041–1047 (2005).
[CrossRef] [PubMed]

Wang, X.

O. Hofmann, X. Wang, A. Cornwell, S. Beecher, A. Raja, D. D. Bradley, A. J. Demello, and J. C. Demello, “Monolithically integrated dye-doped PDMS long-pass filters for disposable on-chip fluorescence detection,” Lab Chip 6(8), 981–987 (2006).
[CrossRef] [PubMed]

Wang, Y.

B. Yao, G. Luo, L. Wang, Y. Gao, G. Lei, K. Ren, L. Chen, Y. Wang, Y. Hu, and Y. Qiu, “A microfluidic device using a green organic light emitting diode as an integrated excitation source,” Lab Chip 5(10), 1041–1047 (2005).
[CrossRef] [PubMed]

Wen, J. Y.

J. Y. Wen and G. L. Wilkes, “Organic/inorganic hybrid network materials by the sol-gel approach,” Chem. Mater. 8(8), 1667–1681 (1996).
[CrossRef]

West, J. K.

L. L. Hench and J. K. West, “The sol-gel process,” Chem. Rev. 90(1), 33–72 (1990).
[CrossRef]

Whitesides, G. M.

M. L. Chabinyc, D. T. Chiu, J. C. McDonald, A. D. Stroock, J. F. Christian, A. M. Karger, and G. M. Whitesides, “An integrated fluorescence detection system in poly(dimethylsiloxane) for microfluidic applications,” Anal. Chem. 73(18), 4491–4498 (2001).
[CrossRef] [PubMed]

Y. N. Xia and G. M. Whitesides, “Soft lithography,” Angew. Chem. Int. Ed. 37(5), 550–575 (1998).
[CrossRef]

Wilke, R.

A. Llobera, S. Demming, R. Wilke, and S. Büttgenbach, “Multiple internal reflection poly(dimethylsiloxane) systems for optical sensing,” Lab Chip 7(11), 1560–1566 (2007).
[CrossRef] [PubMed]

A. Llobera, R. Wilke, and S. Büttgenbach, “Optimization of poly(dimethylsiloxane) hollow prisms for optical sensing,” Lab Chip 5(5), 506–511 (2005).
[CrossRef] [PubMed]

A. Llobera, R. Wilke, and S. Büttgenbach, “Poly(dimethylsiloxane) hollow Abbe prism with microlenses for detection based on absorption and refractive index shift,” Lab Chip 4(1), 24–27 (2004).
[CrossRef] [PubMed]

Wilkes, G. L.

J. Y. Wen and G. L. Wilkes, “Organic/inorganic hybrid network materials by the sol-gel approach,” Chem. Mater. 8(8), 1667–1681 (1996).
[CrossRef]

R. H. Glaser, G. L. Wilkes, and C. E. Bronnimann, “Solid-state 29Si NMR of TEOS-based multifunctional sol-gel materials,” J. Non-Cryst. Solids 113(1), 73–87 (1989).
[CrossRef]

Williamson, D. L.

A. H. Mahan, R. Biswas, L. M. Gedvilas, D. L. Williamson, and B. C. Pan, “On the influence of short and medium range order on the material band gap in hydrogenated amorphous silicon,” J. Appl. Phys. 96(7), 3818–3826 (2004).
[CrossRef]

Wolfbeis, O. S.

S. M. Borisov and O. S. Wolfbeis, “Optical biosensors,” Chem. Rev. 108(2), 423–461 (2008).
[CrossRef] [PubMed]

Xia, Y. N.

Y. N. Xia and G. M. Whitesides, “Soft lithography,” Angew. Chem. Int. Ed. 37(5), 550–575 (1998).
[CrossRef]

Xiaoe, L.

M. Yamazaki, O. Hofmann, G. Ryu, L. Xiaoe, T. K. Lee, A. J. deMello, and J. C. deMello, “Non-emissive colour filters for fluorescence detection,” Lab Chip 11(7), 1228–1233 (2011).
[CrossRef] [PubMed]

Yamazaki, M.

M. Yamazaki, O. Hofmann, G. Ryu, L. Xiaoe, T. K. Lee, A. J. deMello, and J. C. deMello, “Non-emissive colour filters for fluorescence detection,” Lab Chip 11(7), 1228–1233 (2011).
[CrossRef] [PubMed]

Yao, B.

B. Yao, G. Luo, L. Wang, Y. Gao, G. Lei, K. Ren, L. Chen, Y. Wang, Y. Hu, and Y. Qiu, “A microfluidic device using a green organic light emitting diode as an integrated excitation source,” Lab Chip 5(10), 1041–1047 (2005).
[CrossRef] [PubMed]

Zayat, M.

R. Pardo, M. Zayat, and D. Levy, “Photochromic organic-inorganic hybrid materials,” Chem. Soc. Rev. 40(2), 672–687 (2011).
[CrossRef] [PubMed]

M. Zayat, R. Pardo, E. Castellón, L. Torres, D. Almendro, P. G. Parejo, A. Álvarez, T. Belenguer, S. García-Revilla, R. Balda, J. Fernández, and D. Levy, “Optical and Electro-optical Materials Prepared by the Sol-Gel Method,” Adv. Mater. (Deerfield Beach Fla.) 23(44), 5318–5323 (2011).
[CrossRef]

Zhang, X. H.

X. H. Zhang, W. Que, C. Y. Jia, J. X. Hu, and W. G. Liu, “Fabrication of micro-lens arrays built in photosensitive hybrid films by UV-cured imprinting technique,” J. Sol-Gel Sci. Technol. 60(1), 71–80 (2011).
[CrossRef]

Adv. Mater. (Deerfield Beach Fla.) (1)

M. Zayat, R. Pardo, E. Castellón, L. Torres, D. Almendro, P. G. Parejo, A. Álvarez, T. Belenguer, S. García-Revilla, R. Balda, J. Fernández, and D. Levy, “Optical and Electro-optical Materials Prepared by the Sol-Gel Method,” Adv. Mater. (Deerfield Beach Fla.) 23(44), 5318–5323 (2011).
[CrossRef]

Anal. Chem. (1)

M. L. Chabinyc, D. T. Chiu, J. C. McDonald, A. D. Stroock, J. F. Christian, A. M. Karger, and G. M. Whitesides, “An integrated fluorescence detection system in poly(dimethylsiloxane) for microfluidic applications,” Anal. Chem. 73(18), 4491–4498 (2001).
[CrossRef] [PubMed]

Angew. Chem. Int. Ed. (1)

Y. N. Xia and G. M. Whitesides, “Soft lithography,” Angew. Chem. Int. Ed. 37(5), 550–575 (1998).
[CrossRef]

Appl. Opt. (1)

Chem. Mater. (3)

G. Schottner, “Hybrid sol-gel-derived polymers: Applications of multifunctional materials,” Chem. Mater. 13(10), 3422–3435 (2001).
[CrossRef]

C. Fernández-Sánchez, V. J. Cadarso, M. Darder, C. Dominguez, and A. Llobera, “Patterning high-aspect-ratio sol-gel structures by microtransfer molding,” Chem. Mater. 20(8), 2662–2668 (2008).
[CrossRef]

J. Y. Wen and G. L. Wilkes, “Organic/inorganic hybrid network materials by the sol-gel approach,” Chem. Mater. 8(8), 1667–1681 (1996).
[CrossRef]

Chem. Rev. (2)

S. M. Borisov and O. S. Wolfbeis, “Optical biosensors,” Chem. Rev. 108(2), 423–461 (2008).
[CrossRef] [PubMed]

L. L. Hench and J. K. West, “The sol-gel process,” Chem. Rev. 90(1), 33–72 (1990).
[CrossRef]

Chem. Soc. Rev. (3)

C. Sanchez, P. Belleville, M. Popall, and L. Nicole, “Applications of advanced hybrid organic-inorganic nanomaterials: from laboratory to market,” Chem. Soc. Rev. 40(2), 696–753 (2011).
[CrossRef] [PubMed]

B. Lebeau and P. Innocenzi, “Hybrid materials for optics and photonics,” Chem. Soc. Rev. 40(2), 886–906 (2011).
[CrossRef] [PubMed]

R. Pardo, M. Zayat, and D. Levy, “Photochromic organic-inorganic hybrid materials,” Chem. Soc. Rev. 40(2), 672–687 (2011).
[CrossRef] [PubMed]

J. Appl. Phys. (1)

A. H. Mahan, R. Biswas, L. M. Gedvilas, D. L. Williamson, and B. C. Pan, “On the influence of short and medium range order on the material band gap in hydrogenated amorphous silicon,” J. Appl. Phys. 96(7), 3818–3826 (2004).
[CrossRef]

J. Mater. Chem. (1)

P. Escribano, B. Julian-Lopez, J. Planelles-Arago, E. Cordoncillo, B. Viana, and C. Sanchez, “Photonic and anobiophotonic properties of luminescent lanthanide-doped hybrid organic-inorganic materials,” J. Mater. Chem. 18(1), 23–40 (2007).
[CrossRef]

J. Microelectromech. Syst. (1)

B. H. Jo, L. M. Van Lerberghe, K. M. Motsegood, and D. J. Beebe, “Three-dimensional micro-channel fabrication in polydimethylsiloxane (PDMS) elastomer,” J. Microelectromech. Syst. 9(1), 76–81 (2000).
[CrossRef]

J. Non-Cryst. Solids (1)

R. H. Glaser, G. L. Wilkes, and C. E. Bronnimann, “Solid-state 29Si NMR of TEOS-based multifunctional sol-gel materials,” J. Non-Cryst. Solids 113(1), 73–87 (1989).
[CrossRef]

J. Phys. Chem. (1)

D. Avnir, D. Levy, and R. Reisfeld, “The nature of the silica cage as reflected by spectral changes and enhanced photostability of trapped Rhodamine-6G,” J. Phys. Chem. 88(24), 5956–5959 (1984).
[CrossRef]

J. Sol-Gel Sci. Technol. (3)

N. Tohge, M. Hasegawa, N. Noma, K. Kintaka, and J. Nishii, “Fabrication of two-dimensional gratings using photosensitive gel films and their characterization,” J. Sol-Gel Sci. Technol. 26(1/3), 903–907 (2003).
[CrossRef]

X. H. Zhang, W. Que, C. Y. Jia, J. X. Hu, and W. G. Liu, “Fabrication of micro-lens arrays built in photosensitive hybrid films by UV-cured imprinting technique,” J. Sol-Gel Sci. Technol. 60(1), 71–80 (2011).
[CrossRef]

P. Lacan, C. Guizard, and L. Cot, “Chemical and rheological investigations of the sol-gel transition in organically-modified siloxanes,” J. Sol-Gel Sci. Technol. 4(2), 151–162 (1995).
[CrossRef]

Lab Chip (10)

A. Llobera, R. Wilke, and S. Büttgenbach, “Optimization of poly(dimethylsiloxane) hollow prisms for optical sensing,” Lab Chip 5(5), 506–511 (2005).
[CrossRef] [PubMed]

A. Llobera, R. Wilke, and S. Büttgenbach, “Poly(dimethylsiloxane) hollow Abbe prism with microlenses for detection based on absorption and refractive index shift,” Lab Chip 4(1), 24–27 (2004).
[CrossRef] [PubMed]

A. Llobera, S. Demming, R. Wilke, and S. Büttgenbach, “Multiple internal reflection poly(dimethylsiloxane) systems for optical sensing,” Lab Chip 7(11), 1560–1566 (2007).
[CrossRef] [PubMed]

A. Pais, A. Banerjee, D. Klotzkin, and I. Papautsky, “High-sensitivity, disposable lab-on-a-chip with thin-film organic electronics for fluorescence detection,” Lab Chip 8(5), 794–800 (2008).
[CrossRef] [PubMed]

B. Yao, G. Luo, L. Wang, Y. Gao, G. Lei, K. Ren, L. Chen, Y. Wang, Y. Hu, and Y. Qiu, “A microfluidic device using a green organic light emitting diode as an integrated excitation source,” Lab Chip 5(10), 1041–1047 (2005).
[CrossRef] [PubMed]

O. Hofmann, X. Wang, A. Cornwell, S. Beecher, A. Raja, D. D. Bradley, A. J. Demello, and J. C. Demello, “Monolithically integrated dye-doped PDMS long-pass filters for disposable on-chip fluorescence detection,” Lab Chip 6(8), 981–987 (2006).
[CrossRef] [PubMed]

A. Llobera, S. Demming, H. N. Joensson, J. Vila-Planas, H. Andersson-Svahn, and S. Büttgenbach, “Monolithic PDMS passband filters for fluorescence detection,” Lab Chip 10(15), 1987–1992 (2010).
[CrossRef] [PubMed]

M. Yamazaki, O. Hofmann, G. Ryu, L. Xiaoe, T. K. Lee, A. J. deMello, and J. C. deMello, “Non-emissive colour filters for fluorescence detection,” Lab Chip 11(7), 1228–1233 (2011).
[CrossRef] [PubMed]

C. Richard, A. Renaudin, V. Aimez, and P. G. Charette, “An integrated hybrid interference and absorption filter for fluorescence detection in lab-on-a-chip devices,” Lab Chip 9(10), 1371–1376 (2009).
[CrossRef] [PubMed]

M. Dandin, P. Abshire, and E. Smela, “Optical filtering technologies for integrated fluorescence sensors,” Lab Chip 7(8), 955–977 (2007).
[CrossRef] [PubMed]

New J. Chem. (1)

C. Sanchez and F. Ribot, “Design of hybrid organic-inorganic materials synthesized via sol-gel chemistry,” New J. Chem. 18, 1007–1047 (1994).

Opt. Express (1)

Spectroscopy (1)

V. Thomsen, D. Shatzlein, and D. Mercuro, “Limits of Detection in Spectroscopy,” Spectroscopy 18, 112–114 (2003).

Other (1)

H. A. Macleod, “Thin Film Optical Filters” (Institute of Physics Publishing, London, 2001)

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (13)

Fig. 1
Fig. 1

(a) Design of the mask used for the fabrication of the testing microstructure (b) Crystal Violet doped xerogel micro-filters.

Fig. 2
Fig. 2

SEM image of 100, 250, 500 and 1000 µm side xerogel microfilters fabricated in the same microstructure.

Fig. 3
Fig. 3

Transmittance vs. wavelength for four different 200 µM dye-doped, 3000 µm wide filters.

Fig. 4
Fig. 4

Transmittance vs. wavelength for the 3000 µm widefilters fabricated with the xerogel polymer containing PRdyefor the four different concentrations tested.

Fig. 5
Fig. 5

Transmittance as a function of filter width for the PR doped polymeric filters.

Fig. 6
Fig. 6

Image of the fluorescence LOC with integrateddye-doped polymeric filters.

Fig. 7
Fig. 7

a) Absorbance as a function of Rhodamine B concentration measured at 540 nm. b) Fluorescence emission as a function of Rhodamine B concentration measured at 616 nm. Fluorescence values were normalized considering fluorescence to have a unity value when the microchannel was filled with DI water.

Fig. 8
Fig. 8

Transparency of the non-doped xerogel material used in this work.

Fig. 9
Fig. 9

29Si-NMR Spectra of the non-doped and crystal violet-doped hybrid polymer.

Fig. 10
Fig. 10

FT-Infrared Spectroscopy spectra of the non-doped and dye-doped hybrid polymer.

Fig. 11
Fig. 11

(a) Transmittance vs. wavelength for the 3000 µm wide (a) quinoline yellow (b) methyl orange (c) crystal violet, doped filters for all the dye concentrations studied.

Fig. 12
Fig. 12

Transmittance as a function of filter width for the (a) quinoline yellow (b) methyl orange (c) crystal violet, loaded filters for all the concentrations.

Fig. 13
Fig. 13

Setup used to carry out the measurements of Rhodamine B target analyte in the PhLoC where the phenol-red based filters were implemented. It comprises a laser working at a2-5wavelength 532 nm, two multimode optical fibers and a spectrometer.

Tables (6)

Tables Icon

Table 1 Stopband and passband transmittance values of the 3000 µm wide filters fabricated with the doped xerogel material (200 µM)

Tables Icon

Table 2 Linear fits, R2 and LOD of the PhLoC with and without phenol red filter used during the rhodamine B calibration

Tables Icon

Table 3 Spectral properties of the quinoline yellow different filters. Positive values for transmittance are likely to be related to misalignment issues when measuring the reference test structure (non-doped xerogel filter structures).

Tables Icon

Table 6 Continued from Table 5. Spectral properties of the crystal violet different filters. Positive values for transmittance are likely to be related to misalignment issues when measuring the reference test structure (non-doped xerogel filter structures).

Tables Icon

Table 5 Continued from Table 4. Spectral properties of the methyl orange different filters. Positive values for transmittance are likely to be related to misalignment issues when measuring the reference test structure (non-doped xerogel filter structures).

Tables Icon

Table 4 Continued from Table 3. Spectral properties of the phenol red different filters. Positive values for transmittance are likely to be related to misalignment issues when measuring the reference test structure (non-doped xerogel filter structures).

Metrics