Abstract

A π phase shifted distributed feedback (DFB) laser based on single mode large effective area heavy concentration erbium-doped fiber (EDF) has been demonstrated. The homemade EDF was fabricated by the modified chemical-vapor deposition (MCVD) technique, and the 13cm long π phase shifted fiber grating was written in the intracore of the EDF. The erbium-doped concentration is 4.19 × 1025 ions/m3, the mode field diameter of the fiber is 12.2801 um at 1550 nm, the absorption coefficients of the fiber are 34.534 dB/m at 980 nm and 84.253 dB/m at 1530 nm. The threshold of the DFB laser is 66 mW, and the measured maximum output power is 43.5 mW at 450 mW pump power that corresponding to the slope efficiency of 11.5%. The signal-to-noise ratio (SNR) of the operating laser at 200 mW input power is 55 dB, and the DFB laser has a Lorentz linewidth of 9.8 kHz at the same input pump power.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. P. Smith, F. Zarinetchi, and S. Ezekiel, “Narrow-linewidth stimulated Brillouin fiber laser and applications,” Opt. Lett.16(6), 393–395 (1991).
    [CrossRef] [PubMed]
  2. G. P. Agrawal and S. Radic, “Phase-shifted fiber grating Bragg grating and their application for wavelength demultiplexing,” IEEE Photon. Technol. Lett.6(8), 995–997 (1994).
    [CrossRef]
  3. W. Zhang, Y. C. Lai, J. A. R. Williams, C. Lu, L. Zhang, and I. Bennion, “A fibre grating DFB laser for generation of optical microwave signal,” Opt. Laser Technol.32(5), 369–371 (2000).
    [CrossRef]
  4. Q. Li, S. Feng, W. Peng, P. Liu, T. Feng, S. Tan, and F. Yan, “Photonic generation of microwave signal using a dual-wavelength fiber ring laser with fiber Bragg grating-based Fabry-Perot filter and saturable absorber,” Microw. Opt. Technol. Lett.54(9), 2074–2077 (2012).
    [CrossRef]
  5. B. Liu, C. L. Jia, H. Zhang, and J. H. Luo, “DBR-fiber-laser-based active temperature sensor and its applications in the measurement of fiber birefringence,” Microw. Opt. Technol. Lett.52(1), 41–44 (2010).
    [CrossRef]
  6. P. Zhou, Z. J. Liu, X. L. Wang, Y. X. Ma, H. T. Ma, and X. J. Xu, “Coherent beam combining of two fiber amplifiers using stochastic parallel gradient descent algorithm,” Opt. Laser Technol.41(7), 853–856 (2009).
    [CrossRef]
  7. C. Alegria, Y. Jeong, C. Codemard, J. K. Sahu, J. A. Alvarez-Chavez, L. Fu, M. Ibsen, and J. Nilsson, “83W single-frequency narrow linewidth MOPA using large-core erbium-ytterbium co-doped fiber,” IEEE Photon. Technol. Lett.16(8), 1825–1827 (2004).
    [CrossRef]
  8. Y. Cheng, J. T. Kringlebotn, W. H. Loh, R. I. Laming, and D. N. Payne, “Stable single-frequency traveling-wave fiber loop laser with integral saturable-absorber-based tracking narrow-band filter,” Opt. Lett.20(8), 875–877 (1995).
    [CrossRef] [PubMed]
  9. M. Zhou, G. Stewart, and G. Whitenett, “Stable single-mode operation of a narrow-linewidth, linearly polarized erbium-fiber ring laser using a saturable absorber,” J. Lightwave Technol.24(5), 2179–2183 (2006).
    [CrossRef]
  10. A. Debut, S. Randoux, and J. Zemmouri, “Experimental and theoretical study of linewidth narrowing in Brillouin fiber ring lasers,” J. Opt. Soc. Am. B18(4), 556–567 (2001).
    [CrossRef]
  11. J. H. Geng, S. Staines, Z. L. Wang, J. Zong, M. Blake, and S. B. Jiang, “Highly stable low-noise Brillouin fiber laser with ultrnarrow spectral linewidth,” IEEE Photon. Technol. Lett.18(17), 1813–1815 (2006).
    [CrossRef]
  12. M. R. Shirazi, S. W. Harun, M. Biglary, and H. Ahmad, “Linear cavity Brillouin fiber laser with improved characteristics,” Opt. Lett.33(8), 770–772 (2008).
    [CrossRef] [PubMed]
  13. C. Spiegelberg, J. H. Geng, Y. D. Hu, Y. Kaneda, S. B. Jiang, and N. Peyghambarian, “Low-noise narrow-linewidth fiber laser at 1550nm,” J. Lightwave Technol.22(1), 57–62 (2004).
    [CrossRef]
  14. S. H. Xu, Z. M. Yang, T. Liu, W. N. Zhang, Z. M. Feng, Q. Y. Zhang, and Z. H. Jiang, “An efficient compact 300 mW narrow-linewidth single frequency fiber laser at 1.5 µ,” Opt. Express18(2), 1249–1254 (2010).
    [CrossRef] [PubMed]
  15. J. T. Kringlebotn, J. L. Archambault, L. Reekie, and D. N. Payne, “Er3+:Yb3+-codoped fiber distributed-feedback laser,” Opt. Lett.19(24), 2101–2103 (1994).
    [CrossRef] [PubMed]
  16. W. H. Loh and R. I. Laming, “1.55µm phase-shifted distributed feedback fibre laser,” Electron. Lett.31(17), 1440–1442 (1995).
    [CrossRef]
  17. H. StorØy, B. Sshlgren, and R. Stubbe, “Single polarisation fibre DFB laser,” Electron. Lett.33(1), 56–58 (1997).
  18. S. A. Babin, D. V. Churkin, A. E. Ismagulov, S. I. Kablukov, and M. A. Nikulin, “Single frequency single polarization DFB fiber laser,” Laser Phys. Lett.4(6), 428–432 (2007).
    [CrossRef]
  19. K. Yelen, L. M. B. Hickey, and M. N. Zervas, “A new design approach for fiber DFB lasers with improved efficiency,” IEEE J. Quantum Electron.40(6), 711–720 (2004).
    [CrossRef]
  20. L. B. Mercer, “1/f frequency noise effects on self-heterodyne linewidth measurements,” J. Lightwave Technol.9(4), 485–493 (1991).
    [CrossRef]

2012 (1)

Q. Li, S. Feng, W. Peng, P. Liu, T. Feng, S. Tan, and F. Yan, “Photonic generation of microwave signal using a dual-wavelength fiber ring laser with fiber Bragg grating-based Fabry-Perot filter and saturable absorber,” Microw. Opt. Technol. Lett.54(9), 2074–2077 (2012).
[CrossRef]

2010 (2)

B. Liu, C. L. Jia, H. Zhang, and J. H. Luo, “DBR-fiber-laser-based active temperature sensor and its applications in the measurement of fiber birefringence,” Microw. Opt. Technol. Lett.52(1), 41–44 (2010).
[CrossRef]

S. H. Xu, Z. M. Yang, T. Liu, W. N. Zhang, Z. M. Feng, Q. Y. Zhang, and Z. H. Jiang, “An efficient compact 300 mW narrow-linewidth single frequency fiber laser at 1.5 µ,” Opt. Express18(2), 1249–1254 (2010).
[CrossRef] [PubMed]

2009 (1)

P. Zhou, Z. J. Liu, X. L. Wang, Y. X. Ma, H. T. Ma, and X. J. Xu, “Coherent beam combining of two fiber amplifiers using stochastic parallel gradient descent algorithm,” Opt. Laser Technol.41(7), 853–856 (2009).
[CrossRef]

2008 (1)

2007 (1)

S. A. Babin, D. V. Churkin, A. E. Ismagulov, S. I. Kablukov, and M. A. Nikulin, “Single frequency single polarization DFB fiber laser,” Laser Phys. Lett.4(6), 428–432 (2007).
[CrossRef]

2006 (2)

J. H. Geng, S. Staines, Z. L. Wang, J. Zong, M. Blake, and S. B. Jiang, “Highly stable low-noise Brillouin fiber laser with ultrnarrow spectral linewidth,” IEEE Photon. Technol. Lett.18(17), 1813–1815 (2006).
[CrossRef]

M. Zhou, G. Stewart, and G. Whitenett, “Stable single-mode operation of a narrow-linewidth, linearly polarized erbium-fiber ring laser using a saturable absorber,” J. Lightwave Technol.24(5), 2179–2183 (2006).
[CrossRef]

2004 (3)

C. Alegria, Y. Jeong, C. Codemard, J. K. Sahu, J. A. Alvarez-Chavez, L. Fu, M. Ibsen, and J. Nilsson, “83W single-frequency narrow linewidth MOPA using large-core erbium-ytterbium co-doped fiber,” IEEE Photon. Technol. Lett.16(8), 1825–1827 (2004).
[CrossRef]

C. Spiegelberg, J. H. Geng, Y. D. Hu, Y. Kaneda, S. B. Jiang, and N. Peyghambarian, “Low-noise narrow-linewidth fiber laser at 1550nm,” J. Lightwave Technol.22(1), 57–62 (2004).
[CrossRef]

K. Yelen, L. M. B. Hickey, and M. N. Zervas, “A new design approach for fiber DFB lasers with improved efficiency,” IEEE J. Quantum Electron.40(6), 711–720 (2004).
[CrossRef]

2001 (1)

2000 (1)

W. Zhang, Y. C. Lai, J. A. R. Williams, C. Lu, L. Zhang, and I. Bennion, “A fibre grating DFB laser for generation of optical microwave signal,” Opt. Laser Technol.32(5), 369–371 (2000).
[CrossRef]

1997 (1)

H. StorØy, B. Sshlgren, and R. Stubbe, “Single polarisation fibre DFB laser,” Electron. Lett.33(1), 56–58 (1997).

1995 (2)

1994 (2)

G. P. Agrawal and S. Radic, “Phase-shifted fiber grating Bragg grating and their application for wavelength demultiplexing,” IEEE Photon. Technol. Lett.6(8), 995–997 (1994).
[CrossRef]

J. T. Kringlebotn, J. L. Archambault, L. Reekie, and D. N. Payne, “Er3+:Yb3+-codoped fiber distributed-feedback laser,” Opt. Lett.19(24), 2101–2103 (1994).
[CrossRef] [PubMed]

1991 (2)

S. P. Smith, F. Zarinetchi, and S. Ezekiel, “Narrow-linewidth stimulated Brillouin fiber laser and applications,” Opt. Lett.16(6), 393–395 (1991).
[CrossRef] [PubMed]

L. B. Mercer, “1/f frequency noise effects on self-heterodyne linewidth measurements,” J. Lightwave Technol.9(4), 485–493 (1991).
[CrossRef]

Agrawal, G. P.

G. P. Agrawal and S. Radic, “Phase-shifted fiber grating Bragg grating and their application for wavelength demultiplexing,” IEEE Photon. Technol. Lett.6(8), 995–997 (1994).
[CrossRef]

Ahmad, H.

Alegria, C.

C. Alegria, Y. Jeong, C. Codemard, J. K. Sahu, J. A. Alvarez-Chavez, L. Fu, M. Ibsen, and J. Nilsson, “83W single-frequency narrow linewidth MOPA using large-core erbium-ytterbium co-doped fiber,” IEEE Photon. Technol. Lett.16(8), 1825–1827 (2004).
[CrossRef]

Alvarez-Chavez, J. A.

C. Alegria, Y. Jeong, C. Codemard, J. K. Sahu, J. A. Alvarez-Chavez, L. Fu, M. Ibsen, and J. Nilsson, “83W single-frequency narrow linewidth MOPA using large-core erbium-ytterbium co-doped fiber,” IEEE Photon. Technol. Lett.16(8), 1825–1827 (2004).
[CrossRef]

Archambault, J. L.

Babin, S. A.

S. A. Babin, D. V. Churkin, A. E. Ismagulov, S. I. Kablukov, and M. A. Nikulin, “Single frequency single polarization DFB fiber laser,” Laser Phys. Lett.4(6), 428–432 (2007).
[CrossRef]

Bennion, I.

W. Zhang, Y. C. Lai, J. A. R. Williams, C. Lu, L. Zhang, and I. Bennion, “A fibre grating DFB laser for generation of optical microwave signal,” Opt. Laser Technol.32(5), 369–371 (2000).
[CrossRef]

Biglary, M.

Blake, M.

J. H. Geng, S. Staines, Z. L. Wang, J. Zong, M. Blake, and S. B. Jiang, “Highly stable low-noise Brillouin fiber laser with ultrnarrow spectral linewidth,” IEEE Photon. Technol. Lett.18(17), 1813–1815 (2006).
[CrossRef]

Cheng, Y.

Churkin, D. V.

S. A. Babin, D. V. Churkin, A. E. Ismagulov, S. I. Kablukov, and M. A. Nikulin, “Single frequency single polarization DFB fiber laser,” Laser Phys. Lett.4(6), 428–432 (2007).
[CrossRef]

Codemard, C.

C. Alegria, Y. Jeong, C. Codemard, J. K. Sahu, J. A. Alvarez-Chavez, L. Fu, M. Ibsen, and J. Nilsson, “83W single-frequency narrow linewidth MOPA using large-core erbium-ytterbium co-doped fiber,” IEEE Photon. Technol. Lett.16(8), 1825–1827 (2004).
[CrossRef]

Debut, A.

Ezekiel, S.

Feng, S.

Q. Li, S. Feng, W. Peng, P. Liu, T. Feng, S. Tan, and F. Yan, “Photonic generation of microwave signal using a dual-wavelength fiber ring laser with fiber Bragg grating-based Fabry-Perot filter and saturable absorber,” Microw. Opt. Technol. Lett.54(9), 2074–2077 (2012).
[CrossRef]

Feng, T.

Q. Li, S. Feng, W. Peng, P. Liu, T. Feng, S. Tan, and F. Yan, “Photonic generation of microwave signal using a dual-wavelength fiber ring laser with fiber Bragg grating-based Fabry-Perot filter and saturable absorber,” Microw. Opt. Technol. Lett.54(9), 2074–2077 (2012).
[CrossRef]

Feng, Z. M.

Fu, L.

C. Alegria, Y. Jeong, C. Codemard, J. K. Sahu, J. A. Alvarez-Chavez, L. Fu, M. Ibsen, and J. Nilsson, “83W single-frequency narrow linewidth MOPA using large-core erbium-ytterbium co-doped fiber,” IEEE Photon. Technol. Lett.16(8), 1825–1827 (2004).
[CrossRef]

Geng, J. H.

J. H. Geng, S. Staines, Z. L. Wang, J. Zong, M. Blake, and S. B. Jiang, “Highly stable low-noise Brillouin fiber laser with ultrnarrow spectral linewidth,” IEEE Photon. Technol. Lett.18(17), 1813–1815 (2006).
[CrossRef]

C. Spiegelberg, J. H. Geng, Y. D. Hu, Y. Kaneda, S. B. Jiang, and N. Peyghambarian, “Low-noise narrow-linewidth fiber laser at 1550nm,” J. Lightwave Technol.22(1), 57–62 (2004).
[CrossRef]

Harun, S. W.

Hickey, L. M. B.

K. Yelen, L. M. B. Hickey, and M. N. Zervas, “A new design approach for fiber DFB lasers with improved efficiency,” IEEE J. Quantum Electron.40(6), 711–720 (2004).
[CrossRef]

Hu, Y. D.

Ibsen, M.

C. Alegria, Y. Jeong, C. Codemard, J. K. Sahu, J. A. Alvarez-Chavez, L. Fu, M. Ibsen, and J. Nilsson, “83W single-frequency narrow linewidth MOPA using large-core erbium-ytterbium co-doped fiber,” IEEE Photon. Technol. Lett.16(8), 1825–1827 (2004).
[CrossRef]

Ismagulov, A. E.

S. A. Babin, D. V. Churkin, A. E. Ismagulov, S. I. Kablukov, and M. A. Nikulin, “Single frequency single polarization DFB fiber laser,” Laser Phys. Lett.4(6), 428–432 (2007).
[CrossRef]

Jeong, Y.

C. Alegria, Y. Jeong, C. Codemard, J. K. Sahu, J. A. Alvarez-Chavez, L. Fu, M. Ibsen, and J. Nilsson, “83W single-frequency narrow linewidth MOPA using large-core erbium-ytterbium co-doped fiber,” IEEE Photon. Technol. Lett.16(8), 1825–1827 (2004).
[CrossRef]

Jia, C. L.

B. Liu, C. L. Jia, H. Zhang, and J. H. Luo, “DBR-fiber-laser-based active temperature sensor and its applications in the measurement of fiber birefringence,” Microw. Opt. Technol. Lett.52(1), 41–44 (2010).
[CrossRef]

Jiang, S. B.

J. H. Geng, S. Staines, Z. L. Wang, J. Zong, M. Blake, and S. B. Jiang, “Highly stable low-noise Brillouin fiber laser with ultrnarrow spectral linewidth,” IEEE Photon. Technol. Lett.18(17), 1813–1815 (2006).
[CrossRef]

C. Spiegelberg, J. H. Geng, Y. D. Hu, Y. Kaneda, S. B. Jiang, and N. Peyghambarian, “Low-noise narrow-linewidth fiber laser at 1550nm,” J. Lightwave Technol.22(1), 57–62 (2004).
[CrossRef]

Jiang, Z. H.

Kablukov, S. I.

S. A. Babin, D. V. Churkin, A. E. Ismagulov, S. I. Kablukov, and M. A. Nikulin, “Single frequency single polarization DFB fiber laser,” Laser Phys. Lett.4(6), 428–432 (2007).
[CrossRef]

Kaneda, Y.

Kringlebotn, J. T.

Lai, Y. C.

W. Zhang, Y. C. Lai, J. A. R. Williams, C. Lu, L. Zhang, and I. Bennion, “A fibre grating DFB laser for generation of optical microwave signal,” Opt. Laser Technol.32(5), 369–371 (2000).
[CrossRef]

Laming, R. I.

Li, Q.

Q. Li, S. Feng, W. Peng, P. Liu, T. Feng, S. Tan, and F. Yan, “Photonic generation of microwave signal using a dual-wavelength fiber ring laser with fiber Bragg grating-based Fabry-Perot filter and saturable absorber,” Microw. Opt. Technol. Lett.54(9), 2074–2077 (2012).
[CrossRef]

Liu, B.

B. Liu, C. L. Jia, H. Zhang, and J. H. Luo, “DBR-fiber-laser-based active temperature sensor and its applications in the measurement of fiber birefringence,” Microw. Opt. Technol. Lett.52(1), 41–44 (2010).
[CrossRef]

Liu, P.

Q. Li, S. Feng, W. Peng, P. Liu, T. Feng, S. Tan, and F. Yan, “Photonic generation of microwave signal using a dual-wavelength fiber ring laser with fiber Bragg grating-based Fabry-Perot filter and saturable absorber,” Microw. Opt. Technol. Lett.54(9), 2074–2077 (2012).
[CrossRef]

Liu, T.

Liu, Z. J.

P. Zhou, Z. J. Liu, X. L. Wang, Y. X. Ma, H. T. Ma, and X. J. Xu, “Coherent beam combining of two fiber amplifiers using stochastic parallel gradient descent algorithm,” Opt. Laser Technol.41(7), 853–856 (2009).
[CrossRef]

Loh, W. H.

Lu, C.

W. Zhang, Y. C. Lai, J. A. R. Williams, C. Lu, L. Zhang, and I. Bennion, “A fibre grating DFB laser for generation of optical microwave signal,” Opt. Laser Technol.32(5), 369–371 (2000).
[CrossRef]

Luo, J. H.

B. Liu, C. L. Jia, H. Zhang, and J. H. Luo, “DBR-fiber-laser-based active temperature sensor and its applications in the measurement of fiber birefringence,” Microw. Opt. Technol. Lett.52(1), 41–44 (2010).
[CrossRef]

Ma, H. T.

P. Zhou, Z. J. Liu, X. L. Wang, Y. X. Ma, H. T. Ma, and X. J. Xu, “Coherent beam combining of two fiber amplifiers using stochastic parallel gradient descent algorithm,” Opt. Laser Technol.41(7), 853–856 (2009).
[CrossRef]

Ma, Y. X.

P. Zhou, Z. J. Liu, X. L. Wang, Y. X. Ma, H. T. Ma, and X. J. Xu, “Coherent beam combining of two fiber amplifiers using stochastic parallel gradient descent algorithm,” Opt. Laser Technol.41(7), 853–856 (2009).
[CrossRef]

Mercer, L. B.

L. B. Mercer, “1/f frequency noise effects on self-heterodyne linewidth measurements,” J. Lightwave Technol.9(4), 485–493 (1991).
[CrossRef]

Nikulin, M. A.

S. A. Babin, D. V. Churkin, A. E. Ismagulov, S. I. Kablukov, and M. A. Nikulin, “Single frequency single polarization DFB fiber laser,” Laser Phys. Lett.4(6), 428–432 (2007).
[CrossRef]

Nilsson, J.

C. Alegria, Y. Jeong, C. Codemard, J. K. Sahu, J. A. Alvarez-Chavez, L. Fu, M. Ibsen, and J. Nilsson, “83W single-frequency narrow linewidth MOPA using large-core erbium-ytterbium co-doped fiber,” IEEE Photon. Technol. Lett.16(8), 1825–1827 (2004).
[CrossRef]

Payne, D. N.

Peng, W.

Q. Li, S. Feng, W. Peng, P. Liu, T. Feng, S. Tan, and F. Yan, “Photonic generation of microwave signal using a dual-wavelength fiber ring laser with fiber Bragg grating-based Fabry-Perot filter and saturable absorber,” Microw. Opt. Technol. Lett.54(9), 2074–2077 (2012).
[CrossRef]

Peyghambarian, N.

Radic, S.

G. P. Agrawal and S. Radic, “Phase-shifted fiber grating Bragg grating and their application for wavelength demultiplexing,” IEEE Photon. Technol. Lett.6(8), 995–997 (1994).
[CrossRef]

Randoux, S.

Reekie, L.

Sahu, J. K.

C. Alegria, Y. Jeong, C. Codemard, J. K. Sahu, J. A. Alvarez-Chavez, L. Fu, M. Ibsen, and J. Nilsson, “83W single-frequency narrow linewidth MOPA using large-core erbium-ytterbium co-doped fiber,” IEEE Photon. Technol. Lett.16(8), 1825–1827 (2004).
[CrossRef]

Shirazi, M. R.

Smith, S. P.

Spiegelberg, C.

Sshlgren, B.

H. StorØy, B. Sshlgren, and R. Stubbe, “Single polarisation fibre DFB laser,” Electron. Lett.33(1), 56–58 (1997).

Staines, S.

J. H. Geng, S. Staines, Z. L. Wang, J. Zong, M. Blake, and S. B. Jiang, “Highly stable low-noise Brillouin fiber laser with ultrnarrow spectral linewidth,” IEEE Photon. Technol. Lett.18(17), 1813–1815 (2006).
[CrossRef]

Stewart, G.

StorØy, H.

H. StorØy, B. Sshlgren, and R. Stubbe, “Single polarisation fibre DFB laser,” Electron. Lett.33(1), 56–58 (1997).

Stubbe, R.

H. StorØy, B. Sshlgren, and R. Stubbe, “Single polarisation fibre DFB laser,” Electron. Lett.33(1), 56–58 (1997).

Tan, S.

Q. Li, S. Feng, W. Peng, P. Liu, T. Feng, S. Tan, and F. Yan, “Photonic generation of microwave signal using a dual-wavelength fiber ring laser with fiber Bragg grating-based Fabry-Perot filter and saturable absorber,” Microw. Opt. Technol. Lett.54(9), 2074–2077 (2012).
[CrossRef]

Wang, X. L.

P. Zhou, Z. J. Liu, X. L. Wang, Y. X. Ma, H. T. Ma, and X. J. Xu, “Coherent beam combining of two fiber amplifiers using stochastic parallel gradient descent algorithm,” Opt. Laser Technol.41(7), 853–856 (2009).
[CrossRef]

Wang, Z. L.

J. H. Geng, S. Staines, Z. L. Wang, J. Zong, M. Blake, and S. B. Jiang, “Highly stable low-noise Brillouin fiber laser with ultrnarrow spectral linewidth,” IEEE Photon. Technol. Lett.18(17), 1813–1815 (2006).
[CrossRef]

Whitenett, G.

Williams, J. A. R.

W. Zhang, Y. C. Lai, J. A. R. Williams, C. Lu, L. Zhang, and I. Bennion, “A fibre grating DFB laser for generation of optical microwave signal,” Opt. Laser Technol.32(5), 369–371 (2000).
[CrossRef]

Xu, S. H.

Xu, X. J.

P. Zhou, Z. J. Liu, X. L. Wang, Y. X. Ma, H. T. Ma, and X. J. Xu, “Coherent beam combining of two fiber amplifiers using stochastic parallel gradient descent algorithm,” Opt. Laser Technol.41(7), 853–856 (2009).
[CrossRef]

Yan, F.

Q. Li, S. Feng, W. Peng, P. Liu, T. Feng, S. Tan, and F. Yan, “Photonic generation of microwave signal using a dual-wavelength fiber ring laser with fiber Bragg grating-based Fabry-Perot filter and saturable absorber,” Microw. Opt. Technol. Lett.54(9), 2074–2077 (2012).
[CrossRef]

Yang, Z. M.

Yelen, K.

K. Yelen, L. M. B. Hickey, and M. N. Zervas, “A new design approach for fiber DFB lasers with improved efficiency,” IEEE J. Quantum Electron.40(6), 711–720 (2004).
[CrossRef]

Zarinetchi, F.

Zemmouri, J.

Zervas, M. N.

K. Yelen, L. M. B. Hickey, and M. N. Zervas, “A new design approach for fiber DFB lasers with improved efficiency,” IEEE J. Quantum Electron.40(6), 711–720 (2004).
[CrossRef]

Zhang, H.

B. Liu, C. L. Jia, H. Zhang, and J. H. Luo, “DBR-fiber-laser-based active temperature sensor and its applications in the measurement of fiber birefringence,” Microw. Opt. Technol. Lett.52(1), 41–44 (2010).
[CrossRef]

Zhang, L.

W. Zhang, Y. C. Lai, J. A. R. Williams, C. Lu, L. Zhang, and I. Bennion, “A fibre grating DFB laser for generation of optical microwave signal,” Opt. Laser Technol.32(5), 369–371 (2000).
[CrossRef]

Zhang, Q. Y.

Zhang, W.

W. Zhang, Y. C. Lai, J. A. R. Williams, C. Lu, L. Zhang, and I. Bennion, “A fibre grating DFB laser for generation of optical microwave signal,” Opt. Laser Technol.32(5), 369–371 (2000).
[CrossRef]

Zhang, W. N.

Zhou, M.

Zhou, P.

P. Zhou, Z. J. Liu, X. L. Wang, Y. X. Ma, H. T. Ma, and X. J. Xu, “Coherent beam combining of two fiber amplifiers using stochastic parallel gradient descent algorithm,” Opt. Laser Technol.41(7), 853–856 (2009).
[CrossRef]

Zong, J.

J. H. Geng, S. Staines, Z. L. Wang, J. Zong, M. Blake, and S. B. Jiang, “Highly stable low-noise Brillouin fiber laser with ultrnarrow spectral linewidth,” IEEE Photon. Technol. Lett.18(17), 1813–1815 (2006).
[CrossRef]

Electron. Lett. (2)

W. H. Loh and R. I. Laming, “1.55µm phase-shifted distributed feedback fibre laser,” Electron. Lett.31(17), 1440–1442 (1995).
[CrossRef]

H. StorØy, B. Sshlgren, and R. Stubbe, “Single polarisation fibre DFB laser,” Electron. Lett.33(1), 56–58 (1997).

IEEE J. Quantum Electron. (1)

K. Yelen, L. M. B. Hickey, and M. N. Zervas, “A new design approach for fiber DFB lasers with improved efficiency,” IEEE J. Quantum Electron.40(6), 711–720 (2004).
[CrossRef]

IEEE Photon. Technol. Lett. (3)

C. Alegria, Y. Jeong, C. Codemard, J. K. Sahu, J. A. Alvarez-Chavez, L. Fu, M. Ibsen, and J. Nilsson, “83W single-frequency narrow linewidth MOPA using large-core erbium-ytterbium co-doped fiber,” IEEE Photon. Technol. Lett.16(8), 1825–1827 (2004).
[CrossRef]

J. H. Geng, S. Staines, Z. L. Wang, J. Zong, M. Blake, and S. B. Jiang, “Highly stable low-noise Brillouin fiber laser with ultrnarrow spectral linewidth,” IEEE Photon. Technol. Lett.18(17), 1813–1815 (2006).
[CrossRef]

G. P. Agrawal and S. Radic, “Phase-shifted fiber grating Bragg grating and their application for wavelength demultiplexing,” IEEE Photon. Technol. Lett.6(8), 995–997 (1994).
[CrossRef]

J. Lightwave Technol. (3)

J. Opt. Soc. Am. B (1)

Laser Phys. Lett. (1)

S. A. Babin, D. V. Churkin, A. E. Ismagulov, S. I. Kablukov, and M. A. Nikulin, “Single frequency single polarization DFB fiber laser,” Laser Phys. Lett.4(6), 428–432 (2007).
[CrossRef]

Microw. Opt. Technol. Lett. (2)

Q. Li, S. Feng, W. Peng, P. Liu, T. Feng, S. Tan, and F. Yan, “Photonic generation of microwave signal using a dual-wavelength fiber ring laser with fiber Bragg grating-based Fabry-Perot filter and saturable absorber,” Microw. Opt. Technol. Lett.54(9), 2074–2077 (2012).
[CrossRef]

B. Liu, C. L. Jia, H. Zhang, and J. H. Luo, “DBR-fiber-laser-based active temperature sensor and its applications in the measurement of fiber birefringence,” Microw. Opt. Technol. Lett.52(1), 41–44 (2010).
[CrossRef]

Opt. Express (1)

Opt. Laser Technol. (2)

P. Zhou, Z. J. Liu, X. L. Wang, Y. X. Ma, H. T. Ma, and X. J. Xu, “Coherent beam combining of two fiber amplifiers using stochastic parallel gradient descent algorithm,” Opt. Laser Technol.41(7), 853–856 (2009).
[CrossRef]

W. Zhang, Y. C. Lai, J. A. R. Williams, C. Lu, L. Zhang, and I. Bennion, “A fibre grating DFB laser for generation of optical microwave signal,” Opt. Laser Technol.32(5), 369–371 (2000).
[CrossRef]

Opt. Lett. (4)

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Experimental setup of the proposed DFB laser. (The inserted picture in the top right corner is the cross section of the homemade EDF under microscope.)

Fig. 2
Fig. 2

Transmission spectrum of the FBG (solid line) and phase shifted grating (dashed line).

Fig. 3
Fig. 3

Measured optical spectrum of the DFB laser.

Fig. 4
Fig. 4

Measured variation of the optical spectrum of the DFB laser with surrounding temperature.

Fig. 5
Fig. 5

Output power varies with the input power.

Fig. 6
Fig. 6

(a)Verification of the DFB fiber laser single longitude mode operation at the input power of 200mW; (b) Measured electrical spectrum (blue line) and Lorentz fitting curve (red line) of the DFB laser.

Metrics