Abstract

We have experimentally compared the critical current, dark count rate and photo-response of 100nm wide superconducting nanowires with different bend designs. Enhanced critical current for nanowires with optimally rounded bends, and thus with no current crowding, are observed. Furthermore, we find that the optimally designed bend significantly reduces the dark counts without compromising the photo-response of the device. The results can lead to major improvements in superconducting nanowire single photon detectors.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. E. Knill, R. Laflamme, and G. J. Milburn, “A scheme for efficient quantum computation with linear optics,” Nature409, 46–52 (2001).
    [CrossRef] [PubMed]
  2. H. Takesue, S. W. Nam, Q. Zhang, R. H. Hadfield, T. Honjo, K. Tamaki, and Y. Yamamoto, “Quantum key distribution over a 40-dB channel loss using superconducting single-photon detectors,” Nat. Photonics1, 343–348 (2007).
    [CrossRef]
  3. M. E. Grein, A. J. Kerman, E. A. Dauler, O. Shatrovoy, R. J. Molnar, D. Rosenberg, J. Yoon, C. E. Devoe, D. V. Murphy, B. S. Robinson, and D. M. Boroson, “Design of a ground-based optical receiver for the lunar laser communications demonstration,” in Proceedings of International Conference on Space Optical Systems and Applications, (ICSOS’11) pp. 78–82.
    [PubMed]
  4. J. Zhang, N. Boiadjieva, G. Chulkova, H. Deslandes, G. N. Gol’tsman, A. Korneev, P. Kouminov, M. Leibowitz, W. Lo, R. Malinsky, O. Okunev, A. Pearlman, W. Slysz, K. Smirnov, C. Tsao, A. Verevkin, B. Voronov, K. Wilsher, and R. Sobolewski, “Noninvasive CMOS circuit testing with NbN superconducting single-photon detectors,” Electron. Lett.39, 1086–1088 (2003).
    [CrossRef]
  5. M. J. Stevens, R. H. Hadfield, R. E. Schwall, S. W. Nam, R. P. Mirin, and J. A. Gupta, “Fast lifetime measurements of infrared emitters using a low-jitter superconducting single-photon detector,” Appl. Phys. Lett.89, 031109 (2006).
    [CrossRef]
  6. R. H. Hadfield, “Single photon detectors for optical quantum information applications,” Nat. Photonics3, 696–705 (2009).
    [CrossRef]
  7. M. K. Akhlaghi and A. H. Majedi, “Gated mode superconducting nanowire single photon detectors,” Opt. Express20, 1608–1616 (2012).
    [CrossRef] [PubMed]
  8. C. M. Natarajan, M. G. Tanner, and R. H. Hadfield, “Superconducting nanowire single-photon detectors: physics and applications,” Supercond. Sci. Tech.25, 063001 (2012).
    [CrossRef]
  9. J. R. Clem and K. K. Berggren, “Geometry-dependent critical currents in superconducting nanocircuits,” Phys. Rev. B84, 174510 (2011).
    [CrossRef]
  10. H. L. Hortensius, E. F. C. Driessen, T. M. Klapwijk, K. K. Berggren, and J. R. Clem, “Critical-current reduction in thin superconducting wires due to current crowding,” Appl. Phys. Lett.100, 182602 (2012).
    [CrossRef]
  11. D. Henrich, P. Reichensperger, M. Hofherr, K. Ilin, M. Siegel, A. Semenov, A. Zotova, and D. Y. Vodolazov, “Geometry-induced reduction of the critical current in superconducting nanowires,” arXiv:1204.0616v1 (2012).
  12. A. J. Kerman, J. K. W. Yang, R. J. Molnar, E. A. Dauler, and K. K. Berggren, “Electrothermal feedback in superconducting nanowire single-photon detectors,” Phys. Rev. B79, 100509 (2009).
    [CrossRef]
  13. M. K. Akhlaghi, A. H. Majedi, and J. S. Lundeen, “Nonlinearity in single photon detection: modeling and quantum tomography,” Opt. Express19, 21305–21312 (2011).
    [CrossRef] [PubMed]
  14. L. N. Bulaevskii, M. J. Graf, C. D. Batista, and V. G. Kogan, “Vortex-induced dissipation in narrow current-biased thin-film superconducting strips,” Phys. Rev. B83, 144526 (2011).
    [CrossRef]

2012 (3)

M. K. Akhlaghi and A. H. Majedi, “Gated mode superconducting nanowire single photon detectors,” Opt. Express20, 1608–1616 (2012).
[CrossRef] [PubMed]

C. M. Natarajan, M. G. Tanner, and R. H. Hadfield, “Superconducting nanowire single-photon detectors: physics and applications,” Supercond. Sci. Tech.25, 063001 (2012).
[CrossRef]

H. L. Hortensius, E. F. C. Driessen, T. M. Klapwijk, K. K. Berggren, and J. R. Clem, “Critical-current reduction in thin superconducting wires due to current crowding,” Appl. Phys. Lett.100, 182602 (2012).
[CrossRef]

2011 (3)

J. R. Clem and K. K. Berggren, “Geometry-dependent critical currents in superconducting nanocircuits,” Phys. Rev. B84, 174510 (2011).
[CrossRef]

M. K. Akhlaghi, A. H. Majedi, and J. S. Lundeen, “Nonlinearity in single photon detection: modeling and quantum tomography,” Opt. Express19, 21305–21312 (2011).
[CrossRef] [PubMed]

L. N. Bulaevskii, M. J. Graf, C. D. Batista, and V. G. Kogan, “Vortex-induced dissipation in narrow current-biased thin-film superconducting strips,” Phys. Rev. B83, 144526 (2011).
[CrossRef]

2009 (2)

R. H. Hadfield, “Single photon detectors for optical quantum information applications,” Nat. Photonics3, 696–705 (2009).
[CrossRef]

A. J. Kerman, J. K. W. Yang, R. J. Molnar, E. A. Dauler, and K. K. Berggren, “Electrothermal feedback in superconducting nanowire single-photon detectors,” Phys. Rev. B79, 100509 (2009).
[CrossRef]

2007 (1)

H. Takesue, S. W. Nam, Q. Zhang, R. H. Hadfield, T. Honjo, K. Tamaki, and Y. Yamamoto, “Quantum key distribution over a 40-dB channel loss using superconducting single-photon detectors,” Nat. Photonics1, 343–348 (2007).
[CrossRef]

2006 (1)

M. J. Stevens, R. H. Hadfield, R. E. Schwall, S. W. Nam, R. P. Mirin, and J. A. Gupta, “Fast lifetime measurements of infrared emitters using a low-jitter superconducting single-photon detector,” Appl. Phys. Lett.89, 031109 (2006).
[CrossRef]

2003 (1)

J. Zhang, N. Boiadjieva, G. Chulkova, H. Deslandes, G. N. Gol’tsman, A. Korneev, P. Kouminov, M. Leibowitz, W. Lo, R. Malinsky, O. Okunev, A. Pearlman, W. Slysz, K. Smirnov, C. Tsao, A. Verevkin, B. Voronov, K. Wilsher, and R. Sobolewski, “Noninvasive CMOS circuit testing with NbN superconducting single-photon detectors,” Electron. Lett.39, 1086–1088 (2003).
[CrossRef]

2001 (1)

E. Knill, R. Laflamme, and G. J. Milburn, “A scheme for efficient quantum computation with linear optics,” Nature409, 46–52 (2001).
[CrossRef] [PubMed]

Akhlaghi, M. K.

Batista, C. D.

L. N. Bulaevskii, M. J. Graf, C. D. Batista, and V. G. Kogan, “Vortex-induced dissipation in narrow current-biased thin-film superconducting strips,” Phys. Rev. B83, 144526 (2011).
[CrossRef]

Berggren, K. K.

H. L. Hortensius, E. F. C. Driessen, T. M. Klapwijk, K. K. Berggren, and J. R. Clem, “Critical-current reduction in thin superconducting wires due to current crowding,” Appl. Phys. Lett.100, 182602 (2012).
[CrossRef]

J. R. Clem and K. K. Berggren, “Geometry-dependent critical currents in superconducting nanocircuits,” Phys. Rev. B84, 174510 (2011).
[CrossRef]

A. J. Kerman, J. K. W. Yang, R. J. Molnar, E. A. Dauler, and K. K. Berggren, “Electrothermal feedback in superconducting nanowire single-photon detectors,” Phys. Rev. B79, 100509 (2009).
[CrossRef]

Boiadjieva, N.

J. Zhang, N. Boiadjieva, G. Chulkova, H. Deslandes, G. N. Gol’tsman, A. Korneev, P. Kouminov, M. Leibowitz, W. Lo, R. Malinsky, O. Okunev, A. Pearlman, W. Slysz, K. Smirnov, C. Tsao, A. Verevkin, B. Voronov, K. Wilsher, and R. Sobolewski, “Noninvasive CMOS circuit testing with NbN superconducting single-photon detectors,” Electron. Lett.39, 1086–1088 (2003).
[CrossRef]

Boroson, D. M.

M. E. Grein, A. J. Kerman, E. A. Dauler, O. Shatrovoy, R. J. Molnar, D. Rosenberg, J. Yoon, C. E. Devoe, D. V. Murphy, B. S. Robinson, and D. M. Boroson, “Design of a ground-based optical receiver for the lunar laser communications demonstration,” in Proceedings of International Conference on Space Optical Systems and Applications, (ICSOS’11) pp. 78–82.
[PubMed]

Bulaevskii, L. N.

L. N. Bulaevskii, M. J. Graf, C. D. Batista, and V. G. Kogan, “Vortex-induced dissipation in narrow current-biased thin-film superconducting strips,” Phys. Rev. B83, 144526 (2011).
[CrossRef]

Chulkova, G.

J. Zhang, N. Boiadjieva, G. Chulkova, H. Deslandes, G. N. Gol’tsman, A. Korneev, P. Kouminov, M. Leibowitz, W. Lo, R. Malinsky, O. Okunev, A. Pearlman, W. Slysz, K. Smirnov, C. Tsao, A. Verevkin, B. Voronov, K. Wilsher, and R. Sobolewski, “Noninvasive CMOS circuit testing with NbN superconducting single-photon detectors,” Electron. Lett.39, 1086–1088 (2003).
[CrossRef]

Clem, J. R.

H. L. Hortensius, E. F. C. Driessen, T. M. Klapwijk, K. K. Berggren, and J. R. Clem, “Critical-current reduction in thin superconducting wires due to current crowding,” Appl. Phys. Lett.100, 182602 (2012).
[CrossRef]

J. R. Clem and K. K. Berggren, “Geometry-dependent critical currents in superconducting nanocircuits,” Phys. Rev. B84, 174510 (2011).
[CrossRef]

Dauler, E. A.

A. J. Kerman, J. K. W. Yang, R. J. Molnar, E. A. Dauler, and K. K. Berggren, “Electrothermal feedback in superconducting nanowire single-photon detectors,” Phys. Rev. B79, 100509 (2009).
[CrossRef]

M. E. Grein, A. J. Kerman, E. A. Dauler, O. Shatrovoy, R. J. Molnar, D. Rosenberg, J. Yoon, C. E. Devoe, D. V. Murphy, B. S. Robinson, and D. M. Boroson, “Design of a ground-based optical receiver for the lunar laser communications demonstration,” in Proceedings of International Conference on Space Optical Systems and Applications, (ICSOS’11) pp. 78–82.
[PubMed]

Deslandes, H.

J. Zhang, N. Boiadjieva, G. Chulkova, H. Deslandes, G. N. Gol’tsman, A. Korneev, P. Kouminov, M. Leibowitz, W. Lo, R. Malinsky, O. Okunev, A. Pearlman, W. Slysz, K. Smirnov, C. Tsao, A. Verevkin, B. Voronov, K. Wilsher, and R. Sobolewski, “Noninvasive CMOS circuit testing with NbN superconducting single-photon detectors,” Electron. Lett.39, 1086–1088 (2003).
[CrossRef]

Devoe, C. E.

M. E. Grein, A. J. Kerman, E. A. Dauler, O. Shatrovoy, R. J. Molnar, D. Rosenberg, J. Yoon, C. E. Devoe, D. V. Murphy, B. S. Robinson, and D. M. Boroson, “Design of a ground-based optical receiver for the lunar laser communications demonstration,” in Proceedings of International Conference on Space Optical Systems and Applications, (ICSOS’11) pp. 78–82.
[PubMed]

Driessen, E. F. C.

H. L. Hortensius, E. F. C. Driessen, T. M. Klapwijk, K. K. Berggren, and J. R. Clem, “Critical-current reduction in thin superconducting wires due to current crowding,” Appl. Phys. Lett.100, 182602 (2012).
[CrossRef]

Gol’tsman, G. N.

J. Zhang, N. Boiadjieva, G. Chulkova, H. Deslandes, G. N. Gol’tsman, A. Korneev, P. Kouminov, M. Leibowitz, W. Lo, R. Malinsky, O. Okunev, A. Pearlman, W. Slysz, K. Smirnov, C. Tsao, A. Verevkin, B. Voronov, K. Wilsher, and R. Sobolewski, “Noninvasive CMOS circuit testing with NbN superconducting single-photon detectors,” Electron. Lett.39, 1086–1088 (2003).
[CrossRef]

Graf, M. J.

L. N. Bulaevskii, M. J. Graf, C. D. Batista, and V. G. Kogan, “Vortex-induced dissipation in narrow current-biased thin-film superconducting strips,” Phys. Rev. B83, 144526 (2011).
[CrossRef]

Grein, M. E.

M. E. Grein, A. J. Kerman, E. A. Dauler, O. Shatrovoy, R. J. Molnar, D. Rosenberg, J. Yoon, C. E. Devoe, D. V. Murphy, B. S. Robinson, and D. M. Boroson, “Design of a ground-based optical receiver for the lunar laser communications demonstration,” in Proceedings of International Conference on Space Optical Systems and Applications, (ICSOS’11) pp. 78–82.
[PubMed]

Gupta, J. A.

M. J. Stevens, R. H. Hadfield, R. E. Schwall, S. W. Nam, R. P. Mirin, and J. A. Gupta, “Fast lifetime measurements of infrared emitters using a low-jitter superconducting single-photon detector,” Appl. Phys. Lett.89, 031109 (2006).
[CrossRef]

Hadfield, R. H.

C. M. Natarajan, M. G. Tanner, and R. H. Hadfield, “Superconducting nanowire single-photon detectors: physics and applications,” Supercond. Sci. Tech.25, 063001 (2012).
[CrossRef]

R. H. Hadfield, “Single photon detectors for optical quantum information applications,” Nat. Photonics3, 696–705 (2009).
[CrossRef]

H. Takesue, S. W. Nam, Q. Zhang, R. H. Hadfield, T. Honjo, K. Tamaki, and Y. Yamamoto, “Quantum key distribution over a 40-dB channel loss using superconducting single-photon detectors,” Nat. Photonics1, 343–348 (2007).
[CrossRef]

M. J. Stevens, R. H. Hadfield, R. E. Schwall, S. W. Nam, R. P. Mirin, and J. A. Gupta, “Fast lifetime measurements of infrared emitters using a low-jitter superconducting single-photon detector,” Appl. Phys. Lett.89, 031109 (2006).
[CrossRef]

Henrich, D.

D. Henrich, P. Reichensperger, M. Hofherr, K. Ilin, M. Siegel, A. Semenov, A. Zotova, and D. Y. Vodolazov, “Geometry-induced reduction of the critical current in superconducting nanowires,” arXiv:1204.0616v1 (2012).

Hofherr, M.

D. Henrich, P. Reichensperger, M. Hofherr, K. Ilin, M. Siegel, A. Semenov, A. Zotova, and D. Y. Vodolazov, “Geometry-induced reduction of the critical current in superconducting nanowires,” arXiv:1204.0616v1 (2012).

Honjo, T.

H. Takesue, S. W. Nam, Q. Zhang, R. H. Hadfield, T. Honjo, K. Tamaki, and Y. Yamamoto, “Quantum key distribution over a 40-dB channel loss using superconducting single-photon detectors,” Nat. Photonics1, 343–348 (2007).
[CrossRef]

Hortensius, H. L.

H. L. Hortensius, E. F. C. Driessen, T. M. Klapwijk, K. K. Berggren, and J. R. Clem, “Critical-current reduction in thin superconducting wires due to current crowding,” Appl. Phys. Lett.100, 182602 (2012).
[CrossRef]

Ilin, K.

D. Henrich, P. Reichensperger, M. Hofherr, K. Ilin, M. Siegel, A. Semenov, A. Zotova, and D. Y. Vodolazov, “Geometry-induced reduction of the critical current in superconducting nanowires,” arXiv:1204.0616v1 (2012).

Kerman, A. J.

A. J. Kerman, J. K. W. Yang, R. J. Molnar, E. A. Dauler, and K. K. Berggren, “Electrothermal feedback in superconducting nanowire single-photon detectors,” Phys. Rev. B79, 100509 (2009).
[CrossRef]

M. E. Grein, A. J. Kerman, E. A. Dauler, O. Shatrovoy, R. J. Molnar, D. Rosenberg, J. Yoon, C. E. Devoe, D. V. Murphy, B. S. Robinson, and D. M. Boroson, “Design of a ground-based optical receiver for the lunar laser communications demonstration,” in Proceedings of International Conference on Space Optical Systems and Applications, (ICSOS’11) pp. 78–82.
[PubMed]

Klapwijk, T. M.

H. L. Hortensius, E. F. C. Driessen, T. M. Klapwijk, K. K. Berggren, and J. R. Clem, “Critical-current reduction in thin superconducting wires due to current crowding,” Appl. Phys. Lett.100, 182602 (2012).
[CrossRef]

Knill, E.

E. Knill, R. Laflamme, and G. J. Milburn, “A scheme for efficient quantum computation with linear optics,” Nature409, 46–52 (2001).
[CrossRef] [PubMed]

Kogan, V. G.

L. N. Bulaevskii, M. J. Graf, C. D. Batista, and V. G. Kogan, “Vortex-induced dissipation in narrow current-biased thin-film superconducting strips,” Phys. Rev. B83, 144526 (2011).
[CrossRef]

Korneev, A.

J. Zhang, N. Boiadjieva, G. Chulkova, H. Deslandes, G. N. Gol’tsman, A. Korneev, P. Kouminov, M. Leibowitz, W. Lo, R. Malinsky, O. Okunev, A. Pearlman, W. Slysz, K. Smirnov, C. Tsao, A. Verevkin, B. Voronov, K. Wilsher, and R. Sobolewski, “Noninvasive CMOS circuit testing with NbN superconducting single-photon detectors,” Electron. Lett.39, 1086–1088 (2003).
[CrossRef]

Kouminov, P.

J. Zhang, N. Boiadjieva, G. Chulkova, H. Deslandes, G. N. Gol’tsman, A. Korneev, P. Kouminov, M. Leibowitz, W. Lo, R. Malinsky, O. Okunev, A. Pearlman, W. Slysz, K. Smirnov, C. Tsao, A. Verevkin, B. Voronov, K. Wilsher, and R. Sobolewski, “Noninvasive CMOS circuit testing with NbN superconducting single-photon detectors,” Electron. Lett.39, 1086–1088 (2003).
[CrossRef]

Laflamme, R.

E. Knill, R. Laflamme, and G. J. Milburn, “A scheme for efficient quantum computation with linear optics,” Nature409, 46–52 (2001).
[CrossRef] [PubMed]

Leibowitz, M.

J. Zhang, N. Boiadjieva, G. Chulkova, H. Deslandes, G. N. Gol’tsman, A. Korneev, P. Kouminov, M. Leibowitz, W. Lo, R. Malinsky, O. Okunev, A. Pearlman, W. Slysz, K. Smirnov, C. Tsao, A. Verevkin, B. Voronov, K. Wilsher, and R. Sobolewski, “Noninvasive CMOS circuit testing with NbN superconducting single-photon detectors,” Electron. Lett.39, 1086–1088 (2003).
[CrossRef]

Lo, W.

J. Zhang, N. Boiadjieva, G. Chulkova, H. Deslandes, G. N. Gol’tsman, A. Korneev, P. Kouminov, M. Leibowitz, W. Lo, R. Malinsky, O. Okunev, A. Pearlman, W. Slysz, K. Smirnov, C. Tsao, A. Verevkin, B. Voronov, K. Wilsher, and R. Sobolewski, “Noninvasive CMOS circuit testing with NbN superconducting single-photon detectors,” Electron. Lett.39, 1086–1088 (2003).
[CrossRef]

Lundeen, J. S.

Majedi, A. H.

Malinsky, R.

J. Zhang, N. Boiadjieva, G. Chulkova, H. Deslandes, G. N. Gol’tsman, A. Korneev, P. Kouminov, M. Leibowitz, W. Lo, R. Malinsky, O. Okunev, A. Pearlman, W. Slysz, K. Smirnov, C. Tsao, A. Verevkin, B. Voronov, K. Wilsher, and R. Sobolewski, “Noninvasive CMOS circuit testing with NbN superconducting single-photon detectors,” Electron. Lett.39, 1086–1088 (2003).
[CrossRef]

Milburn, G. J.

E. Knill, R. Laflamme, and G. J. Milburn, “A scheme for efficient quantum computation with linear optics,” Nature409, 46–52 (2001).
[CrossRef] [PubMed]

Mirin, R. P.

M. J. Stevens, R. H. Hadfield, R. E. Schwall, S. W. Nam, R. P. Mirin, and J. A. Gupta, “Fast lifetime measurements of infrared emitters using a low-jitter superconducting single-photon detector,” Appl. Phys. Lett.89, 031109 (2006).
[CrossRef]

Molnar, R. J.

A. J. Kerman, J. K. W. Yang, R. J. Molnar, E. A. Dauler, and K. K. Berggren, “Electrothermal feedback in superconducting nanowire single-photon detectors,” Phys. Rev. B79, 100509 (2009).
[CrossRef]

M. E. Grein, A. J. Kerman, E. A. Dauler, O. Shatrovoy, R. J. Molnar, D. Rosenberg, J. Yoon, C. E. Devoe, D. V. Murphy, B. S. Robinson, and D. M. Boroson, “Design of a ground-based optical receiver for the lunar laser communications demonstration,” in Proceedings of International Conference on Space Optical Systems and Applications, (ICSOS’11) pp. 78–82.
[PubMed]

Murphy, D. V.

M. E. Grein, A. J. Kerman, E. A. Dauler, O. Shatrovoy, R. J. Molnar, D. Rosenberg, J. Yoon, C. E. Devoe, D. V. Murphy, B. S. Robinson, and D. M. Boroson, “Design of a ground-based optical receiver for the lunar laser communications demonstration,” in Proceedings of International Conference on Space Optical Systems and Applications, (ICSOS’11) pp. 78–82.
[PubMed]

Nam, S. W.

H. Takesue, S. W. Nam, Q. Zhang, R. H. Hadfield, T. Honjo, K. Tamaki, and Y. Yamamoto, “Quantum key distribution over a 40-dB channel loss using superconducting single-photon detectors,” Nat. Photonics1, 343–348 (2007).
[CrossRef]

M. J. Stevens, R. H. Hadfield, R. E. Schwall, S. W. Nam, R. P. Mirin, and J. A. Gupta, “Fast lifetime measurements of infrared emitters using a low-jitter superconducting single-photon detector,” Appl. Phys. Lett.89, 031109 (2006).
[CrossRef]

Natarajan, C. M.

C. M. Natarajan, M. G. Tanner, and R. H. Hadfield, “Superconducting nanowire single-photon detectors: physics and applications,” Supercond. Sci. Tech.25, 063001 (2012).
[CrossRef]

Okunev, O.

J. Zhang, N. Boiadjieva, G. Chulkova, H. Deslandes, G. N. Gol’tsman, A. Korneev, P. Kouminov, M. Leibowitz, W. Lo, R. Malinsky, O. Okunev, A. Pearlman, W. Slysz, K. Smirnov, C. Tsao, A. Verevkin, B. Voronov, K. Wilsher, and R. Sobolewski, “Noninvasive CMOS circuit testing with NbN superconducting single-photon detectors,” Electron. Lett.39, 1086–1088 (2003).
[CrossRef]

Pearlman, A.

J. Zhang, N. Boiadjieva, G. Chulkova, H. Deslandes, G. N. Gol’tsman, A. Korneev, P. Kouminov, M. Leibowitz, W. Lo, R. Malinsky, O. Okunev, A. Pearlman, W. Slysz, K. Smirnov, C. Tsao, A. Verevkin, B. Voronov, K. Wilsher, and R. Sobolewski, “Noninvasive CMOS circuit testing with NbN superconducting single-photon detectors,” Electron. Lett.39, 1086–1088 (2003).
[CrossRef]

Reichensperger, P.

D. Henrich, P. Reichensperger, M. Hofherr, K. Ilin, M. Siegel, A. Semenov, A. Zotova, and D. Y. Vodolazov, “Geometry-induced reduction of the critical current in superconducting nanowires,” arXiv:1204.0616v1 (2012).

Robinson, B. S.

M. E. Grein, A. J. Kerman, E. A. Dauler, O. Shatrovoy, R. J. Molnar, D. Rosenberg, J. Yoon, C. E. Devoe, D. V. Murphy, B. S. Robinson, and D. M. Boroson, “Design of a ground-based optical receiver for the lunar laser communications demonstration,” in Proceedings of International Conference on Space Optical Systems and Applications, (ICSOS’11) pp. 78–82.
[PubMed]

Rosenberg, D.

M. E. Grein, A. J. Kerman, E. A. Dauler, O. Shatrovoy, R. J. Molnar, D. Rosenberg, J. Yoon, C. E. Devoe, D. V. Murphy, B. S. Robinson, and D. M. Boroson, “Design of a ground-based optical receiver for the lunar laser communications demonstration,” in Proceedings of International Conference on Space Optical Systems and Applications, (ICSOS’11) pp. 78–82.
[PubMed]

Schwall, R. E.

M. J. Stevens, R. H. Hadfield, R. E. Schwall, S. W. Nam, R. P. Mirin, and J. A. Gupta, “Fast lifetime measurements of infrared emitters using a low-jitter superconducting single-photon detector,” Appl. Phys. Lett.89, 031109 (2006).
[CrossRef]

Semenov, A.

D. Henrich, P. Reichensperger, M. Hofherr, K. Ilin, M. Siegel, A. Semenov, A. Zotova, and D. Y. Vodolazov, “Geometry-induced reduction of the critical current in superconducting nanowires,” arXiv:1204.0616v1 (2012).

Shatrovoy, O.

M. E. Grein, A. J. Kerman, E. A. Dauler, O. Shatrovoy, R. J. Molnar, D. Rosenberg, J. Yoon, C. E. Devoe, D. V. Murphy, B. S. Robinson, and D. M. Boroson, “Design of a ground-based optical receiver for the lunar laser communications demonstration,” in Proceedings of International Conference on Space Optical Systems and Applications, (ICSOS’11) pp. 78–82.
[PubMed]

Siegel, M.

D. Henrich, P. Reichensperger, M. Hofherr, K. Ilin, M. Siegel, A. Semenov, A. Zotova, and D. Y. Vodolazov, “Geometry-induced reduction of the critical current in superconducting nanowires,” arXiv:1204.0616v1 (2012).

Slysz, W.

J. Zhang, N. Boiadjieva, G. Chulkova, H. Deslandes, G. N. Gol’tsman, A. Korneev, P. Kouminov, M. Leibowitz, W. Lo, R. Malinsky, O. Okunev, A. Pearlman, W. Slysz, K. Smirnov, C. Tsao, A. Verevkin, B. Voronov, K. Wilsher, and R. Sobolewski, “Noninvasive CMOS circuit testing with NbN superconducting single-photon detectors,” Electron. Lett.39, 1086–1088 (2003).
[CrossRef]

Smirnov, K.

J. Zhang, N. Boiadjieva, G. Chulkova, H. Deslandes, G. N. Gol’tsman, A. Korneev, P. Kouminov, M. Leibowitz, W. Lo, R. Malinsky, O. Okunev, A. Pearlman, W. Slysz, K. Smirnov, C. Tsao, A. Verevkin, B. Voronov, K. Wilsher, and R. Sobolewski, “Noninvasive CMOS circuit testing with NbN superconducting single-photon detectors,” Electron. Lett.39, 1086–1088 (2003).
[CrossRef]

Sobolewski, R.

J. Zhang, N. Boiadjieva, G. Chulkova, H. Deslandes, G. N. Gol’tsman, A. Korneev, P. Kouminov, M. Leibowitz, W. Lo, R. Malinsky, O. Okunev, A. Pearlman, W. Slysz, K. Smirnov, C. Tsao, A. Verevkin, B. Voronov, K. Wilsher, and R. Sobolewski, “Noninvasive CMOS circuit testing with NbN superconducting single-photon detectors,” Electron. Lett.39, 1086–1088 (2003).
[CrossRef]

Stevens, M. J.

M. J. Stevens, R. H. Hadfield, R. E. Schwall, S. W. Nam, R. P. Mirin, and J. A. Gupta, “Fast lifetime measurements of infrared emitters using a low-jitter superconducting single-photon detector,” Appl. Phys. Lett.89, 031109 (2006).
[CrossRef]

Takesue, H.

H. Takesue, S. W. Nam, Q. Zhang, R. H. Hadfield, T. Honjo, K. Tamaki, and Y. Yamamoto, “Quantum key distribution over a 40-dB channel loss using superconducting single-photon detectors,” Nat. Photonics1, 343–348 (2007).
[CrossRef]

Tamaki, K.

H. Takesue, S. W. Nam, Q. Zhang, R. H. Hadfield, T. Honjo, K. Tamaki, and Y. Yamamoto, “Quantum key distribution over a 40-dB channel loss using superconducting single-photon detectors,” Nat. Photonics1, 343–348 (2007).
[CrossRef]

Tanner, M. G.

C. M. Natarajan, M. G. Tanner, and R. H. Hadfield, “Superconducting nanowire single-photon detectors: physics and applications,” Supercond. Sci. Tech.25, 063001 (2012).
[CrossRef]

Tsao, C.

J. Zhang, N. Boiadjieva, G. Chulkova, H. Deslandes, G. N. Gol’tsman, A. Korneev, P. Kouminov, M. Leibowitz, W. Lo, R. Malinsky, O. Okunev, A. Pearlman, W. Slysz, K. Smirnov, C. Tsao, A. Verevkin, B. Voronov, K. Wilsher, and R. Sobolewski, “Noninvasive CMOS circuit testing with NbN superconducting single-photon detectors,” Electron. Lett.39, 1086–1088 (2003).
[CrossRef]

Verevkin, A.

J. Zhang, N. Boiadjieva, G. Chulkova, H. Deslandes, G. N. Gol’tsman, A. Korneev, P. Kouminov, M. Leibowitz, W. Lo, R. Malinsky, O. Okunev, A. Pearlman, W. Slysz, K. Smirnov, C. Tsao, A. Verevkin, B. Voronov, K. Wilsher, and R. Sobolewski, “Noninvasive CMOS circuit testing with NbN superconducting single-photon detectors,” Electron. Lett.39, 1086–1088 (2003).
[CrossRef]

Vodolazov, D. Y.

D. Henrich, P. Reichensperger, M. Hofherr, K. Ilin, M. Siegel, A. Semenov, A. Zotova, and D. Y. Vodolazov, “Geometry-induced reduction of the critical current in superconducting nanowires,” arXiv:1204.0616v1 (2012).

Voronov, B.

J. Zhang, N. Boiadjieva, G. Chulkova, H. Deslandes, G. N. Gol’tsman, A. Korneev, P. Kouminov, M. Leibowitz, W. Lo, R. Malinsky, O. Okunev, A. Pearlman, W. Slysz, K. Smirnov, C. Tsao, A. Verevkin, B. Voronov, K. Wilsher, and R. Sobolewski, “Noninvasive CMOS circuit testing with NbN superconducting single-photon detectors,” Electron. Lett.39, 1086–1088 (2003).
[CrossRef]

Wilsher, K.

J. Zhang, N. Boiadjieva, G. Chulkova, H. Deslandes, G. N. Gol’tsman, A. Korneev, P. Kouminov, M. Leibowitz, W. Lo, R. Malinsky, O. Okunev, A. Pearlman, W. Slysz, K. Smirnov, C. Tsao, A. Verevkin, B. Voronov, K. Wilsher, and R. Sobolewski, “Noninvasive CMOS circuit testing with NbN superconducting single-photon detectors,” Electron. Lett.39, 1086–1088 (2003).
[CrossRef]

Yamamoto, Y.

H. Takesue, S. W. Nam, Q. Zhang, R. H. Hadfield, T. Honjo, K. Tamaki, and Y. Yamamoto, “Quantum key distribution over a 40-dB channel loss using superconducting single-photon detectors,” Nat. Photonics1, 343–348 (2007).
[CrossRef]

Yang, J. K. W.

A. J. Kerman, J. K. W. Yang, R. J. Molnar, E. A. Dauler, and K. K. Berggren, “Electrothermal feedback in superconducting nanowire single-photon detectors,” Phys. Rev. B79, 100509 (2009).
[CrossRef]

Yoon, J.

M. E. Grein, A. J. Kerman, E. A. Dauler, O. Shatrovoy, R. J. Molnar, D. Rosenberg, J. Yoon, C. E. Devoe, D. V. Murphy, B. S. Robinson, and D. M. Boroson, “Design of a ground-based optical receiver for the lunar laser communications demonstration,” in Proceedings of International Conference on Space Optical Systems and Applications, (ICSOS’11) pp. 78–82.
[PubMed]

Zhang, J.

J. Zhang, N. Boiadjieva, G. Chulkova, H. Deslandes, G. N. Gol’tsman, A. Korneev, P. Kouminov, M. Leibowitz, W. Lo, R. Malinsky, O. Okunev, A. Pearlman, W. Slysz, K. Smirnov, C. Tsao, A. Verevkin, B. Voronov, K. Wilsher, and R. Sobolewski, “Noninvasive CMOS circuit testing with NbN superconducting single-photon detectors,” Electron. Lett.39, 1086–1088 (2003).
[CrossRef]

Zhang, Q.

H. Takesue, S. W. Nam, Q. Zhang, R. H. Hadfield, T. Honjo, K. Tamaki, and Y. Yamamoto, “Quantum key distribution over a 40-dB channel loss using superconducting single-photon detectors,” Nat. Photonics1, 343–348 (2007).
[CrossRef]

Zotova, A.

D. Henrich, P. Reichensperger, M. Hofherr, K. Ilin, M. Siegel, A. Semenov, A. Zotova, and D. Y. Vodolazov, “Geometry-induced reduction of the critical current in superconducting nanowires,” arXiv:1204.0616v1 (2012).

Appl. Phys. Lett. (2)

M. J. Stevens, R. H. Hadfield, R. E. Schwall, S. W. Nam, R. P. Mirin, and J. A. Gupta, “Fast lifetime measurements of infrared emitters using a low-jitter superconducting single-photon detector,” Appl. Phys. Lett.89, 031109 (2006).
[CrossRef]

H. L. Hortensius, E. F. C. Driessen, T. M. Klapwijk, K. K. Berggren, and J. R. Clem, “Critical-current reduction in thin superconducting wires due to current crowding,” Appl. Phys. Lett.100, 182602 (2012).
[CrossRef]

Electron. Lett. (1)

J. Zhang, N. Boiadjieva, G. Chulkova, H. Deslandes, G. N. Gol’tsman, A. Korneev, P. Kouminov, M. Leibowitz, W. Lo, R. Malinsky, O. Okunev, A. Pearlman, W. Slysz, K. Smirnov, C. Tsao, A. Verevkin, B. Voronov, K. Wilsher, and R. Sobolewski, “Noninvasive CMOS circuit testing with NbN superconducting single-photon detectors,” Electron. Lett.39, 1086–1088 (2003).
[CrossRef]

Nat. Photonics (2)

H. Takesue, S. W. Nam, Q. Zhang, R. H. Hadfield, T. Honjo, K. Tamaki, and Y. Yamamoto, “Quantum key distribution over a 40-dB channel loss using superconducting single-photon detectors,” Nat. Photonics1, 343–348 (2007).
[CrossRef]

R. H. Hadfield, “Single photon detectors for optical quantum information applications,” Nat. Photonics3, 696–705 (2009).
[CrossRef]

Nature (1)

E. Knill, R. Laflamme, and G. J. Milburn, “A scheme for efficient quantum computation with linear optics,” Nature409, 46–52 (2001).
[CrossRef] [PubMed]

Opt. Express (2)

Phys. Rev. B (3)

L. N. Bulaevskii, M. J. Graf, C. D. Batista, and V. G. Kogan, “Vortex-induced dissipation in narrow current-biased thin-film superconducting strips,” Phys. Rev. B83, 144526 (2011).
[CrossRef]

J. R. Clem and K. K. Berggren, “Geometry-dependent critical currents in superconducting nanocircuits,” Phys. Rev. B84, 174510 (2011).
[CrossRef]

A. J. Kerman, J. K. W. Yang, R. J. Molnar, E. A. Dauler, and K. K. Berggren, “Electrothermal feedback in superconducting nanowire single-photon detectors,” Phys. Rev. B79, 100509 (2009).
[CrossRef]

Supercond. Sci. Tech. (1)

C. M. Natarajan, M. G. Tanner, and R. H. Hadfield, “Superconducting nanowire single-photon detectors: physics and applications,” Supercond. Sci. Tech.25, 063001 (2012).
[CrossRef]

Other (2)

M. E. Grein, A. J. Kerman, E. A. Dauler, O. Shatrovoy, R. J. Molnar, D. Rosenberg, J. Yoon, C. E. Devoe, D. V. Murphy, B. S. Robinson, and D. M. Boroson, “Design of a ground-based optical receiver for the lunar laser communications demonstration,” in Proceedings of International Conference on Space Optical Systems and Applications, (ICSOS’11) pp. 78–82.
[PubMed]

D. Henrich, P. Reichensperger, M. Hofherr, K. Ilin, M. Siegel, A. Semenov, A. Zotova, and D. Y. Vodolazov, “Geometry-induced reduction of the critical current in superconducting nanowires,” arXiv:1204.0616v1 (2012).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Scanning electron microscope images of the nanowires explored in this paper. (a) A typical nanowire structure examined in this paper and its connection lines. (b) and (c) two optimized 90-degree bends. (d) and (e) sharp and 45° 90-degree bends. (f) and (g) optimized and sharp 180-degree turns with 200nm spacing. (h) optimized 180-degree turn with 300nm spacing. (i) and (j) sharp and circular (radius = 50nm) 180-degree turns with 100nm spacing. The circles are eye guides with 35nm radius. Blue and red dashed lines are current streamlines calculated for a superconductor thin film enclosed by solid white lines. All the parts, except (a) share the same length scale.

Fig. 2
Fig. 2

Measured critical currents of the nanowires. The horizontal axis specifies the type of bend design by using labels that correspond to the insets of Fig 1. The data points for the devices that were on the same chip are connected by solid lines.

Fig. 3
Fig. 3

(a) Photo-response and dark count measurements for samples of devices d/b and g/f. These samples are marked on Fig. 2 by filled symbols. (b) Dark count measurements for more samples. Each symbol is for devices on the same chip. The letters refer to insets of Fig. 1. All the lines are for eye guide.

Metrics