Abstract

In recent years, the development of new lithium niobate electro-optic modulator designs and material processing techniques have contributed to support the increasing need for faster optical networks by considerably extending the operational bandwidth of modulators. In an effort to provide higher bandwidths for future generations of networks, we have developed a lithium niobate electro-optic phase modulator based on a coplanar waveguide ridged structure that operates up to 300 GHz. By thinning the lithium niobate substrate down to less than 39 µm, we are able to eliminate substrate modes and observe optical sidebands over the full millimeter-wave spectrum.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. Kawanishi, “Ultrahigh-speed optical time-division-multiplexed transmission technology based on optical signal processing,” IEEE J. Quantum Electron.34(11), 2064–2079 (1998).
    [CrossRef]
  2. C. A. Brackett, “Dense wavelength division multiplexing networks: principles and applications,” IEEE J. Sel. Areas Comm.8(6), 948–964 (1990).
    [CrossRef]
  3. J. Mcdonough, “Moving standards to 100 GbE and beyond,” IEEE Commun. Mag.45(11), 6–9 (2007).
    [CrossRef]
  4. E. L. Wooten, K. M. Kissa, A. Yi-Yan, E. J. Murphy, D. A. Lafaw, P. F. Hallemeier, D. Maack, D. V. Attanasio, D. J. Fritz, G. J. McBrien, and D. E. Bossi, “A review of lithium niobate modulators for fiber-optic communications systems,” IEEE J. Sel. Top. Quantum Electron.6(1), 69–82 (2000).
    [CrossRef]
  5. G. L. Li and P. K. L. Yu, “Optical intensity modulators for digital and analog applications,” J. Lightwave Technol.21(9), 2010–2030 (2003).
    [CrossRef]
  6. C. A. Schuetz, J. Murakowski, G. J. Schneider, and D. W. Prather, “Radiometric Millimeter-wave detection via optical upconversion and carrier suppression,” IEEE Trans. Microw. Theory Tech.53(5), 1732–1738 (2005).
    [CrossRef]
  7. Y. Shi, C. Zhang, H. Zhang, J. H. Bechtel, L. R. Dalton, B. H. Robinson, and W. H. Steier, “Low (Sub-1-volt) halfwave voltage polymeric electro-optic modulators achieved by controlling chromophore shape,” Science288(5463), 119–122 (2000).
    [CrossRef] [PubMed]
  8. G. L. Li, C. K. Sun, S. A. Pappert, W. X. Chen, and P. K. L. Yu, “Ultrahigh-speed traveling-wave electroabsorption modulator-design and analysis,” IEEE Trans. Microw. Theory Tech.47(7), 1177–1183 (1999).
    [CrossRef]
  9. K. Noguchi, O. Mitomi, and H. Miyazawa, “Millimeter-wave Ti:LiNbO3 optical modulators,” J. Lightwave Technol.16(4), 615–619 (1998).
    [CrossRef]
  10. J. Macario, P. Yao, R. Shireen, C. A. Schuetz, S. Shi, and D. W. Prather, “Development of electro-optic phase modulator for 94 GHz imaging system,” J. Lightwave Technol.27(24), 5698–5703 (2009).
    [CrossRef]
  11. O. Mitomi, K. Noguchi, and H. Miyazawa, “Design of ultra-broad-band LiNbO3 optical modulators with ridge structure,” IEEE Trans. Microw. Theory Tech.43(9), 2203–2207 (1995).
    [CrossRef]
  12. K. Noguchi, O. Mitomi, H. Miyazawa, and S. Seki, “Broadband Ti:LiNbO3 optical modulator with a ridge structure,” J. Lightwave Technol.13(6), 1164–1168 (1995).
    [CrossRef]
  13. K. Aoki, J. Kondou, O. Mitomi, and M. Minakata, “Velocity-matching conditions for ultrahigh-speed optical LiNbO3 modulators with traveling-wave electrode,” Jpn. J. Appl. Phys., Part 145, 8696–8698 (2006).
  14. K. Noguchi, H. Miyazawa, and O. Mitomi, “Frequency-dependent propagation characteristics of coplanar waveguide electrode on 100GHz Ti:LiNbO3 optical modulator,” Electron. Lett.34(7), 661–663 (1998).
    [CrossRef]
  15. D. P. Kasilingam and D. B. Rutledge, Surface-wave losses of coplanar transmission lines” in 1983 IEEE MTT-S International Microwave Symposium DigestAnonymous (IEEE, 1983).
  16. G. K. Gopalakrishnan, W. K. Burns, and C. H. Bulmer, “Electrical loss mechanisms in travelling wave LiNbO3 optical modulators,” Electron. Lett.28(2), 207–209 (1992).
    [CrossRef]
  17. Y. Shi, “Micromachined wide-band lithium-niobate electrooptic Modulators,” IEEE Trans. Microw. Theory Tech.54(2), 810–815 (2006).
    [CrossRef]
  18. A. Kanno, T. Sakamoto, A. Chiba, T. Kawanishi, K. Higuma, M. Sudo, and J. Ichikawa, “166 Gb/s PDM-NRZ-DPSK modulation using thin-LiNbO3-substrate modulator” in Collocated National Fiber Optic Engineers Conference OFC/NFOEC 2010Anonymous (IEEE, 2010).
  19. J. Kondo, K. Aoki, A. Kondo, T. Ejiri, Y. Iwata, A. Hamajima, T. Mori, Y. Mizuno, M. Imaeda, Y. Kozuka, O. Mitomi, and M. Minakata, “High-speed and low-driving-Voltage thin-sheet X-cut LiNbO3 Modulator with laminated low-dielectric-constant adhesive,” IEEE Photon. Technol. Lett.17(10), 2077–2079 (2005).
    [CrossRef]
  20. C. J. Huang, C. Schuetz, R. Shireen, T. Hwang, S. Shi, and D. W. Prather, “Development of photonic devices for MMW sensing and imaging” in Intelligent Integrated MicrosystemsAnonymous (SPIE - The International Society for Optical Engineering, 2006).
  21. R. V. Schmidt and I. P. Kaminow, “Metal-diffused optical waveguides in LiNbO3,” Appl. Phys. Lett.25(8), 458–460 (1974).
    [CrossRef]
  22. Z. Ren, P. J. Heard, J. M. Marshall, P. A. Thomas, and S. Yu, “Etching characteristics of LiNbO3 in reactive ion etching and inductively coupled plasma,” J. Appl. Phys.103(3), 034109 (2008).
    [CrossRef]
  23. G. L. Li, T. G. B. Mason, and P. K. L. Yu, “Analysis of segmented traveling-wave optical modulators,” J. Lightwave Technol.22(7), 1789–1796 (2004).
    [CrossRef]
  24. C. J. Huang, C. A. Schuetz, R. Shireen, S. Shi, and D. W. Prather, “LiNbO3 optical modulator for MMW sensing and imaging” in Passive Millimeter-Wave Imaging Technology XAnonymous (SPIE - The International Society for Optical Engineering, 2007).

2009

2008

Z. Ren, P. J. Heard, J. M. Marshall, P. A. Thomas, and S. Yu, “Etching characteristics of LiNbO3 in reactive ion etching and inductively coupled plasma,” J. Appl. Phys.103(3), 034109 (2008).
[CrossRef]

2007

J. Mcdonough, “Moving standards to 100 GbE and beyond,” IEEE Commun. Mag.45(11), 6–9 (2007).
[CrossRef]

2006

K. Aoki, J. Kondou, O. Mitomi, and M. Minakata, “Velocity-matching conditions for ultrahigh-speed optical LiNbO3 modulators with traveling-wave electrode,” Jpn. J. Appl. Phys., Part 145, 8696–8698 (2006).

Y. Shi, “Micromachined wide-band lithium-niobate electrooptic Modulators,” IEEE Trans. Microw. Theory Tech.54(2), 810–815 (2006).
[CrossRef]

2005

J. Kondo, K. Aoki, A. Kondo, T. Ejiri, Y. Iwata, A. Hamajima, T. Mori, Y. Mizuno, M. Imaeda, Y. Kozuka, O. Mitomi, and M. Minakata, “High-speed and low-driving-Voltage thin-sheet X-cut LiNbO3 Modulator with laminated low-dielectric-constant adhesive,” IEEE Photon. Technol. Lett.17(10), 2077–2079 (2005).
[CrossRef]

C. A. Schuetz, J. Murakowski, G. J. Schneider, and D. W. Prather, “Radiometric Millimeter-wave detection via optical upconversion and carrier suppression,” IEEE Trans. Microw. Theory Tech.53(5), 1732–1738 (2005).
[CrossRef]

2004

2003

2000

Y. Shi, C. Zhang, H. Zhang, J. H. Bechtel, L. R. Dalton, B. H. Robinson, and W. H. Steier, “Low (Sub-1-volt) halfwave voltage polymeric electro-optic modulators achieved by controlling chromophore shape,” Science288(5463), 119–122 (2000).
[CrossRef] [PubMed]

E. L. Wooten, K. M. Kissa, A. Yi-Yan, E. J. Murphy, D. A. Lafaw, P. F. Hallemeier, D. Maack, D. V. Attanasio, D. J. Fritz, G. J. McBrien, and D. E. Bossi, “A review of lithium niobate modulators for fiber-optic communications systems,” IEEE J. Sel. Top. Quantum Electron.6(1), 69–82 (2000).
[CrossRef]

1999

G. L. Li, C. K. Sun, S. A. Pappert, W. X. Chen, and P. K. L. Yu, “Ultrahigh-speed traveling-wave electroabsorption modulator-design and analysis,” IEEE Trans. Microw. Theory Tech.47(7), 1177–1183 (1999).
[CrossRef]

1998

S. Kawanishi, “Ultrahigh-speed optical time-division-multiplexed transmission technology based on optical signal processing,” IEEE J. Quantum Electron.34(11), 2064–2079 (1998).
[CrossRef]

K. Noguchi, O. Mitomi, and H. Miyazawa, “Millimeter-wave Ti:LiNbO3 optical modulators,” J. Lightwave Technol.16(4), 615–619 (1998).
[CrossRef]

K. Noguchi, H. Miyazawa, and O. Mitomi, “Frequency-dependent propagation characteristics of coplanar waveguide electrode on 100GHz Ti:LiNbO3 optical modulator,” Electron. Lett.34(7), 661–663 (1998).
[CrossRef]

1995

O. Mitomi, K. Noguchi, and H. Miyazawa, “Design of ultra-broad-band LiNbO3 optical modulators with ridge structure,” IEEE Trans. Microw. Theory Tech.43(9), 2203–2207 (1995).
[CrossRef]

K. Noguchi, O. Mitomi, H. Miyazawa, and S. Seki, “Broadband Ti:LiNbO3 optical modulator with a ridge structure,” J. Lightwave Technol.13(6), 1164–1168 (1995).
[CrossRef]

1992

G. K. Gopalakrishnan, W. K. Burns, and C. H. Bulmer, “Electrical loss mechanisms in travelling wave LiNbO3 optical modulators,” Electron. Lett.28(2), 207–209 (1992).
[CrossRef]

1990

C. A. Brackett, “Dense wavelength division multiplexing networks: principles and applications,” IEEE J. Sel. Areas Comm.8(6), 948–964 (1990).
[CrossRef]

1974

R. V. Schmidt and I. P. Kaminow, “Metal-diffused optical waveguides in LiNbO3,” Appl. Phys. Lett.25(8), 458–460 (1974).
[CrossRef]

Aoki, K.

K. Aoki, J. Kondou, O. Mitomi, and M. Minakata, “Velocity-matching conditions for ultrahigh-speed optical LiNbO3 modulators with traveling-wave electrode,” Jpn. J. Appl. Phys., Part 145, 8696–8698 (2006).

J. Kondo, K. Aoki, A. Kondo, T. Ejiri, Y. Iwata, A. Hamajima, T. Mori, Y. Mizuno, M. Imaeda, Y. Kozuka, O. Mitomi, and M. Minakata, “High-speed and low-driving-Voltage thin-sheet X-cut LiNbO3 Modulator with laminated low-dielectric-constant adhesive,” IEEE Photon. Technol. Lett.17(10), 2077–2079 (2005).
[CrossRef]

Attanasio, D. V.

E. L. Wooten, K. M. Kissa, A. Yi-Yan, E. J. Murphy, D. A. Lafaw, P. F. Hallemeier, D. Maack, D. V. Attanasio, D. J. Fritz, G. J. McBrien, and D. E. Bossi, “A review of lithium niobate modulators for fiber-optic communications systems,” IEEE J. Sel. Top. Quantum Electron.6(1), 69–82 (2000).
[CrossRef]

Bechtel, J. H.

Y. Shi, C. Zhang, H. Zhang, J. H. Bechtel, L. R. Dalton, B. H. Robinson, and W. H. Steier, “Low (Sub-1-volt) halfwave voltage polymeric electro-optic modulators achieved by controlling chromophore shape,” Science288(5463), 119–122 (2000).
[CrossRef] [PubMed]

Bossi, D. E.

E. L. Wooten, K. M. Kissa, A. Yi-Yan, E. J. Murphy, D. A. Lafaw, P. F. Hallemeier, D. Maack, D. V. Attanasio, D. J. Fritz, G. J. McBrien, and D. E. Bossi, “A review of lithium niobate modulators for fiber-optic communications systems,” IEEE J. Sel. Top. Quantum Electron.6(1), 69–82 (2000).
[CrossRef]

Brackett, C. A.

C. A. Brackett, “Dense wavelength division multiplexing networks: principles and applications,” IEEE J. Sel. Areas Comm.8(6), 948–964 (1990).
[CrossRef]

Bulmer, C. H.

G. K. Gopalakrishnan, W. K. Burns, and C. H. Bulmer, “Electrical loss mechanisms in travelling wave LiNbO3 optical modulators,” Electron. Lett.28(2), 207–209 (1992).
[CrossRef]

Burns, W. K.

G. K. Gopalakrishnan, W. K. Burns, and C. H. Bulmer, “Electrical loss mechanisms in travelling wave LiNbO3 optical modulators,” Electron. Lett.28(2), 207–209 (1992).
[CrossRef]

Chen, W. X.

G. L. Li, C. K. Sun, S. A. Pappert, W. X. Chen, and P. K. L. Yu, “Ultrahigh-speed traveling-wave electroabsorption modulator-design and analysis,” IEEE Trans. Microw. Theory Tech.47(7), 1177–1183 (1999).
[CrossRef]

Dalton, L. R.

Y. Shi, C. Zhang, H. Zhang, J. H. Bechtel, L. R. Dalton, B. H. Robinson, and W. H. Steier, “Low (Sub-1-volt) halfwave voltage polymeric electro-optic modulators achieved by controlling chromophore shape,” Science288(5463), 119–122 (2000).
[CrossRef] [PubMed]

Ejiri, T.

J. Kondo, K. Aoki, A. Kondo, T. Ejiri, Y. Iwata, A. Hamajima, T. Mori, Y. Mizuno, M. Imaeda, Y. Kozuka, O. Mitomi, and M. Minakata, “High-speed and low-driving-Voltage thin-sheet X-cut LiNbO3 Modulator with laminated low-dielectric-constant adhesive,” IEEE Photon. Technol. Lett.17(10), 2077–2079 (2005).
[CrossRef]

Fritz, D. J.

E. L. Wooten, K. M. Kissa, A. Yi-Yan, E. J. Murphy, D. A. Lafaw, P. F. Hallemeier, D. Maack, D. V. Attanasio, D. J. Fritz, G. J. McBrien, and D. E. Bossi, “A review of lithium niobate modulators for fiber-optic communications systems,” IEEE J. Sel. Top. Quantum Electron.6(1), 69–82 (2000).
[CrossRef]

Gopalakrishnan, G. K.

G. K. Gopalakrishnan, W. K. Burns, and C. H. Bulmer, “Electrical loss mechanisms in travelling wave LiNbO3 optical modulators,” Electron. Lett.28(2), 207–209 (1992).
[CrossRef]

Hallemeier, P. F.

E. L. Wooten, K. M. Kissa, A. Yi-Yan, E. J. Murphy, D. A. Lafaw, P. F. Hallemeier, D. Maack, D. V. Attanasio, D. J. Fritz, G. J. McBrien, and D. E. Bossi, “A review of lithium niobate modulators for fiber-optic communications systems,” IEEE J. Sel. Top. Quantum Electron.6(1), 69–82 (2000).
[CrossRef]

Hamajima, A.

J. Kondo, K. Aoki, A. Kondo, T. Ejiri, Y. Iwata, A. Hamajima, T. Mori, Y. Mizuno, M. Imaeda, Y. Kozuka, O. Mitomi, and M. Minakata, “High-speed and low-driving-Voltage thin-sheet X-cut LiNbO3 Modulator with laminated low-dielectric-constant adhesive,” IEEE Photon. Technol. Lett.17(10), 2077–2079 (2005).
[CrossRef]

Heard, P. J.

Z. Ren, P. J. Heard, J. M. Marshall, P. A. Thomas, and S. Yu, “Etching characteristics of LiNbO3 in reactive ion etching and inductively coupled plasma,” J. Appl. Phys.103(3), 034109 (2008).
[CrossRef]

Imaeda, M.

J. Kondo, K. Aoki, A. Kondo, T. Ejiri, Y. Iwata, A. Hamajima, T. Mori, Y. Mizuno, M. Imaeda, Y. Kozuka, O. Mitomi, and M. Minakata, “High-speed and low-driving-Voltage thin-sheet X-cut LiNbO3 Modulator with laminated low-dielectric-constant adhesive,” IEEE Photon. Technol. Lett.17(10), 2077–2079 (2005).
[CrossRef]

Iwata, Y.

J. Kondo, K. Aoki, A. Kondo, T. Ejiri, Y. Iwata, A. Hamajima, T. Mori, Y. Mizuno, M. Imaeda, Y. Kozuka, O. Mitomi, and M. Minakata, “High-speed and low-driving-Voltage thin-sheet X-cut LiNbO3 Modulator with laminated low-dielectric-constant adhesive,” IEEE Photon. Technol. Lett.17(10), 2077–2079 (2005).
[CrossRef]

Kaminow, I. P.

R. V. Schmidt and I. P. Kaminow, “Metal-diffused optical waveguides in LiNbO3,” Appl. Phys. Lett.25(8), 458–460 (1974).
[CrossRef]

Kawanishi, S.

S. Kawanishi, “Ultrahigh-speed optical time-division-multiplexed transmission technology based on optical signal processing,” IEEE J. Quantum Electron.34(11), 2064–2079 (1998).
[CrossRef]

Kissa, K. M.

E. L. Wooten, K. M. Kissa, A. Yi-Yan, E. J. Murphy, D. A. Lafaw, P. F. Hallemeier, D. Maack, D. V. Attanasio, D. J. Fritz, G. J. McBrien, and D. E. Bossi, “A review of lithium niobate modulators for fiber-optic communications systems,” IEEE J. Sel. Top. Quantum Electron.6(1), 69–82 (2000).
[CrossRef]

Kondo, A.

J. Kondo, K. Aoki, A. Kondo, T. Ejiri, Y. Iwata, A. Hamajima, T. Mori, Y. Mizuno, M. Imaeda, Y. Kozuka, O. Mitomi, and M. Minakata, “High-speed and low-driving-Voltage thin-sheet X-cut LiNbO3 Modulator with laminated low-dielectric-constant adhesive,” IEEE Photon. Technol. Lett.17(10), 2077–2079 (2005).
[CrossRef]

Kondo, J.

J. Kondo, K. Aoki, A. Kondo, T. Ejiri, Y. Iwata, A. Hamajima, T. Mori, Y. Mizuno, M. Imaeda, Y. Kozuka, O. Mitomi, and M. Minakata, “High-speed and low-driving-Voltage thin-sheet X-cut LiNbO3 Modulator with laminated low-dielectric-constant adhesive,” IEEE Photon. Technol. Lett.17(10), 2077–2079 (2005).
[CrossRef]

Kondou, J.

K. Aoki, J. Kondou, O. Mitomi, and M. Minakata, “Velocity-matching conditions for ultrahigh-speed optical LiNbO3 modulators with traveling-wave electrode,” Jpn. J. Appl. Phys., Part 145, 8696–8698 (2006).

Kozuka, Y.

J. Kondo, K. Aoki, A. Kondo, T. Ejiri, Y. Iwata, A. Hamajima, T. Mori, Y. Mizuno, M. Imaeda, Y. Kozuka, O. Mitomi, and M. Minakata, “High-speed and low-driving-Voltage thin-sheet X-cut LiNbO3 Modulator with laminated low-dielectric-constant adhesive,” IEEE Photon. Technol. Lett.17(10), 2077–2079 (2005).
[CrossRef]

Lafaw, D. A.

E. L. Wooten, K. M. Kissa, A. Yi-Yan, E. J. Murphy, D. A. Lafaw, P. F. Hallemeier, D. Maack, D. V. Attanasio, D. J. Fritz, G. J. McBrien, and D. E. Bossi, “A review of lithium niobate modulators for fiber-optic communications systems,” IEEE J. Sel. Top. Quantum Electron.6(1), 69–82 (2000).
[CrossRef]

Li, G. L.

Maack, D.

E. L. Wooten, K. M. Kissa, A. Yi-Yan, E. J. Murphy, D. A. Lafaw, P. F. Hallemeier, D. Maack, D. V. Attanasio, D. J. Fritz, G. J. McBrien, and D. E. Bossi, “A review of lithium niobate modulators for fiber-optic communications systems,” IEEE J. Sel. Top. Quantum Electron.6(1), 69–82 (2000).
[CrossRef]

Macario, J.

Marshall, J. M.

Z. Ren, P. J. Heard, J. M. Marshall, P. A. Thomas, and S. Yu, “Etching characteristics of LiNbO3 in reactive ion etching and inductively coupled plasma,” J. Appl. Phys.103(3), 034109 (2008).
[CrossRef]

Mason, T. G. B.

McBrien, G. J.

E. L. Wooten, K. M. Kissa, A. Yi-Yan, E. J. Murphy, D. A. Lafaw, P. F. Hallemeier, D. Maack, D. V. Attanasio, D. J. Fritz, G. J. McBrien, and D. E. Bossi, “A review of lithium niobate modulators for fiber-optic communications systems,” IEEE J. Sel. Top. Quantum Electron.6(1), 69–82 (2000).
[CrossRef]

Mcdonough, J.

J. Mcdonough, “Moving standards to 100 GbE and beyond,” IEEE Commun. Mag.45(11), 6–9 (2007).
[CrossRef]

Minakata, M.

K. Aoki, J. Kondou, O. Mitomi, and M. Minakata, “Velocity-matching conditions for ultrahigh-speed optical LiNbO3 modulators with traveling-wave electrode,” Jpn. J. Appl. Phys., Part 145, 8696–8698 (2006).

J. Kondo, K. Aoki, A. Kondo, T. Ejiri, Y. Iwata, A. Hamajima, T. Mori, Y. Mizuno, M. Imaeda, Y. Kozuka, O. Mitomi, and M. Minakata, “High-speed and low-driving-Voltage thin-sheet X-cut LiNbO3 Modulator with laminated low-dielectric-constant adhesive,” IEEE Photon. Technol. Lett.17(10), 2077–2079 (2005).
[CrossRef]

Mitomi, O.

K. Aoki, J. Kondou, O. Mitomi, and M. Minakata, “Velocity-matching conditions for ultrahigh-speed optical LiNbO3 modulators with traveling-wave electrode,” Jpn. J. Appl. Phys., Part 145, 8696–8698 (2006).

J. Kondo, K. Aoki, A. Kondo, T. Ejiri, Y. Iwata, A. Hamajima, T. Mori, Y. Mizuno, M. Imaeda, Y. Kozuka, O. Mitomi, and M. Minakata, “High-speed and low-driving-Voltage thin-sheet X-cut LiNbO3 Modulator with laminated low-dielectric-constant adhesive,” IEEE Photon. Technol. Lett.17(10), 2077–2079 (2005).
[CrossRef]

K. Noguchi, H. Miyazawa, and O. Mitomi, “Frequency-dependent propagation characteristics of coplanar waveguide electrode on 100GHz Ti:LiNbO3 optical modulator,” Electron. Lett.34(7), 661–663 (1998).
[CrossRef]

K. Noguchi, O. Mitomi, and H. Miyazawa, “Millimeter-wave Ti:LiNbO3 optical modulators,” J. Lightwave Technol.16(4), 615–619 (1998).
[CrossRef]

K. Noguchi, O. Mitomi, H. Miyazawa, and S. Seki, “Broadband Ti:LiNbO3 optical modulator with a ridge structure,” J. Lightwave Technol.13(6), 1164–1168 (1995).
[CrossRef]

O. Mitomi, K. Noguchi, and H. Miyazawa, “Design of ultra-broad-band LiNbO3 optical modulators with ridge structure,” IEEE Trans. Microw. Theory Tech.43(9), 2203–2207 (1995).
[CrossRef]

Miyazawa, H.

K. Noguchi, H. Miyazawa, and O. Mitomi, “Frequency-dependent propagation characteristics of coplanar waveguide electrode on 100GHz Ti:LiNbO3 optical modulator,” Electron. Lett.34(7), 661–663 (1998).
[CrossRef]

K. Noguchi, O. Mitomi, and H. Miyazawa, “Millimeter-wave Ti:LiNbO3 optical modulators,” J. Lightwave Technol.16(4), 615–619 (1998).
[CrossRef]

K. Noguchi, O. Mitomi, H. Miyazawa, and S. Seki, “Broadband Ti:LiNbO3 optical modulator with a ridge structure,” J. Lightwave Technol.13(6), 1164–1168 (1995).
[CrossRef]

O. Mitomi, K. Noguchi, and H. Miyazawa, “Design of ultra-broad-band LiNbO3 optical modulators with ridge structure,” IEEE Trans. Microw. Theory Tech.43(9), 2203–2207 (1995).
[CrossRef]

Mizuno, Y.

J. Kondo, K. Aoki, A. Kondo, T. Ejiri, Y. Iwata, A. Hamajima, T. Mori, Y. Mizuno, M. Imaeda, Y. Kozuka, O. Mitomi, and M. Minakata, “High-speed and low-driving-Voltage thin-sheet X-cut LiNbO3 Modulator with laminated low-dielectric-constant adhesive,” IEEE Photon. Technol. Lett.17(10), 2077–2079 (2005).
[CrossRef]

Mori, T.

J. Kondo, K. Aoki, A. Kondo, T. Ejiri, Y. Iwata, A. Hamajima, T. Mori, Y. Mizuno, M. Imaeda, Y. Kozuka, O. Mitomi, and M. Minakata, “High-speed and low-driving-Voltage thin-sheet X-cut LiNbO3 Modulator with laminated low-dielectric-constant adhesive,” IEEE Photon. Technol. Lett.17(10), 2077–2079 (2005).
[CrossRef]

Murakowski, J.

C. A. Schuetz, J. Murakowski, G. J. Schneider, and D. W. Prather, “Radiometric Millimeter-wave detection via optical upconversion and carrier suppression,” IEEE Trans. Microw. Theory Tech.53(5), 1732–1738 (2005).
[CrossRef]

Murphy, E. J.

E. L. Wooten, K. M. Kissa, A. Yi-Yan, E. J. Murphy, D. A. Lafaw, P. F. Hallemeier, D. Maack, D. V. Attanasio, D. J. Fritz, G. J. McBrien, and D. E. Bossi, “A review of lithium niobate modulators for fiber-optic communications systems,” IEEE J. Sel. Top. Quantum Electron.6(1), 69–82 (2000).
[CrossRef]

Noguchi, K.

K. Noguchi, H. Miyazawa, and O. Mitomi, “Frequency-dependent propagation characteristics of coplanar waveguide electrode on 100GHz Ti:LiNbO3 optical modulator,” Electron. Lett.34(7), 661–663 (1998).
[CrossRef]

K. Noguchi, O. Mitomi, and H. Miyazawa, “Millimeter-wave Ti:LiNbO3 optical modulators,” J. Lightwave Technol.16(4), 615–619 (1998).
[CrossRef]

K. Noguchi, O. Mitomi, H. Miyazawa, and S. Seki, “Broadband Ti:LiNbO3 optical modulator with a ridge structure,” J. Lightwave Technol.13(6), 1164–1168 (1995).
[CrossRef]

O. Mitomi, K. Noguchi, and H. Miyazawa, “Design of ultra-broad-band LiNbO3 optical modulators with ridge structure,” IEEE Trans. Microw. Theory Tech.43(9), 2203–2207 (1995).
[CrossRef]

Pappert, S. A.

G. L. Li, C. K. Sun, S. A. Pappert, W. X. Chen, and P. K. L. Yu, “Ultrahigh-speed traveling-wave electroabsorption modulator-design and analysis,” IEEE Trans. Microw. Theory Tech.47(7), 1177–1183 (1999).
[CrossRef]

Prather, D. W.

J. Macario, P. Yao, R. Shireen, C. A. Schuetz, S. Shi, and D. W. Prather, “Development of electro-optic phase modulator for 94 GHz imaging system,” J. Lightwave Technol.27(24), 5698–5703 (2009).
[CrossRef]

C. A. Schuetz, J. Murakowski, G. J. Schneider, and D. W. Prather, “Radiometric Millimeter-wave detection via optical upconversion and carrier suppression,” IEEE Trans. Microw. Theory Tech.53(5), 1732–1738 (2005).
[CrossRef]

Ren, Z.

Z. Ren, P. J. Heard, J. M. Marshall, P. A. Thomas, and S. Yu, “Etching characteristics of LiNbO3 in reactive ion etching and inductively coupled plasma,” J. Appl. Phys.103(3), 034109 (2008).
[CrossRef]

Robinson, B. H.

Y. Shi, C. Zhang, H. Zhang, J. H. Bechtel, L. R. Dalton, B. H. Robinson, and W. H. Steier, “Low (Sub-1-volt) halfwave voltage polymeric electro-optic modulators achieved by controlling chromophore shape,” Science288(5463), 119–122 (2000).
[CrossRef] [PubMed]

Schmidt, R. V.

R. V. Schmidt and I. P. Kaminow, “Metal-diffused optical waveguides in LiNbO3,” Appl. Phys. Lett.25(8), 458–460 (1974).
[CrossRef]

Schneider, G. J.

C. A. Schuetz, J. Murakowski, G. J. Schneider, and D. W. Prather, “Radiometric Millimeter-wave detection via optical upconversion and carrier suppression,” IEEE Trans. Microw. Theory Tech.53(5), 1732–1738 (2005).
[CrossRef]

Schuetz, C. A.

J. Macario, P. Yao, R. Shireen, C. A. Schuetz, S. Shi, and D. W. Prather, “Development of electro-optic phase modulator for 94 GHz imaging system,” J. Lightwave Technol.27(24), 5698–5703 (2009).
[CrossRef]

C. A. Schuetz, J. Murakowski, G. J. Schneider, and D. W. Prather, “Radiometric Millimeter-wave detection via optical upconversion and carrier suppression,” IEEE Trans. Microw. Theory Tech.53(5), 1732–1738 (2005).
[CrossRef]

Seki, S.

K. Noguchi, O. Mitomi, H. Miyazawa, and S. Seki, “Broadband Ti:LiNbO3 optical modulator with a ridge structure,” J. Lightwave Technol.13(6), 1164–1168 (1995).
[CrossRef]

Shi, S.

Shi, Y.

Y. Shi, “Micromachined wide-band lithium-niobate electrooptic Modulators,” IEEE Trans. Microw. Theory Tech.54(2), 810–815 (2006).
[CrossRef]

Y. Shi, C. Zhang, H. Zhang, J. H. Bechtel, L. R. Dalton, B. H. Robinson, and W. H. Steier, “Low (Sub-1-volt) halfwave voltage polymeric electro-optic modulators achieved by controlling chromophore shape,” Science288(5463), 119–122 (2000).
[CrossRef] [PubMed]

Shireen, R.

Steier, W. H.

Y. Shi, C. Zhang, H. Zhang, J. H. Bechtel, L. R. Dalton, B. H. Robinson, and W. H. Steier, “Low (Sub-1-volt) halfwave voltage polymeric electro-optic modulators achieved by controlling chromophore shape,” Science288(5463), 119–122 (2000).
[CrossRef] [PubMed]

Sun, C. K.

G. L. Li, C. K. Sun, S. A. Pappert, W. X. Chen, and P. K. L. Yu, “Ultrahigh-speed traveling-wave electroabsorption modulator-design and analysis,” IEEE Trans. Microw. Theory Tech.47(7), 1177–1183 (1999).
[CrossRef]

Thomas, P. A.

Z. Ren, P. J. Heard, J. M. Marshall, P. A. Thomas, and S. Yu, “Etching characteristics of LiNbO3 in reactive ion etching and inductively coupled plasma,” J. Appl. Phys.103(3), 034109 (2008).
[CrossRef]

Wooten, E. L.

E. L. Wooten, K. M. Kissa, A. Yi-Yan, E. J. Murphy, D. A. Lafaw, P. F. Hallemeier, D. Maack, D. V. Attanasio, D. J. Fritz, G. J. McBrien, and D. E. Bossi, “A review of lithium niobate modulators for fiber-optic communications systems,” IEEE J. Sel. Top. Quantum Electron.6(1), 69–82 (2000).
[CrossRef]

Yao, P.

Yi-Yan, A.

E. L. Wooten, K. M. Kissa, A. Yi-Yan, E. J. Murphy, D. A. Lafaw, P. F. Hallemeier, D. Maack, D. V. Attanasio, D. J. Fritz, G. J. McBrien, and D. E. Bossi, “A review of lithium niobate modulators for fiber-optic communications systems,” IEEE J. Sel. Top. Quantum Electron.6(1), 69–82 (2000).
[CrossRef]

Yu, P. K. L.

Yu, S.

Z. Ren, P. J. Heard, J. M. Marshall, P. A. Thomas, and S. Yu, “Etching characteristics of LiNbO3 in reactive ion etching and inductively coupled plasma,” J. Appl. Phys.103(3), 034109 (2008).
[CrossRef]

Zhang, C.

Y. Shi, C. Zhang, H. Zhang, J. H. Bechtel, L. R. Dalton, B. H. Robinson, and W. H. Steier, “Low (Sub-1-volt) halfwave voltage polymeric electro-optic modulators achieved by controlling chromophore shape,” Science288(5463), 119–122 (2000).
[CrossRef] [PubMed]

Zhang, H.

Y. Shi, C. Zhang, H. Zhang, J. H. Bechtel, L. R. Dalton, B. H. Robinson, and W. H. Steier, “Low (Sub-1-volt) halfwave voltage polymeric electro-optic modulators achieved by controlling chromophore shape,” Science288(5463), 119–122 (2000).
[CrossRef] [PubMed]

Appl. Phys. Lett.

R. V. Schmidt and I. P. Kaminow, “Metal-diffused optical waveguides in LiNbO3,” Appl. Phys. Lett.25(8), 458–460 (1974).
[CrossRef]

Electron. Lett.

K. Noguchi, H. Miyazawa, and O. Mitomi, “Frequency-dependent propagation characteristics of coplanar waveguide electrode on 100GHz Ti:LiNbO3 optical modulator,” Electron. Lett.34(7), 661–663 (1998).
[CrossRef]

G. K. Gopalakrishnan, W. K. Burns, and C. H. Bulmer, “Electrical loss mechanisms in travelling wave LiNbO3 optical modulators,” Electron. Lett.28(2), 207–209 (1992).
[CrossRef]

IEEE Commun. Mag.

J. Mcdonough, “Moving standards to 100 GbE and beyond,” IEEE Commun. Mag.45(11), 6–9 (2007).
[CrossRef]

IEEE J. Quantum Electron.

S. Kawanishi, “Ultrahigh-speed optical time-division-multiplexed transmission technology based on optical signal processing,” IEEE J. Quantum Electron.34(11), 2064–2079 (1998).
[CrossRef]

IEEE J. Sel. Areas Comm.

C. A. Brackett, “Dense wavelength division multiplexing networks: principles and applications,” IEEE J. Sel. Areas Comm.8(6), 948–964 (1990).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron.

E. L. Wooten, K. M. Kissa, A. Yi-Yan, E. J. Murphy, D. A. Lafaw, P. F. Hallemeier, D. Maack, D. V. Attanasio, D. J. Fritz, G. J. McBrien, and D. E. Bossi, “A review of lithium niobate modulators for fiber-optic communications systems,” IEEE J. Sel. Top. Quantum Electron.6(1), 69–82 (2000).
[CrossRef]

IEEE Photon. Technol. Lett.

J. Kondo, K. Aoki, A. Kondo, T. Ejiri, Y. Iwata, A. Hamajima, T. Mori, Y. Mizuno, M. Imaeda, Y. Kozuka, O. Mitomi, and M. Minakata, “High-speed and low-driving-Voltage thin-sheet X-cut LiNbO3 Modulator with laminated low-dielectric-constant adhesive,” IEEE Photon. Technol. Lett.17(10), 2077–2079 (2005).
[CrossRef]

IEEE Trans. Microw. Theory Tech.

Y. Shi, “Micromachined wide-band lithium-niobate electrooptic Modulators,” IEEE Trans. Microw. Theory Tech.54(2), 810–815 (2006).
[CrossRef]

C. A. Schuetz, J. Murakowski, G. J. Schneider, and D. W. Prather, “Radiometric Millimeter-wave detection via optical upconversion and carrier suppression,” IEEE Trans. Microw. Theory Tech.53(5), 1732–1738 (2005).
[CrossRef]

G. L. Li, C. K. Sun, S. A. Pappert, W. X. Chen, and P. K. L. Yu, “Ultrahigh-speed traveling-wave electroabsorption modulator-design and analysis,” IEEE Trans. Microw. Theory Tech.47(7), 1177–1183 (1999).
[CrossRef]

O. Mitomi, K. Noguchi, and H. Miyazawa, “Design of ultra-broad-band LiNbO3 optical modulators with ridge structure,” IEEE Trans. Microw. Theory Tech.43(9), 2203–2207 (1995).
[CrossRef]

J. Appl. Phys.

Z. Ren, P. J. Heard, J. M. Marshall, P. A. Thomas, and S. Yu, “Etching characteristics of LiNbO3 in reactive ion etching and inductively coupled plasma,” J. Appl. Phys.103(3), 034109 (2008).
[CrossRef]

J. Lightwave Technol.

Jpn. J. Appl. Phys., Part 1

K. Aoki, J. Kondou, O. Mitomi, and M. Minakata, “Velocity-matching conditions for ultrahigh-speed optical LiNbO3 modulators with traveling-wave electrode,” Jpn. J. Appl. Phys., Part 145, 8696–8698 (2006).

Science

Y. Shi, C. Zhang, H. Zhang, J. H. Bechtel, L. R. Dalton, B. H. Robinson, and W. H. Steier, “Low (Sub-1-volt) halfwave voltage polymeric electro-optic modulators achieved by controlling chromophore shape,” Science288(5463), 119–122 (2000).
[CrossRef] [PubMed]

Other

A. Kanno, T. Sakamoto, A. Chiba, T. Kawanishi, K. Higuma, M. Sudo, and J. Ichikawa, “166 Gb/s PDM-NRZ-DPSK modulation using thin-LiNbO3-substrate modulator” in Collocated National Fiber Optic Engineers Conference OFC/NFOEC 2010Anonymous (IEEE, 2010).

C. J. Huang, C. Schuetz, R. Shireen, T. Hwang, S. Shi, and D. W. Prather, “Development of photonic devices for MMW sensing and imaging” in Intelligent Integrated MicrosystemsAnonymous (SPIE - The International Society for Optical Engineering, 2006).

D. P. Kasilingam and D. B. Rutledge, Surface-wave losses of coplanar transmission lines” in 1983 IEEE MTT-S International Microwave Symposium DigestAnonymous (IEEE, 1983).

C. J. Huang, C. A. Schuetz, R. Shireen, S. Shi, and D. W. Prather, “LiNbO3 optical modulator for MMW sensing and imaging” in Passive Millimeter-Wave Imaging Technology XAnonymous (SPIE - The International Society for Optical Engineering, 2007).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Effect of substrate mode coupling on mmW electrical propagation properties. The transmission parameter S21 shows the importance of reducing the substrate’s thickness to eliminate the coupling of the RF signal into substrate modes and therefore enhance the transmission. With a substrate thickness reduced to 65 µm, substrate mode coupling is observed starting at 180 GHz.

Fig. 2
Fig. 2

Modulator cross-section. A ridged CPW structure is built on top of a Ti in-diffused waveguide. High aspect-ratio electrodes combined with a SiO2 buffer layer and a ridge structure allows effective index matching between optical and RF signals represented by E. A small gap G between the CPW electrodes leads to a strong mode-overlapping. A thinned LiNbO3 substrate underneath the CPW structure eliminates substrate modes over the full mmW range.

Fig. 3
Fig. 3

SEM pictures of the modulator fabricated. (a) CPW gold plated structure with LiNbO3 etched on each side. (b) Overall view of the end face of the modulator before optical fiber bonding. The LiNbO3 substrate has been thinned to 30 µm by micromachining a groove under the CPW structure to eliminate the substrate modes over the entire mmW region.

Fig. 4
Fig. 4

Measured transmission parameter S21 over the 280 GHz bandwidth. The transmission parameter S21 confirms that the substrate modes have been suppressed for a substrate thickness of 30 µm.

Fig. 5
Fig. 5

300 GHz optical modulation spectrum. Each pair of sidebands centered around the optical carrier represents the mmW energy for a given mmW frequency upconverted to optical energy using the EO effect of the LiNbO3.

Fig. 6
Fig. 6

Measured and calculated modulator half-wave voltage Vπ. The measured Vπ extracted from the sidebands measurements is in agreement with the Vπ calculated using the S-parameters.

Metrics