Abstract

Although intrinsic hydrogenated amorphous silicon (a-Si:H) wire waveguides clad with normal SiO2 layers have low propagation loss of 2.7 ± 0.1 dB/cm for transverse electric (TE) mode in the 1550-nm range, the transparency degrades when interfaced with other dielectrics (e.g., air) and/or exposed to elevated temperatures due to degradation of surface passivation in the a-Si:H waveguides. The thermal stability of a-Si:H wire waveguides with various cladding layers is systematically investigated, showing that the a-Si:H wire waveguides are stable at annealing temperature lower than ~350°C, while they degrade quickly when annealed at a higher temperature. It indicates that the thermal stability is mainly determined by the annealing temperature rather than the annealing time, which may be attributed to quick evolution of weakly bonded hydrogen in the a-Si:H waveguides. A thin Si3N4 intercladding layer between SiO2 cladding and a-Si:H waveguide core may degrade transparency due to N-H bond absorption and is of no benefit to the thermal stability, thus its overall effect on the a-Si:H waveguides is detrimental.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Harke, M. Krause, and J. Mueller, “Low-loss single mode amorphous silicon waveguides,” Electron. Lett.41(25), 1377–1379 (2005).
    [CrossRef]
  2. R. A. Street, Hydrogenated Amorphous Silicon (Cambridge University Press, 1991).
  3. K. Narayanan, A. W. Elshaari, and S. F. Preble, “Broadband all-optical modulation in hydrogenated-amorphous silicon waveguides,” Opt. Express18(10), 9809–9814 (2010).
    [CrossRef] [PubMed]
  4. Y. Shoji, T. Ogasawara, T. Kamei, Y. Sakakibara, S. Suda, K. Kintaka, H. Kawashima, M. Okano, T. Hasama, H. Ishikawa, and M. Mori, “Ultrafast nonlinear effects in hydrogenated amorphous silicon wire waveguide,” Opt. Express18(6), 5668–5673 (2010).
    [CrossRef] [PubMed]
  5. F. G. Della Corte, S. Rao, G. Coppola, and C. Summonte, “Electro-optical modulation at 1550 nm in an as-deposited hydrogenated amorphous silicon p-i-n waveguiding device,” Opt. Express19(4), 2941–2951 (2011).
    [CrossRef] [PubMed]
  6. S. Rao, G. Coppola, M. A. Gioffrè, and F. G. Della Corte, “A 2.5 ns switching time Mach-Zehnder modulator in as-deposited a-Si:H,” Opt. Express20(9), 9351–9356 (2012).
    [CrossRef] [PubMed]
  7. A. Biberman, K. Preston, G. Hendry, N. Sherwood-Droz, J. Chan, and K. Bergman, “Photonic network-on-chip architectures using multilayer deposited silicon materials for high-performance chip multiprocessors,” ACM J. on Emerging Technologies in Computing Systems 7(2), DOI 10.1145 (2011).
  8. R. Sun, K. McComber, J. Cheng, D. K. Sparacin, M. Beals, J. Michel, and L. C. Kimerling, “Transparent amorphous silicon channel waveguides with silicon nitride intercladding layer,” Appl. Phys. Lett.94(14), 141108 (2009).
    [CrossRef]
  9. R. Sun, J. Cheng, J. Michel, and L. Kimerling, “Transparent amorphous silicon channel waveguides and high-Q resonators using a damascene process,” Opt. Lett.34(15), 2378–2380 (2009).
    [CrossRef] [PubMed]
  10. S. Y. Zhu, G. Q. Lo, and D. L. Kwong, “Low-loss amorphous silicon wire waveguide for integrated photonics: effect of fabrication process and the thermal stability,” Opt. Express18(24), 25283–25291 (2010).
    [CrossRef] [PubMed]
  11. P. K. Lim, W. K. Tam, L. F. Yeung, and F. M. Lam, “Effect of hydrogen on dangling bond in a-Si thin film,” J. of Phys.: Conference Series61, 708–712 (2007).
    [CrossRef]
  12. T. A. Li, F. W. Chen, A. Cuevas, and J. E. Cotter, “Thermal stability of microwave PECVD hydrogenated amorphous silicon as surface passivation for n-type heterojunction solar cells,” European Photovoltaic Solar Energy Conference 2007, ed. Conference Program Committee, WIP-Renewable Energies, Germany, 1326–1331 (2007).
  13. C. J. Arendse, D. Knoesen, and D. T. Britton, “Thermal stability of hot-wire deposited amorphous silicon,” Thin Solid Films501(1-2), 92–94 (2006).
    [CrossRef]
  14. S. K. Selvaraja, E. Sleeckx, M. Schaekers, W. Bogaerts, D. V. Thourhout, P. Dumon, and R. Baets, “Low-loss amorphous silicon-on-insulator technology for photonic integrated circuitry,” Opt. Commun.282(9), 1767–1770 (2009).
    [CrossRef]
  15. S. Y. Zhu, G. Q. Lo, and D. L. Kwong, “Components for silicon plasmonic nanocircuits based on horizontal Cu-SiO₂-Si-SiO₂-Cu nanoplasmonic waveguides,” Opt. Express20(6), 5867–5881 (2012).
    [CrossRef] [PubMed]
  16. J. Song, Y. Z. Li, X. Zhou, and X. Li, “A highly sensitive optical sensor design by integrating a circular-hole defect with an etched diffraction grating spectrometer on an amorphous-silicon photonic chip,” IEEE Photon. J.4(2), 317–326 (2012).
    [CrossRef]
  17. J. Kang, Y. Atsumi, M. Oda, T. Amemiya, N. Nishiyama, and S. Arai, “Low-loss amorphous silicon multilayer waveguides vertically stacked on silicon-on-insulator substrate,” Jpn. J. Appl. Phys.50, 120208 (2011).
    [CrossRef]
  18. S. C. Mao, S. H. Tao, Y. L. Xu, X. W. Sun, M. B. Yu, G. Q. Lo, and D. L. Kwong, “Low propagation loss SiN optical waveguide prepared by optimal low-hydrogen module,” Opt. Express16(25), 20809–20816 (2008).
    [CrossRef] [PubMed]

2012

2011

J. Kang, Y. Atsumi, M. Oda, T. Amemiya, N. Nishiyama, and S. Arai, “Low-loss amorphous silicon multilayer waveguides vertically stacked on silicon-on-insulator substrate,” Jpn. J. Appl. Phys.50, 120208 (2011).
[CrossRef]

F. G. Della Corte, S. Rao, G. Coppola, and C. Summonte, “Electro-optical modulation at 1550 nm in an as-deposited hydrogenated amorphous silicon p-i-n waveguiding device,” Opt. Express19(4), 2941–2951 (2011).
[CrossRef] [PubMed]

2010

2009

R. Sun, K. McComber, J. Cheng, D. K. Sparacin, M. Beals, J. Michel, and L. C. Kimerling, “Transparent amorphous silicon channel waveguides with silicon nitride intercladding layer,” Appl. Phys. Lett.94(14), 141108 (2009).
[CrossRef]

R. Sun, J. Cheng, J. Michel, and L. Kimerling, “Transparent amorphous silicon channel waveguides and high-Q resonators using a damascene process,” Opt. Lett.34(15), 2378–2380 (2009).
[CrossRef] [PubMed]

S. K. Selvaraja, E. Sleeckx, M. Schaekers, W. Bogaerts, D. V. Thourhout, P. Dumon, and R. Baets, “Low-loss amorphous silicon-on-insulator technology for photonic integrated circuitry,” Opt. Commun.282(9), 1767–1770 (2009).
[CrossRef]

2008

2007

P. K. Lim, W. K. Tam, L. F. Yeung, and F. M. Lam, “Effect of hydrogen on dangling bond in a-Si thin film,” J. of Phys.: Conference Series61, 708–712 (2007).
[CrossRef]

2006

C. J. Arendse, D. Knoesen, and D. T. Britton, “Thermal stability of hot-wire deposited amorphous silicon,” Thin Solid Films501(1-2), 92–94 (2006).
[CrossRef]

2005

A. Harke, M. Krause, and J. Mueller, “Low-loss single mode amorphous silicon waveguides,” Electron. Lett.41(25), 1377–1379 (2005).
[CrossRef]

Amemiya, T.

J. Kang, Y. Atsumi, M. Oda, T. Amemiya, N. Nishiyama, and S. Arai, “Low-loss amorphous silicon multilayer waveguides vertically stacked on silicon-on-insulator substrate,” Jpn. J. Appl. Phys.50, 120208 (2011).
[CrossRef]

Arai, S.

J. Kang, Y. Atsumi, M. Oda, T. Amemiya, N. Nishiyama, and S. Arai, “Low-loss amorphous silicon multilayer waveguides vertically stacked on silicon-on-insulator substrate,” Jpn. J. Appl. Phys.50, 120208 (2011).
[CrossRef]

Arendse, C. J.

C. J. Arendse, D. Knoesen, and D. T. Britton, “Thermal stability of hot-wire deposited amorphous silicon,” Thin Solid Films501(1-2), 92–94 (2006).
[CrossRef]

Atsumi, Y.

J. Kang, Y. Atsumi, M. Oda, T. Amemiya, N. Nishiyama, and S. Arai, “Low-loss amorphous silicon multilayer waveguides vertically stacked on silicon-on-insulator substrate,” Jpn. J. Appl. Phys.50, 120208 (2011).
[CrossRef]

Baets, R.

S. K. Selvaraja, E. Sleeckx, M. Schaekers, W. Bogaerts, D. V. Thourhout, P. Dumon, and R. Baets, “Low-loss amorphous silicon-on-insulator technology for photonic integrated circuitry,” Opt. Commun.282(9), 1767–1770 (2009).
[CrossRef]

Beals, M.

R. Sun, K. McComber, J. Cheng, D. K. Sparacin, M. Beals, J. Michel, and L. C. Kimerling, “Transparent amorphous silicon channel waveguides with silicon nitride intercladding layer,” Appl. Phys. Lett.94(14), 141108 (2009).
[CrossRef]

Bogaerts, W.

S. K. Selvaraja, E. Sleeckx, M. Schaekers, W. Bogaerts, D. V. Thourhout, P. Dumon, and R. Baets, “Low-loss amorphous silicon-on-insulator technology for photonic integrated circuitry,” Opt. Commun.282(9), 1767–1770 (2009).
[CrossRef]

Britton, D. T.

C. J. Arendse, D. Knoesen, and D. T. Britton, “Thermal stability of hot-wire deposited amorphous silicon,” Thin Solid Films501(1-2), 92–94 (2006).
[CrossRef]

Cheng, J.

R. Sun, K. McComber, J. Cheng, D. K. Sparacin, M. Beals, J. Michel, and L. C. Kimerling, “Transparent amorphous silicon channel waveguides with silicon nitride intercladding layer,” Appl. Phys. Lett.94(14), 141108 (2009).
[CrossRef]

R. Sun, J. Cheng, J. Michel, and L. Kimerling, “Transparent amorphous silicon channel waveguides and high-Q resonators using a damascene process,” Opt. Lett.34(15), 2378–2380 (2009).
[CrossRef] [PubMed]

Coppola, G.

Della Corte, F. G.

Dumon, P.

S. K. Selvaraja, E. Sleeckx, M. Schaekers, W. Bogaerts, D. V. Thourhout, P. Dumon, and R. Baets, “Low-loss amorphous silicon-on-insulator technology for photonic integrated circuitry,” Opt. Commun.282(9), 1767–1770 (2009).
[CrossRef]

Elshaari, A. W.

Gioffrè, M. A.

Harke, A.

A. Harke, M. Krause, and J. Mueller, “Low-loss single mode amorphous silicon waveguides,” Electron. Lett.41(25), 1377–1379 (2005).
[CrossRef]

Hasama, T.

Ishikawa, H.

Kamei, T.

Kang, J.

J. Kang, Y. Atsumi, M. Oda, T. Amemiya, N. Nishiyama, and S. Arai, “Low-loss amorphous silicon multilayer waveguides vertically stacked on silicon-on-insulator substrate,” Jpn. J. Appl. Phys.50, 120208 (2011).
[CrossRef]

Kawashima, H.

Kimerling, L.

Kimerling, L. C.

R. Sun, K. McComber, J. Cheng, D. K. Sparacin, M. Beals, J. Michel, and L. C. Kimerling, “Transparent amorphous silicon channel waveguides with silicon nitride intercladding layer,” Appl. Phys. Lett.94(14), 141108 (2009).
[CrossRef]

Kintaka, K.

Knoesen, D.

C. J. Arendse, D. Knoesen, and D. T. Britton, “Thermal stability of hot-wire deposited amorphous silicon,” Thin Solid Films501(1-2), 92–94 (2006).
[CrossRef]

Krause, M.

A. Harke, M. Krause, and J. Mueller, “Low-loss single mode amorphous silicon waveguides,” Electron. Lett.41(25), 1377–1379 (2005).
[CrossRef]

Kwong, D. L.

Lam, F. M.

P. K. Lim, W. K. Tam, L. F. Yeung, and F. M. Lam, “Effect of hydrogen on dangling bond in a-Si thin film,” J. of Phys.: Conference Series61, 708–712 (2007).
[CrossRef]

Li, X.

J. Song, Y. Z. Li, X. Zhou, and X. Li, “A highly sensitive optical sensor design by integrating a circular-hole defect with an etched diffraction grating spectrometer on an amorphous-silicon photonic chip,” IEEE Photon. J.4(2), 317–326 (2012).
[CrossRef]

Li, Y. Z.

J. Song, Y. Z. Li, X. Zhou, and X. Li, “A highly sensitive optical sensor design by integrating a circular-hole defect with an etched diffraction grating spectrometer on an amorphous-silicon photonic chip,” IEEE Photon. J.4(2), 317–326 (2012).
[CrossRef]

Lim, P. K.

P. K. Lim, W. K. Tam, L. F. Yeung, and F. M. Lam, “Effect of hydrogen on dangling bond in a-Si thin film,” J. of Phys.: Conference Series61, 708–712 (2007).
[CrossRef]

Lo, G. Q.

Mao, S. C.

McComber, K.

R. Sun, K. McComber, J. Cheng, D. K. Sparacin, M. Beals, J. Michel, and L. C. Kimerling, “Transparent amorphous silicon channel waveguides with silicon nitride intercladding layer,” Appl. Phys. Lett.94(14), 141108 (2009).
[CrossRef]

Michel, J.

R. Sun, K. McComber, J. Cheng, D. K. Sparacin, M. Beals, J. Michel, and L. C. Kimerling, “Transparent amorphous silicon channel waveguides with silicon nitride intercladding layer,” Appl. Phys. Lett.94(14), 141108 (2009).
[CrossRef]

R. Sun, J. Cheng, J. Michel, and L. Kimerling, “Transparent amorphous silicon channel waveguides and high-Q resonators using a damascene process,” Opt. Lett.34(15), 2378–2380 (2009).
[CrossRef] [PubMed]

Mori, M.

Mueller, J.

A. Harke, M. Krause, and J. Mueller, “Low-loss single mode amorphous silicon waveguides,” Electron. Lett.41(25), 1377–1379 (2005).
[CrossRef]

Narayanan, K.

Nishiyama, N.

J. Kang, Y. Atsumi, M. Oda, T. Amemiya, N. Nishiyama, and S. Arai, “Low-loss amorphous silicon multilayer waveguides vertically stacked on silicon-on-insulator substrate,” Jpn. J. Appl. Phys.50, 120208 (2011).
[CrossRef]

Oda, M.

J. Kang, Y. Atsumi, M. Oda, T. Amemiya, N. Nishiyama, and S. Arai, “Low-loss amorphous silicon multilayer waveguides vertically stacked on silicon-on-insulator substrate,” Jpn. J. Appl. Phys.50, 120208 (2011).
[CrossRef]

Ogasawara, T.

Okano, M.

Preble, S. F.

Rao, S.

Sakakibara, Y.

Schaekers, M.

S. K. Selvaraja, E. Sleeckx, M. Schaekers, W. Bogaerts, D. V. Thourhout, P. Dumon, and R. Baets, “Low-loss amorphous silicon-on-insulator technology for photonic integrated circuitry,” Opt. Commun.282(9), 1767–1770 (2009).
[CrossRef]

Selvaraja, S. K.

S. K. Selvaraja, E. Sleeckx, M. Schaekers, W. Bogaerts, D. V. Thourhout, P. Dumon, and R. Baets, “Low-loss amorphous silicon-on-insulator technology for photonic integrated circuitry,” Opt. Commun.282(9), 1767–1770 (2009).
[CrossRef]

Shoji, Y.

Sleeckx, E.

S. K. Selvaraja, E. Sleeckx, M. Schaekers, W. Bogaerts, D. V. Thourhout, P. Dumon, and R. Baets, “Low-loss amorphous silicon-on-insulator technology for photonic integrated circuitry,” Opt. Commun.282(9), 1767–1770 (2009).
[CrossRef]

Song, J.

J. Song, Y. Z. Li, X. Zhou, and X. Li, “A highly sensitive optical sensor design by integrating a circular-hole defect with an etched diffraction grating spectrometer on an amorphous-silicon photonic chip,” IEEE Photon. J.4(2), 317–326 (2012).
[CrossRef]

Sparacin, D. K.

R. Sun, K. McComber, J. Cheng, D. K. Sparacin, M. Beals, J. Michel, and L. C. Kimerling, “Transparent amorphous silicon channel waveguides with silicon nitride intercladding layer,” Appl. Phys. Lett.94(14), 141108 (2009).
[CrossRef]

Suda, S.

Summonte, C.

Sun, R.

R. Sun, K. McComber, J. Cheng, D. K. Sparacin, M. Beals, J. Michel, and L. C. Kimerling, “Transparent amorphous silicon channel waveguides with silicon nitride intercladding layer,” Appl. Phys. Lett.94(14), 141108 (2009).
[CrossRef]

R. Sun, J. Cheng, J. Michel, and L. Kimerling, “Transparent amorphous silicon channel waveguides and high-Q resonators using a damascene process,” Opt. Lett.34(15), 2378–2380 (2009).
[CrossRef] [PubMed]

Sun, X. W.

Tam, W. K.

P. K. Lim, W. K. Tam, L. F. Yeung, and F. M. Lam, “Effect of hydrogen on dangling bond in a-Si thin film,” J. of Phys.: Conference Series61, 708–712 (2007).
[CrossRef]

Tao, S. H.

Thourhout, D. V.

S. K. Selvaraja, E. Sleeckx, M. Schaekers, W. Bogaerts, D. V. Thourhout, P. Dumon, and R. Baets, “Low-loss amorphous silicon-on-insulator technology for photonic integrated circuitry,” Opt. Commun.282(9), 1767–1770 (2009).
[CrossRef]

Xu, Y. L.

Yeung, L. F.

P. K. Lim, W. K. Tam, L. F. Yeung, and F. M. Lam, “Effect of hydrogen on dangling bond in a-Si thin film,” J. of Phys.: Conference Series61, 708–712 (2007).
[CrossRef]

Yu, M. B.

Zhou, X.

J. Song, Y. Z. Li, X. Zhou, and X. Li, “A highly sensitive optical sensor design by integrating a circular-hole defect with an etched diffraction grating spectrometer on an amorphous-silicon photonic chip,” IEEE Photon. J.4(2), 317–326 (2012).
[CrossRef]

Zhu, S. Y.

Appl. Phys. Lett.

R. Sun, K. McComber, J. Cheng, D. K. Sparacin, M. Beals, J. Michel, and L. C. Kimerling, “Transparent amorphous silicon channel waveguides with silicon nitride intercladding layer,” Appl. Phys. Lett.94(14), 141108 (2009).
[CrossRef]

Electron. Lett.

A. Harke, M. Krause, and J. Mueller, “Low-loss single mode amorphous silicon waveguides,” Electron. Lett.41(25), 1377–1379 (2005).
[CrossRef]

IEEE Photon. J.

J. Song, Y. Z. Li, X. Zhou, and X. Li, “A highly sensitive optical sensor design by integrating a circular-hole defect with an etched diffraction grating spectrometer on an amorphous-silicon photonic chip,” IEEE Photon. J.4(2), 317–326 (2012).
[CrossRef]

J. of Phys.: Conference Series

P. K. Lim, W. K. Tam, L. F. Yeung, and F. M. Lam, “Effect of hydrogen on dangling bond in a-Si thin film,” J. of Phys.: Conference Series61, 708–712 (2007).
[CrossRef]

Jpn. J. Appl. Phys.

J. Kang, Y. Atsumi, M. Oda, T. Amemiya, N. Nishiyama, and S. Arai, “Low-loss amorphous silicon multilayer waveguides vertically stacked on silicon-on-insulator substrate,” Jpn. J. Appl. Phys.50, 120208 (2011).
[CrossRef]

Opt. Commun.

S. K. Selvaraja, E. Sleeckx, M. Schaekers, W. Bogaerts, D. V. Thourhout, P. Dumon, and R. Baets, “Low-loss amorphous silicon-on-insulator technology for photonic integrated circuitry,” Opt. Commun.282(9), 1767–1770 (2009).
[CrossRef]

Opt. Express

Y. Shoji, T. Ogasawara, T. Kamei, Y. Sakakibara, S. Suda, K. Kintaka, H. Kawashima, M. Okano, T. Hasama, H. Ishikawa, and M. Mori, “Ultrafast nonlinear effects in hydrogenated amorphous silicon wire waveguide,” Opt. Express18(6), 5668–5673 (2010).
[CrossRef] [PubMed]

K. Narayanan, A. W. Elshaari, and S. F. Preble, “Broadband all-optical modulation in hydrogenated-amorphous silicon waveguides,” Opt. Express18(10), 9809–9814 (2010).
[CrossRef] [PubMed]

S. Y. Zhu, G. Q. Lo, and D. L. Kwong, “Low-loss amorphous silicon wire waveguide for integrated photonics: effect of fabrication process and the thermal stability,” Opt. Express18(24), 25283–25291 (2010).
[CrossRef] [PubMed]

F. G. Della Corte, S. Rao, G. Coppola, and C. Summonte, “Electro-optical modulation at 1550 nm in an as-deposited hydrogenated amorphous silicon p-i-n waveguiding device,” Opt. Express19(4), 2941–2951 (2011).
[CrossRef] [PubMed]

S. Y. Zhu, G. Q. Lo, and D. L. Kwong, “Components for silicon plasmonic nanocircuits based on horizontal Cu-SiO₂-Si-SiO₂-Cu nanoplasmonic waveguides,” Opt. Express20(6), 5867–5881 (2012).
[CrossRef] [PubMed]

S. Rao, G. Coppola, M. A. Gioffrè, and F. G. Della Corte, “A 2.5 ns switching time Mach-Zehnder modulator in as-deposited a-Si:H,” Opt. Express20(9), 9351–9356 (2012).
[CrossRef] [PubMed]

S. C. Mao, S. H. Tao, Y. L. Xu, X. W. Sun, M. B. Yu, G. Q. Lo, and D. L. Kwong, “Low propagation loss SiN optical waveguide prepared by optimal low-hydrogen module,” Opt. Express16(25), 20809–20816 (2008).
[CrossRef] [PubMed]

Opt. Lett.

Thin Solid Films

C. J. Arendse, D. Knoesen, and D. T. Britton, “Thermal stability of hot-wire deposited amorphous silicon,” Thin Solid Films501(1-2), 92–94 (2006).
[CrossRef]

Other

T. A. Li, F. W. Chen, A. Cuevas, and J. E. Cotter, “Thermal stability of microwave PECVD hydrogenated amorphous silicon as surface passivation for n-type heterojunction solar cells,” European Photovoltaic Solar Energy Conference 2007, ed. Conference Program Committee, WIP-Renewable Energies, Germany, 1326–1331 (2007).

R. A. Street, Hydrogenated Amorphous Silicon (Cambridge University Press, 1991).

A. Biberman, K. Preston, G. Hendry, N. Sherwood-Droz, J. Chan, and K. Bergman, “Photonic network-on-chip architectures using multilayer deposited silicon materials for high-performance chip multiprocessors,” ACM J. on Emerging Technologies in Computing Systems 7(2), DOI 10.1145 (2011).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

XTEM images for S4, S6, and S8 samples, the indicated thicknesses of surrounding Si3N4 are measured from the enlarged XTEM images, other samples have similar a-Si:H waveguide core profile.

Fig. 2
Fig. 2

Surface roughness measured by AFM for (a) the initial 2-μm PECVD SiO2, (b) after 220-nm a-Si film deposition; and (c) after additional 20-nm Si3N4 deposition.

Fig. 3
Fig. 3

Output light power versus waveguide length for some samples measured at TE mode in 1550 nm. For samples with relatively low propagation loss, linear fitting is made for all 7 data points to extract the propagation loss (shown by solid lines). For samples with large propagation loss, the propagation loss is estimated from output powers measured on short waveguides by assuming that its coupler loss is only slightly larger than that extracted from low loss waveguides (shown by the dotted lines).

Fig. 4
Fig. 4

Propagation loss versus annealing temperature for various a-Si:H wire waveguide listed in Table 1 after isochronal RTA in N2 ambient for 20 min.

Fig. 5
Fig. 5

Propagation loss versus annealing time for various a-Si:H wire waveguide listed in Table 1 after isothermal RTA in N2 ambient at 400°C.

Fig. 6
Fig. 6

Propagation losses for various a-Si:H waveguides listed in Table 1 after RTA in N2 ambient at 500°C for 20 sec (shown as solid circles), their initial propagation losses are also shown (open squares) for comparison.

Tables (1)

Tables Icon

Table 1 Propagation losses of 220-nm (height) × 500-nm (width) a-Si:H wire waveguides with various cladding layers at TE mode in 1550 nm range

Metrics