Abstract

We generated tunable 2-μm optical vortex pulses with a topological charge of 1 or 2 in the wavelength range 1.953–2.158 μm by realizing anisotropic transfer of the topological charge from the pump beam to the signal output in a vortex-pumped half-symmetric optical parametric oscillator. A maximum vortex output energy of 2.1 mJ was obtained at a pump energy of 22.8 mJ, which corresponds to a slope efficiency of 15%. The topological charges of the signal and idler output were investigated using a shearing interferometric technique employing a low-spatial-frequency transmission grating.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerdman, “Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes,” Phys. Rev. A45(11), 8185–8189 (1992).
    [CrossRef] [PubMed]
  2. G. Indebetouw, “Optical vortices and their propagation,” J. Mod. Opt.40(1), 73–87 (1993).
    [CrossRef]
  3. M. Padgett, J. Courtial, and L. Allen, “Light’s orbital angular momentum,” Phys. Today57(5), 35–40 (2004).
    [CrossRef]
  4. M. S. Soskin and M. V. Vasnetsov, “Singular optics,” in Progress in Optics42, E. Wolf, ed., (Elsevier, 2001) pp. 219–176.
  5. A. M. Yao and M. J. Padgett, “Orbital angular momentum: origins, behavior and applications,” Adv. Opt. Photon3(2), 161–204 (2011).
    [CrossRef]
  6. D. G. Grier, “A revolution in optical manipulation,” Nature424(6950), 810–816 (2003).
    [CrossRef] [PubMed]
  7. J. E. Curtis, B. A. Koss, and D. G. Grier, “Dynamic holographic optical tweezers,” Opt. Commun.207(1-6), 169–175 (2002).
    [CrossRef]
  8. T. Kuga, Y. Torii, N. Shiokawa, T. Hirano, Y. Shimizu, and H. Sasada, “Novel optical trap of atoms with a doughnut beam,” Phys. Rev. Lett.78(25), 4713–4716 (1997).
    [CrossRef]
  9. S. Bretschneider, C. Eggeling, and S. W. Hell, “Breaking the diffraction barrier in fluorescence microscopy by optical shelving,” Phys. Rev. Lett.98(21), 218103 (2007).
    [CrossRef] [PubMed]
  10. A. Mair, A. Vaziri, G. Weihs, and A. Zeilinger, “Entanglement of the orbital angular momentum states of photons,” Nature412(6844), 313–316 (2001).
    [CrossRef] [PubMed]
  11. G. Gibson, J. Courtial, M. J. Padgett, M. Vasnetsov, V. Pas’ko, S. M. Barnett, and S. Franke-Arnold, “Free-space information transfer using light beams carrying orbital angular momentum,” Opt. Express12(22), 5448–5456 (2004), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-12-22-5448 .
    [CrossRef] [PubMed]
  12. Y. Ueno, Y. Toda, S. Adachi, R. Morita, and T. Tawara, “Coherent transfer of orbital angular momentum to excitons by optical four-wave mixing,” Opt. Express17(22), 20567–20574 (2009), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-17-22-20567 .
    [CrossRef] [PubMed]
  13. Y. Tokizane, K. Shimatake, Y. Toda, K. Oka, M. Tsubota, S. Tanda, and R. Morita, “Global evaluation of closed-loop electron dynamics in quasi-one-dimensional conductors using polarization vortices,” Opt. Express17(26), 24198–24207 (2009), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-17-26-24198 .
    [CrossRef] [PubMed]
  14. T. Omatsu, K. Chujo, K. Miyamoto, M. Okida, K. Nakamura, N. Aoki, and R. Morita, “Metal microneedle fabrication using twisted light with spin,” Opt. Express18(17), 17967–17973 (2010), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-18-17-17967 .
    [CrossRef] [PubMed]
  15. K. Toyoda, K. Miyamoto, N. Aoki, R. Morita, and T. Omatsu, “Using Optical Vortex To Control the Chirality of Twisted Metal Nanostructures,” Nano Lett.12(7), 3645–3649 (2012), doi:.
    [CrossRef] [PubMed]
  16. I. G. Mariyenko, J. Strohaber, and C. J. G. J. Uiterwaal, “Creation of optical vortices in femtosecond pulses,” Opt. Express13(19), 7599–7608 (2005), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-13-19-7599 .
    [CrossRef] [PubMed]
  17. J. Leach and M. J. Padgett, “Observation of chromatic effects near a white-light vortex,” New J. Phys. 5 (1), 154–1–7 (2003).
  18. J. W. Kim, J. I. Mackenzie, J. R. Hayes, and W. A. Clarkson, “High power Er:YAG laser with radially-polarized Laguerre-Gaussian (LG01) mode output,” Opt. Express19(15), 14526–14531 (2011), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-19-15-14526 .
    [CrossRef] [PubMed]
  19. M. Okida, Y. Hayashi, T. Omatsu, J. Hamazaki, and R. Morita, “Characterization of 1.06 μm optical vortex laser based on a side-pumped Nd:GdVO4 bounce oscillator,” Appl. Phys. B95(1), 69–73 (2009).
    [CrossRef]
  20. M. Okida, T. Omatsu, M. Itoh, and T. Yatagai, “Direct generation of high power Laguerre-Gaussian output from a diode-pumped Nd:YVO4 1.3-μm bounce laser,”,” Opt. Express15(12), 7616–7622 (2007), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-15-12-7616 .
    [CrossRef] [PubMed]
  21. M. Koyama, T. Hirose, M. Okida, K. Miyamoto, and T. Omatsu, “Nanosecond vortex laser pulses with millijoule pulse energies from a Yb-doped double-clad fiber power amplifier,” Opt. Express19(15), 14420–14425 (2011), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-19-15-14420 .
    [CrossRef] [PubMed]
  22. E. A. Raymond, T. L. Tarbuck, M. G. Brown, and G. L. Richmond, “Hydrogen-Bonding Interactions at the Vapor/Water Interface Investigated by Vibrational Sum-Frequency Spectroscopy of HOD/H2O/D2O Mixtures and Molecular Dynamics Simulations,” J. Phys. Chem. B107(2), 546–556 (2003).
    [CrossRef]
  23. R. A. Shaw, S. Kotowich, H. H. Mantsch, and M. Leroux, “Quantitation of protein, creatinine, and urea in urine by near-infrared spectroscopy,” Clin. Biochem.29(1), 11–19 (1996).
    [CrossRef] [PubMed]
  24. K. Miyamoto, S. Miyagi, M. Yamada, K. Furuki, N. Aoki, M. Okida, and T. Omatsu, “Optical vortex pumped mid-infrared optical parametric oscillator,” Opt. Express19(13), 12220–12226 (2011), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-19-13-12220 .
    [CrossRef] [PubMed]
  25. K. Miyamoto and H. Ito, “Wavelength-agile mid-infrared (5-10 microm) generation using a galvano-controlled KTiOPO4 optical parametric oscillator,” Opt. Lett.32(3), 274–276 (2007).
    [CrossRef] [PubMed]
  26. S. S. R. Oemrawsingh, J. A. W. van Houwelingen, E. R. Eliel, J. P. Woerdman, E. J. K. Verstegen, J. G. Kloosterboer, and G. W. ’t Hooft, “Production and characterization of spiral phase plates for optical wavelengths,” Appl. Opt.43(3), 688–694 (2004).
    [CrossRef] [PubMed]
  27. K. Kato and E. Takaoka, “Sellmeier and thermo-optic dispersion formulas for KTP,” Appl. Opt.41(24), 5040–5044 (2002).
    [CrossRef] [PubMed]
  28. K. Dholakia, N. B. Simpson, M. J. Padgett, and L. Allen, “Second-harmonic generation and the orbital angular momentum of light,” Phys. Rev. A54(5), R3742–R3745 (1996).
    [CrossRef] [PubMed]
  29. M. Martinelli, J. A. O. Huguenin, P. Nussenzveig, and A. Z. Khoury, “Orbital angular momentum exchange in an optical parametric oscillator,” Phys. Rev. A70(1), 013812 (2004).
    [CrossRef]

2012 (1)

K. Toyoda, K. Miyamoto, N. Aoki, R. Morita, and T. Omatsu, “Using Optical Vortex To Control the Chirality of Twisted Metal Nanostructures,” Nano Lett.12(7), 3645–3649 (2012), doi:.
[CrossRef] [PubMed]

2011 (4)

2010 (1)

2009 (3)

2007 (3)

2005 (1)

2004 (4)

2003 (2)

E. A. Raymond, T. L. Tarbuck, M. G. Brown, and G. L. Richmond, “Hydrogen-Bonding Interactions at the Vapor/Water Interface Investigated by Vibrational Sum-Frequency Spectroscopy of HOD/H2O/D2O Mixtures and Molecular Dynamics Simulations,” J. Phys. Chem. B107(2), 546–556 (2003).
[CrossRef]

D. G. Grier, “A revolution in optical manipulation,” Nature424(6950), 810–816 (2003).
[CrossRef] [PubMed]

2002 (2)

J. E. Curtis, B. A. Koss, and D. G. Grier, “Dynamic holographic optical tweezers,” Opt. Commun.207(1-6), 169–175 (2002).
[CrossRef]

K. Kato and E. Takaoka, “Sellmeier and thermo-optic dispersion formulas for KTP,” Appl. Opt.41(24), 5040–5044 (2002).
[CrossRef] [PubMed]

2001 (1)

A. Mair, A. Vaziri, G. Weihs, and A. Zeilinger, “Entanglement of the orbital angular momentum states of photons,” Nature412(6844), 313–316 (2001).
[CrossRef] [PubMed]

1997 (1)

T. Kuga, Y. Torii, N. Shiokawa, T. Hirano, Y. Shimizu, and H. Sasada, “Novel optical trap of atoms with a doughnut beam,” Phys. Rev. Lett.78(25), 4713–4716 (1997).
[CrossRef]

1996 (2)

R. A. Shaw, S. Kotowich, H. H. Mantsch, and M. Leroux, “Quantitation of protein, creatinine, and urea in urine by near-infrared spectroscopy,” Clin. Biochem.29(1), 11–19 (1996).
[CrossRef] [PubMed]

K. Dholakia, N. B. Simpson, M. J. Padgett, and L. Allen, “Second-harmonic generation and the orbital angular momentum of light,” Phys. Rev. A54(5), R3742–R3745 (1996).
[CrossRef] [PubMed]

1993 (1)

G. Indebetouw, “Optical vortices and their propagation,” J. Mod. Opt.40(1), 73–87 (1993).
[CrossRef]

1992 (1)

L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerdman, “Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes,” Phys. Rev. A45(11), 8185–8189 (1992).
[CrossRef] [PubMed]

’t Hooft, G. W.

Adachi, S.

Allen, L.

M. Padgett, J. Courtial, and L. Allen, “Light’s orbital angular momentum,” Phys. Today57(5), 35–40 (2004).
[CrossRef]

K. Dholakia, N. B. Simpson, M. J. Padgett, and L. Allen, “Second-harmonic generation and the orbital angular momentum of light,” Phys. Rev. A54(5), R3742–R3745 (1996).
[CrossRef] [PubMed]

L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerdman, “Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes,” Phys. Rev. A45(11), 8185–8189 (1992).
[CrossRef] [PubMed]

Aoki, N.

Barnett, S. M.

Beijersbergen, M. W.

L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerdman, “Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes,” Phys. Rev. A45(11), 8185–8189 (1992).
[CrossRef] [PubMed]

Bretschneider, S.

S. Bretschneider, C. Eggeling, and S. W. Hell, “Breaking the diffraction barrier in fluorescence microscopy by optical shelving,” Phys. Rev. Lett.98(21), 218103 (2007).
[CrossRef] [PubMed]

Brown, M. G.

E. A. Raymond, T. L. Tarbuck, M. G. Brown, and G. L. Richmond, “Hydrogen-Bonding Interactions at the Vapor/Water Interface Investigated by Vibrational Sum-Frequency Spectroscopy of HOD/H2O/D2O Mixtures and Molecular Dynamics Simulations,” J. Phys. Chem. B107(2), 546–556 (2003).
[CrossRef]

Chujo, K.

Clarkson, W. A.

Courtial, J.

Curtis, J. E.

J. E. Curtis, B. A. Koss, and D. G. Grier, “Dynamic holographic optical tweezers,” Opt. Commun.207(1-6), 169–175 (2002).
[CrossRef]

Dholakia, K.

K. Dholakia, N. B. Simpson, M. J. Padgett, and L. Allen, “Second-harmonic generation and the orbital angular momentum of light,” Phys. Rev. A54(5), R3742–R3745 (1996).
[CrossRef] [PubMed]

Eggeling, C.

S. Bretschneider, C. Eggeling, and S. W. Hell, “Breaking the diffraction barrier in fluorescence microscopy by optical shelving,” Phys. Rev. Lett.98(21), 218103 (2007).
[CrossRef] [PubMed]

Eliel, E. R.

Franke-Arnold, S.

Furuki, K.

Gibson, G.

Grier, D. G.

D. G. Grier, “A revolution in optical manipulation,” Nature424(6950), 810–816 (2003).
[CrossRef] [PubMed]

J. E. Curtis, B. A. Koss, and D. G. Grier, “Dynamic holographic optical tweezers,” Opt. Commun.207(1-6), 169–175 (2002).
[CrossRef]

Hamazaki, J.

M. Okida, Y. Hayashi, T. Omatsu, J. Hamazaki, and R. Morita, “Characterization of 1.06 μm optical vortex laser based on a side-pumped Nd:GdVO4 bounce oscillator,” Appl. Phys. B95(1), 69–73 (2009).
[CrossRef]

Hayashi, Y.

M. Okida, Y. Hayashi, T. Omatsu, J. Hamazaki, and R. Morita, “Characterization of 1.06 μm optical vortex laser based on a side-pumped Nd:GdVO4 bounce oscillator,” Appl. Phys. B95(1), 69–73 (2009).
[CrossRef]

Hayes, J. R.

Hell, S. W.

S. Bretschneider, C. Eggeling, and S. W. Hell, “Breaking the diffraction barrier in fluorescence microscopy by optical shelving,” Phys. Rev. Lett.98(21), 218103 (2007).
[CrossRef] [PubMed]

Hirano, T.

T. Kuga, Y. Torii, N. Shiokawa, T. Hirano, Y. Shimizu, and H. Sasada, “Novel optical trap of atoms with a doughnut beam,” Phys. Rev. Lett.78(25), 4713–4716 (1997).
[CrossRef]

Hirose, T.

Huguenin, J. A. O.

M. Martinelli, J. A. O. Huguenin, P. Nussenzveig, and A. Z. Khoury, “Orbital angular momentum exchange in an optical parametric oscillator,” Phys. Rev. A70(1), 013812 (2004).
[CrossRef]

Indebetouw, G.

G. Indebetouw, “Optical vortices and their propagation,” J. Mod. Opt.40(1), 73–87 (1993).
[CrossRef]

Ito, H.

Itoh, M.

Kato, K.

Khoury, A. Z.

M. Martinelli, J. A. O. Huguenin, P. Nussenzveig, and A. Z. Khoury, “Orbital angular momentum exchange in an optical parametric oscillator,” Phys. Rev. A70(1), 013812 (2004).
[CrossRef]

Kim, J. W.

Kloosterboer, J. G.

Koss, B. A.

J. E. Curtis, B. A. Koss, and D. G. Grier, “Dynamic holographic optical tweezers,” Opt. Commun.207(1-6), 169–175 (2002).
[CrossRef]

Kotowich, S.

R. A. Shaw, S. Kotowich, H. H. Mantsch, and M. Leroux, “Quantitation of protein, creatinine, and urea in urine by near-infrared spectroscopy,” Clin. Biochem.29(1), 11–19 (1996).
[CrossRef] [PubMed]

Koyama, M.

Kuga, T.

T. Kuga, Y. Torii, N. Shiokawa, T. Hirano, Y. Shimizu, and H. Sasada, “Novel optical trap of atoms with a doughnut beam,” Phys. Rev. Lett.78(25), 4713–4716 (1997).
[CrossRef]

Leroux, M.

R. A. Shaw, S. Kotowich, H. H. Mantsch, and M. Leroux, “Quantitation of protein, creatinine, and urea in urine by near-infrared spectroscopy,” Clin. Biochem.29(1), 11–19 (1996).
[CrossRef] [PubMed]

Mackenzie, J. I.

Mair, A.

A. Mair, A. Vaziri, G. Weihs, and A. Zeilinger, “Entanglement of the orbital angular momentum states of photons,” Nature412(6844), 313–316 (2001).
[CrossRef] [PubMed]

Mantsch, H. H.

R. A. Shaw, S. Kotowich, H. H. Mantsch, and M. Leroux, “Quantitation of protein, creatinine, and urea in urine by near-infrared spectroscopy,” Clin. Biochem.29(1), 11–19 (1996).
[CrossRef] [PubMed]

Mariyenko, I. G.

Martinelli, M.

M. Martinelli, J. A. O. Huguenin, P. Nussenzveig, and A. Z. Khoury, “Orbital angular momentum exchange in an optical parametric oscillator,” Phys. Rev. A70(1), 013812 (2004).
[CrossRef]

Miyagi, S.

Miyamoto, K.

Morita, R.

Nakamura, K.

Nussenzveig, P.

M. Martinelli, J. A. O. Huguenin, P. Nussenzveig, and A. Z. Khoury, “Orbital angular momentum exchange in an optical parametric oscillator,” Phys. Rev. A70(1), 013812 (2004).
[CrossRef]

Oemrawsingh, S. S. R.

Oka, K.

Okida, M.

Omatsu, T.

K. Toyoda, K. Miyamoto, N. Aoki, R. Morita, and T. Omatsu, “Using Optical Vortex To Control the Chirality of Twisted Metal Nanostructures,” Nano Lett.12(7), 3645–3649 (2012), doi:.
[CrossRef] [PubMed]

K. Miyamoto, S. Miyagi, M. Yamada, K. Furuki, N. Aoki, M. Okida, and T. Omatsu, “Optical vortex pumped mid-infrared optical parametric oscillator,” Opt. Express19(13), 12220–12226 (2011), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-19-13-12220 .
[CrossRef] [PubMed]

M. Koyama, T. Hirose, M. Okida, K. Miyamoto, and T. Omatsu, “Nanosecond vortex laser pulses with millijoule pulse energies from a Yb-doped double-clad fiber power amplifier,” Opt. Express19(15), 14420–14425 (2011), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-19-15-14420 .
[CrossRef] [PubMed]

T. Omatsu, K. Chujo, K. Miyamoto, M. Okida, K. Nakamura, N. Aoki, and R. Morita, “Metal microneedle fabrication using twisted light with spin,” Opt. Express18(17), 17967–17973 (2010), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-18-17-17967 .
[CrossRef] [PubMed]

M. Okida, Y. Hayashi, T. Omatsu, J. Hamazaki, and R. Morita, “Characterization of 1.06 μm optical vortex laser based on a side-pumped Nd:GdVO4 bounce oscillator,” Appl. Phys. B95(1), 69–73 (2009).
[CrossRef]

M. Okida, T. Omatsu, M. Itoh, and T. Yatagai, “Direct generation of high power Laguerre-Gaussian output from a diode-pumped Nd:YVO4 1.3-μm bounce laser,”,” Opt. Express15(12), 7616–7622 (2007), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-15-12-7616 .
[CrossRef] [PubMed]

Padgett, M.

M. Padgett, J. Courtial, and L. Allen, “Light’s orbital angular momentum,” Phys. Today57(5), 35–40 (2004).
[CrossRef]

Padgett, M. J.

A. M. Yao and M. J. Padgett, “Orbital angular momentum: origins, behavior and applications,” Adv. Opt. Photon3(2), 161–204 (2011).
[CrossRef]

G. Gibson, J. Courtial, M. J. Padgett, M. Vasnetsov, V. Pas’ko, S. M. Barnett, and S. Franke-Arnold, “Free-space information transfer using light beams carrying orbital angular momentum,” Opt. Express12(22), 5448–5456 (2004), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-12-22-5448 .
[CrossRef] [PubMed]

K. Dholakia, N. B. Simpson, M. J. Padgett, and L. Allen, “Second-harmonic generation and the orbital angular momentum of light,” Phys. Rev. A54(5), R3742–R3745 (1996).
[CrossRef] [PubMed]

Pas’ko, V.

Raymond, E. A.

E. A. Raymond, T. L. Tarbuck, M. G. Brown, and G. L. Richmond, “Hydrogen-Bonding Interactions at the Vapor/Water Interface Investigated by Vibrational Sum-Frequency Spectroscopy of HOD/H2O/D2O Mixtures and Molecular Dynamics Simulations,” J. Phys. Chem. B107(2), 546–556 (2003).
[CrossRef]

Richmond, G. L.

E. A. Raymond, T. L. Tarbuck, M. G. Brown, and G. L. Richmond, “Hydrogen-Bonding Interactions at the Vapor/Water Interface Investigated by Vibrational Sum-Frequency Spectroscopy of HOD/H2O/D2O Mixtures and Molecular Dynamics Simulations,” J. Phys. Chem. B107(2), 546–556 (2003).
[CrossRef]

Sasada, H.

T. Kuga, Y. Torii, N. Shiokawa, T. Hirano, Y. Shimizu, and H. Sasada, “Novel optical trap of atoms with a doughnut beam,” Phys. Rev. Lett.78(25), 4713–4716 (1997).
[CrossRef]

Shaw, R. A.

R. A. Shaw, S. Kotowich, H. H. Mantsch, and M. Leroux, “Quantitation of protein, creatinine, and urea in urine by near-infrared spectroscopy,” Clin. Biochem.29(1), 11–19 (1996).
[CrossRef] [PubMed]

Shimatake, K.

Shimizu, Y.

T. Kuga, Y. Torii, N. Shiokawa, T. Hirano, Y. Shimizu, and H. Sasada, “Novel optical trap of atoms with a doughnut beam,” Phys. Rev. Lett.78(25), 4713–4716 (1997).
[CrossRef]

Shiokawa, N.

T. Kuga, Y. Torii, N. Shiokawa, T. Hirano, Y. Shimizu, and H. Sasada, “Novel optical trap of atoms with a doughnut beam,” Phys. Rev. Lett.78(25), 4713–4716 (1997).
[CrossRef]

Simpson, N. B.

K. Dholakia, N. B. Simpson, M. J. Padgett, and L. Allen, “Second-harmonic generation and the orbital angular momentum of light,” Phys. Rev. A54(5), R3742–R3745 (1996).
[CrossRef] [PubMed]

Spreeuw, R. J. C.

L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerdman, “Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes,” Phys. Rev. A45(11), 8185–8189 (1992).
[CrossRef] [PubMed]

Strohaber, J.

Takaoka, E.

Tanda, S.

Tarbuck, T. L.

E. A. Raymond, T. L. Tarbuck, M. G. Brown, and G. L. Richmond, “Hydrogen-Bonding Interactions at the Vapor/Water Interface Investigated by Vibrational Sum-Frequency Spectroscopy of HOD/H2O/D2O Mixtures and Molecular Dynamics Simulations,” J. Phys. Chem. B107(2), 546–556 (2003).
[CrossRef]

Tawara, T.

Toda, Y.

Tokizane, Y.

Torii, Y.

T. Kuga, Y. Torii, N. Shiokawa, T. Hirano, Y. Shimizu, and H. Sasada, “Novel optical trap of atoms with a doughnut beam,” Phys. Rev. Lett.78(25), 4713–4716 (1997).
[CrossRef]

Toyoda, K.

K. Toyoda, K. Miyamoto, N. Aoki, R. Morita, and T. Omatsu, “Using Optical Vortex To Control the Chirality of Twisted Metal Nanostructures,” Nano Lett.12(7), 3645–3649 (2012), doi:.
[CrossRef] [PubMed]

Tsubota, M.

Ueno, Y.

Uiterwaal, C. J. G. J.

van Houwelingen, J. A. W.

Vasnetsov, M.

Vaziri, A.

A. Mair, A. Vaziri, G. Weihs, and A. Zeilinger, “Entanglement of the orbital angular momentum states of photons,” Nature412(6844), 313–316 (2001).
[CrossRef] [PubMed]

Verstegen, E. J. K.

Weihs, G.

A. Mair, A. Vaziri, G. Weihs, and A. Zeilinger, “Entanglement of the orbital angular momentum states of photons,” Nature412(6844), 313–316 (2001).
[CrossRef] [PubMed]

Woerdman, J. P.

S. S. R. Oemrawsingh, J. A. W. van Houwelingen, E. R. Eliel, J. P. Woerdman, E. J. K. Verstegen, J. G. Kloosterboer, and G. W. ’t Hooft, “Production and characterization of spiral phase plates for optical wavelengths,” Appl. Opt.43(3), 688–694 (2004).
[CrossRef] [PubMed]

L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerdman, “Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes,” Phys. Rev. A45(11), 8185–8189 (1992).
[CrossRef] [PubMed]

Yamada, M.

Yao, A. M.

A. M. Yao and M. J. Padgett, “Orbital angular momentum: origins, behavior and applications,” Adv. Opt. Photon3(2), 161–204 (2011).
[CrossRef]

Yatagai, T.

Zeilinger, A.

A. Mair, A. Vaziri, G. Weihs, and A. Zeilinger, “Entanglement of the orbital angular momentum states of photons,” Nature412(6844), 313–316 (2001).
[CrossRef] [PubMed]

Adv. Opt. Photon (1)

A. M. Yao and M. J. Padgett, “Orbital angular momentum: origins, behavior and applications,” Adv. Opt. Photon3(2), 161–204 (2011).
[CrossRef]

Appl. Opt. (2)

Appl. Phys. B (1)

M. Okida, Y. Hayashi, T. Omatsu, J. Hamazaki, and R. Morita, “Characterization of 1.06 μm optical vortex laser based on a side-pumped Nd:GdVO4 bounce oscillator,” Appl. Phys. B95(1), 69–73 (2009).
[CrossRef]

Clin. Biochem. (1)

R. A. Shaw, S. Kotowich, H. H. Mantsch, and M. Leroux, “Quantitation of protein, creatinine, and urea in urine by near-infrared spectroscopy,” Clin. Biochem.29(1), 11–19 (1996).
[CrossRef] [PubMed]

J. Mod. Opt. (1)

G. Indebetouw, “Optical vortices and their propagation,” J. Mod. Opt.40(1), 73–87 (1993).
[CrossRef]

J. Phys. Chem. B (1)

E. A. Raymond, T. L. Tarbuck, M. G. Brown, and G. L. Richmond, “Hydrogen-Bonding Interactions at the Vapor/Water Interface Investigated by Vibrational Sum-Frequency Spectroscopy of HOD/H2O/D2O Mixtures and Molecular Dynamics Simulations,” J. Phys. Chem. B107(2), 546–556 (2003).
[CrossRef]

Nano Lett. (1)

K. Toyoda, K. Miyamoto, N. Aoki, R. Morita, and T. Omatsu, “Using Optical Vortex To Control the Chirality of Twisted Metal Nanostructures,” Nano Lett.12(7), 3645–3649 (2012), doi:.
[CrossRef] [PubMed]

Nature (2)

A. Mair, A. Vaziri, G. Weihs, and A. Zeilinger, “Entanglement of the orbital angular momentum states of photons,” Nature412(6844), 313–316 (2001).
[CrossRef] [PubMed]

D. G. Grier, “A revolution in optical manipulation,” Nature424(6950), 810–816 (2003).
[CrossRef] [PubMed]

Opt. Commun. (1)

J. E. Curtis, B. A. Koss, and D. G. Grier, “Dynamic holographic optical tweezers,” Opt. Commun.207(1-6), 169–175 (2002).
[CrossRef]

Opt. Express (9)

G. Gibson, J. Courtial, M. J. Padgett, M. Vasnetsov, V. Pas’ko, S. M. Barnett, and S. Franke-Arnold, “Free-space information transfer using light beams carrying orbital angular momentum,” Opt. Express12(22), 5448–5456 (2004), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-12-22-5448 .
[CrossRef] [PubMed]

I. G. Mariyenko, J. Strohaber, and C. J. G. J. Uiterwaal, “Creation of optical vortices in femtosecond pulses,” Opt. Express13(19), 7599–7608 (2005), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-13-19-7599 .
[CrossRef] [PubMed]

M. Okida, T. Omatsu, M. Itoh, and T. Yatagai, “Direct generation of high power Laguerre-Gaussian output from a diode-pumped Nd:YVO4 1.3-μm bounce laser,”,” Opt. Express15(12), 7616–7622 (2007), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-15-12-7616 .
[CrossRef] [PubMed]

Y. Ueno, Y. Toda, S. Adachi, R. Morita, and T. Tawara, “Coherent transfer of orbital angular momentum to excitons by optical four-wave mixing,” Opt. Express17(22), 20567–20574 (2009), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-17-22-20567 .
[CrossRef] [PubMed]

Y. Tokizane, K. Shimatake, Y. Toda, K. Oka, M. Tsubota, S. Tanda, and R. Morita, “Global evaluation of closed-loop electron dynamics in quasi-one-dimensional conductors using polarization vortices,” Opt. Express17(26), 24198–24207 (2009), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-17-26-24198 .
[CrossRef] [PubMed]

T. Omatsu, K. Chujo, K. Miyamoto, M. Okida, K. Nakamura, N. Aoki, and R. Morita, “Metal microneedle fabrication using twisted light with spin,” Opt. Express18(17), 17967–17973 (2010), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-18-17-17967 .
[CrossRef] [PubMed]

K. Miyamoto, S. Miyagi, M. Yamada, K. Furuki, N. Aoki, M. Okida, and T. Omatsu, “Optical vortex pumped mid-infrared optical parametric oscillator,” Opt. Express19(13), 12220–12226 (2011), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-19-13-12220 .
[CrossRef] [PubMed]

M. Koyama, T. Hirose, M. Okida, K. Miyamoto, and T. Omatsu, “Nanosecond vortex laser pulses with millijoule pulse energies from a Yb-doped double-clad fiber power amplifier,” Opt. Express19(15), 14420–14425 (2011), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-19-15-14420 .
[CrossRef] [PubMed]

J. W. Kim, J. I. Mackenzie, J. R. Hayes, and W. A. Clarkson, “High power Er:YAG laser with radially-polarized Laguerre-Gaussian (LG01) mode output,” Opt. Express19(15), 14526–14531 (2011), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-19-15-14526 .
[CrossRef] [PubMed]

Opt. Lett. (1)

Phys. Rev. A (3)

L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerdman, “Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes,” Phys. Rev. A45(11), 8185–8189 (1992).
[CrossRef] [PubMed]

K. Dholakia, N. B. Simpson, M. J. Padgett, and L. Allen, “Second-harmonic generation and the orbital angular momentum of light,” Phys. Rev. A54(5), R3742–R3745 (1996).
[CrossRef] [PubMed]

M. Martinelli, J. A. O. Huguenin, P. Nussenzveig, and A. Z. Khoury, “Orbital angular momentum exchange in an optical parametric oscillator,” Phys. Rev. A70(1), 013812 (2004).
[CrossRef]

Phys. Rev. Lett. (2)

T. Kuga, Y. Torii, N. Shiokawa, T. Hirano, Y. Shimizu, and H. Sasada, “Novel optical trap of atoms with a doughnut beam,” Phys. Rev. Lett.78(25), 4713–4716 (1997).
[CrossRef]

S. Bretschneider, C. Eggeling, and S. W. Hell, “Breaking the diffraction barrier in fluorescence microscopy by optical shelving,” Phys. Rev. Lett.98(21), 218103 (2007).
[CrossRef] [PubMed]

Phys. Today (1)

M. Padgett, J. Courtial, and L. Allen, “Light’s orbital angular momentum,” Phys. Today57(5), 35–40 (2004).
[CrossRef]

Other (2)

M. S. Soskin and M. V. Vasnetsov, “Singular optics,” in Progress in Optics42, E. Wolf, ed., (Elsevier, 2001) pp. 219–176.

J. Leach and M. J. Padgett, “Observation of chromatic effects near a white-light vortex,” New J. Phys. 5 (1), 154–1–7 (2003).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Experimental setups (a) for KTP-OPO pumped by m = 1 or 2 optical vortex and (b) for wavefront measurement by utilizing a multiple slit grating.

Fig. 2
Fig. 2

Spatial profiles of 1.064-μm vortex outputs of the pump beam with topological charges of (a) m = 1 and (b) m = 2.

Fig. 3
Fig. 3

(a) Signal output energy as a function of pump energy. (b) Temporal profile of signal output pulse. (c) Lasing spectrum of signal output.

Fig. 4
Fig. 4

(a)–(f) Spatial profiles of outputs pumped by first-order optical vortex pulse. (a) Intensity profile, (b) self-interference fringes, and (c) calculated self-interference fringes of signal output. (d) Intensity profile, (e) self-interference fringes, and (f) calculated self-interference fringes of idler output. Spatial profiles (g)–(l) of output pumped by second-order optical vortex pulse. (g) Intensity profile, (h) self-interference fringes, and (i) calculated self-interference fringes of signal output. (j) Intensity profile, (k) self-interference fringes, and (l) calculated self-interference fringes of idler output. White circles in (b) and (h) show forked fringes due to phase singularity.

Fig. 5
Fig. 5

Power dependence of signal output (m = 1 and 2) on wavelength tuning of the vortex pumped OPO normalized by the power of the signal output (m = 1) in 2.128 μm (degenerate).

Fig. 6
Fig. 6

Spatial forms and self-interference patterns of output generated from first-order optical-vortex-pumped OPO. Lasing wavelengths of the output were (a) 1.953, (b) 2.028, and (c) 2.158 μm. White circles in (b) and (h) show forked fringes due to phase singularity.

Fig. 7
Fig. 7

(a) Conceptual scheme of lateral displacement with a distance Δd due to the walk-off effect (walk-off angle α) of the KTP crystal and concave mirror with a curvature R ( = OA). l is the length of the KTP crystal. L is the distance between the KTP surface and the concave mirror. Inset shows conceptual scheme of overlapping of two beams with distance Δd. (b) Geometrical ray trace for the idler beam after one roundtrip in the cavity. Δd’ indicates the spatial displacement at the input crystal surface.

Fig. 8
Fig. 8

Displacement Δd dependence of overlapping efficiency η of modes with topological charges of 1 and zero (m = 1 and 0, respectively) calculated using Eq. (1).

Tables (1)

Tables Icon

Table 1 Experimental parameters of the OPO.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

η= | E * (xΔd,y)E(x,y)dxdy E * (x,y)E(x,y)dxdy | 2 ,
Δd= αl 2R 2L,
E(x,y)=exp( ( x 2 + y 2 )/ ω 0 2 ) or E(x,y)=( (x+iy)/ ω 0 )exp( ( x 2 + y 2 )/ ω 0 2 ) ,

Metrics