Abstract

A new technique that increases the free spectral range (FSR) of a recirculating delay line filter, is presented. The concept is based on a time-compression unit, which is used in conjunction with a frequency-shifting recirculating loop that generates multi-spectral characteristics, and the idea exploits the optical wavelength domain by wavelength-to-time mapping of the taps using an oppositely time-oriented dispersive element so that the taps travel different lengths, to time compress the tap separation. This technique solves, for the first time, the long-standing problem of the small FSR limitation in recirculating microwave photonic delay line filters, opening the way to realize the main functionalities required in microwave photonic filters. Experimental results are presented which demonstrate a large 100-fold increase in the FSR of the bandpass filter response.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. A. Minasian, “Photonic signal processing of microwave signals,” IEEE Trans. Microw. Theory Tech.54(2), 832–846 (2006).
    [CrossRef]
  2. J. Capmany, B. Ortega, D. Pastor, and S. Sales, “Discrete-time optical processing of microwave signals,” J. Lightwave Technol.23(2), 702–723 (2005).
    [CrossRef]
  3. J. Mora, L. R. Chen, and J. Capmany, “Single-bandpass microwave photonic filter with tuning and reconfiguration capabilities,” J. Lightwave Technol.26(15), 2663–2670 (2008).
    [CrossRef]
  4. T. X. H. Huang, X. Yi, and R. A. Minasian, “New multiple-tap, general-response, reconfigurable photonic signal processor,” Opt. Express17(7), 5358–5363 (2009).
    [CrossRef] [PubMed]
  5. X. H. Feng, C. Lu, H. Y. Tam, and P. K. A. Wai, “Reconfigurable microwave photonic filter using multiwavelength erbium-doped fiber laser,” IEEE Photon. Technol. Lett.19(17), 1334–1336 (2007).
    [CrossRef]
  6. E. Hamidi, D. E. Leaird, and A. M. Weiner, “Tunable programmable microwave photonic filters based on an optical frequency comb,” IEEE Trans. Microw. Theory Tech.58(11), 3269–3278 (2010).
    [CrossRef]
  7. Y. Yu, J. Dong, X. Li, E. Xu, L. Zhou, and X. Zhang, “All-optical microwave photonic filter based on electrooptic phase modulator and detuned wavelength division de-multiplexer,” IEEE Trans. Microw. Theory Tech.59(9), 2340–2349 (2011).
    [CrossRef]
  8. E. H. W. Chan and R. A. Minasian, “Reflective amplified recirculating delay line bandpass filter,” J. Lightwave Technol.25(6), 1441–1446 (2007).
    [CrossRef]
  9. E. M. Xu, X. L. Zhang, L. N. Zhou, Y. Zhang, and D. X. Huang, “Hybrid active-passive microwave photonic filter with high quality factor,” Chin. Phys. Lett.26, 1–4 (2009).
  10. E. H. W. Chan, K. E. Alameh, and R. A. Minasian, “Photonic bandpass filters with high skirt selectivity and stopband attenuation,” J. Lightwave Technol.20(11), 1962–1967 (2002).
    [CrossRef]
  11. J. Mora, B. Ortega, and J. Capmany, “Accurate control of active recirculating structures for mircrowave photonics signal filtering,” J. Lightwave Technol.26(12), 1626–1631 (2008).
    [CrossRef]
  12. W. Zhang, J. A. R. Williams, and I. Bennion, “Optical fiber recirculating delay line incorporating a fiber grating array,” IEEE Microw. Compon. Lett.11(5), 217–219 (2001).
    [CrossRef]
  13. B. Ortega, J. Mora, J. Capmany, D. Pastor, and R. Garcia-Olcina, “Highly selective microwave photonic filters based on active optical recirculating cavity and tuned modulator hybrid structure,” Electron. Lett.41(20), 1133–1135 (2005).
    [CrossRef]
  14. C. Pulikkaseril, E. H. W. Chan, and R. A. Minasian, “Coherence-free microwave photonic bandpass filter using a frequency-shifting recirculating delay line,” J. Lightwave Technol.28(3), 262–269 (2010).
    [CrossRef]
  15. K. Fröjdh, “New manufacturing of ultra-long FBG’s (> 10 m) whilst maintaining high performance characteristics,” Bragg Gratings, Photosensitivity, and Poling in Glass Waveguides, BMA1, (2010).
  16. J. Skaar, L. Wang, and T. Erdogan, “On the synthesis of fiber Bragg gratings by layer peeling,” IEEE J. Quantum Electron.37(2), 165–173 (2001).
    [CrossRef]
  17. E. H. W. Chan and R. A. Minasian, “Coherence-free high-resolution RF/microwave photonic bandpass filter with high skirt selectivity and high stopband attenuation,” J. Lightwave Technol.28(11), 1646–1651 (2010).
    [CrossRef]
  18. S. Wakabayashi, A. Baba, A. Itou, and J. Adachi, “Design and fabrication of an apodization profile in linearly chirped fiber Bragg gratings for wideband >35nm and compact tunable dispersion compensator,” J. Opt. Soc. Am. B25(2), 210–217 (2008).
    [CrossRef]
  19. S. Shimotsu, S. Oikawa, T. Saitou, N. Mitsugi, K. Kubodera, T. Kawanishi, and M. Izutsu, “Single side-band modulation performance of a LiNbO3 integrated modulator consisting of four-phase modulator waveguides,” IEEE Photon. Technol. Lett.13(4), 364–366 (2001).
    [CrossRef]

2011

Y. Yu, J. Dong, X. Li, E. Xu, L. Zhou, and X. Zhang, “All-optical microwave photonic filter based on electrooptic phase modulator and detuned wavelength division de-multiplexer,” IEEE Trans. Microw. Theory Tech.59(9), 2340–2349 (2011).
[CrossRef]

2010

2009

T. X. H. Huang, X. Yi, and R. A. Minasian, “New multiple-tap, general-response, reconfigurable photonic signal processor,” Opt. Express17(7), 5358–5363 (2009).
[CrossRef] [PubMed]

E. M. Xu, X. L. Zhang, L. N. Zhou, Y. Zhang, and D. X. Huang, “Hybrid active-passive microwave photonic filter with high quality factor,” Chin. Phys. Lett.26, 1–4 (2009).

2008

2007

E. H. W. Chan and R. A. Minasian, “Reflective amplified recirculating delay line bandpass filter,” J. Lightwave Technol.25(6), 1441–1446 (2007).
[CrossRef]

X. H. Feng, C. Lu, H. Y. Tam, and P. K. A. Wai, “Reconfigurable microwave photonic filter using multiwavelength erbium-doped fiber laser,” IEEE Photon. Technol. Lett.19(17), 1334–1336 (2007).
[CrossRef]

2006

R. A. Minasian, “Photonic signal processing of microwave signals,” IEEE Trans. Microw. Theory Tech.54(2), 832–846 (2006).
[CrossRef]

2005

B. Ortega, J. Mora, J. Capmany, D. Pastor, and R. Garcia-Olcina, “Highly selective microwave photonic filters based on active optical recirculating cavity and tuned modulator hybrid structure,” Electron. Lett.41(20), 1133–1135 (2005).
[CrossRef]

J. Capmany, B. Ortega, D. Pastor, and S. Sales, “Discrete-time optical processing of microwave signals,” J. Lightwave Technol.23(2), 702–723 (2005).
[CrossRef]

2002

2001

J. Skaar, L. Wang, and T. Erdogan, “On the synthesis of fiber Bragg gratings by layer peeling,” IEEE J. Quantum Electron.37(2), 165–173 (2001).
[CrossRef]

S. Shimotsu, S. Oikawa, T. Saitou, N. Mitsugi, K. Kubodera, T. Kawanishi, and M. Izutsu, “Single side-band modulation performance of a LiNbO3 integrated modulator consisting of four-phase modulator waveguides,” IEEE Photon. Technol. Lett.13(4), 364–366 (2001).
[CrossRef]

W. Zhang, J. A. R. Williams, and I. Bennion, “Optical fiber recirculating delay line incorporating a fiber grating array,” IEEE Microw. Compon. Lett.11(5), 217–219 (2001).
[CrossRef]

Adachi, J.

Alameh, K. E.

Baba, A.

Bennion, I.

W. Zhang, J. A. R. Williams, and I. Bennion, “Optical fiber recirculating delay line incorporating a fiber grating array,” IEEE Microw. Compon. Lett.11(5), 217–219 (2001).
[CrossRef]

Capmany, J.

Chan, E. H. W.

Chen, L. R.

Dong, J.

Y. Yu, J. Dong, X. Li, E. Xu, L. Zhou, and X. Zhang, “All-optical microwave photonic filter based on electrooptic phase modulator and detuned wavelength division de-multiplexer,” IEEE Trans. Microw. Theory Tech.59(9), 2340–2349 (2011).
[CrossRef]

Erdogan, T.

J. Skaar, L. Wang, and T. Erdogan, “On the synthesis of fiber Bragg gratings by layer peeling,” IEEE J. Quantum Electron.37(2), 165–173 (2001).
[CrossRef]

Feng, X. H.

X. H. Feng, C. Lu, H. Y. Tam, and P. K. A. Wai, “Reconfigurable microwave photonic filter using multiwavelength erbium-doped fiber laser,” IEEE Photon. Technol. Lett.19(17), 1334–1336 (2007).
[CrossRef]

Garcia-Olcina, R.

B. Ortega, J. Mora, J. Capmany, D. Pastor, and R. Garcia-Olcina, “Highly selective microwave photonic filters based on active optical recirculating cavity and tuned modulator hybrid structure,” Electron. Lett.41(20), 1133–1135 (2005).
[CrossRef]

Hamidi, E.

E. Hamidi, D. E. Leaird, and A. M. Weiner, “Tunable programmable microwave photonic filters based on an optical frequency comb,” IEEE Trans. Microw. Theory Tech.58(11), 3269–3278 (2010).
[CrossRef]

Huang, D. X.

E. M. Xu, X. L. Zhang, L. N. Zhou, Y. Zhang, and D. X. Huang, “Hybrid active-passive microwave photonic filter with high quality factor,” Chin. Phys. Lett.26, 1–4 (2009).

Huang, T. X. H.

Itou, A.

Izutsu, M.

S. Shimotsu, S. Oikawa, T. Saitou, N. Mitsugi, K. Kubodera, T. Kawanishi, and M. Izutsu, “Single side-band modulation performance of a LiNbO3 integrated modulator consisting of four-phase modulator waveguides,” IEEE Photon. Technol. Lett.13(4), 364–366 (2001).
[CrossRef]

Kawanishi, T.

S. Shimotsu, S. Oikawa, T. Saitou, N. Mitsugi, K. Kubodera, T. Kawanishi, and M. Izutsu, “Single side-band modulation performance of a LiNbO3 integrated modulator consisting of four-phase modulator waveguides,” IEEE Photon. Technol. Lett.13(4), 364–366 (2001).
[CrossRef]

Kubodera, K.

S. Shimotsu, S. Oikawa, T. Saitou, N. Mitsugi, K. Kubodera, T. Kawanishi, and M. Izutsu, “Single side-band modulation performance of a LiNbO3 integrated modulator consisting of four-phase modulator waveguides,” IEEE Photon. Technol. Lett.13(4), 364–366 (2001).
[CrossRef]

Leaird, D. E.

E. Hamidi, D. E. Leaird, and A. M. Weiner, “Tunable programmable microwave photonic filters based on an optical frequency comb,” IEEE Trans. Microw. Theory Tech.58(11), 3269–3278 (2010).
[CrossRef]

Li, X.

Y. Yu, J. Dong, X. Li, E. Xu, L. Zhou, and X. Zhang, “All-optical microwave photonic filter based on electrooptic phase modulator and detuned wavelength division de-multiplexer,” IEEE Trans. Microw. Theory Tech.59(9), 2340–2349 (2011).
[CrossRef]

Lu, C.

X. H. Feng, C. Lu, H. Y. Tam, and P. K. A. Wai, “Reconfigurable microwave photonic filter using multiwavelength erbium-doped fiber laser,” IEEE Photon. Technol. Lett.19(17), 1334–1336 (2007).
[CrossRef]

Minasian, R. A.

Mitsugi, N.

S. Shimotsu, S. Oikawa, T. Saitou, N. Mitsugi, K. Kubodera, T. Kawanishi, and M. Izutsu, “Single side-band modulation performance of a LiNbO3 integrated modulator consisting of four-phase modulator waveguides,” IEEE Photon. Technol. Lett.13(4), 364–366 (2001).
[CrossRef]

Mora, J.

Oikawa, S.

S. Shimotsu, S. Oikawa, T. Saitou, N. Mitsugi, K. Kubodera, T. Kawanishi, and M. Izutsu, “Single side-band modulation performance of a LiNbO3 integrated modulator consisting of four-phase modulator waveguides,” IEEE Photon. Technol. Lett.13(4), 364–366 (2001).
[CrossRef]

Ortega, B.

Pastor, D.

J. Capmany, B. Ortega, D. Pastor, and S. Sales, “Discrete-time optical processing of microwave signals,” J. Lightwave Technol.23(2), 702–723 (2005).
[CrossRef]

B. Ortega, J. Mora, J. Capmany, D. Pastor, and R. Garcia-Olcina, “Highly selective microwave photonic filters based on active optical recirculating cavity and tuned modulator hybrid structure,” Electron. Lett.41(20), 1133–1135 (2005).
[CrossRef]

Pulikkaseril, C.

Saitou, T.

S. Shimotsu, S. Oikawa, T. Saitou, N. Mitsugi, K. Kubodera, T. Kawanishi, and M. Izutsu, “Single side-band modulation performance of a LiNbO3 integrated modulator consisting of four-phase modulator waveguides,” IEEE Photon. Technol. Lett.13(4), 364–366 (2001).
[CrossRef]

Sales, S.

Shimotsu, S.

S. Shimotsu, S. Oikawa, T. Saitou, N. Mitsugi, K. Kubodera, T. Kawanishi, and M. Izutsu, “Single side-band modulation performance of a LiNbO3 integrated modulator consisting of four-phase modulator waveguides,” IEEE Photon. Technol. Lett.13(4), 364–366 (2001).
[CrossRef]

Skaar, J.

J. Skaar, L. Wang, and T. Erdogan, “On the synthesis of fiber Bragg gratings by layer peeling,” IEEE J. Quantum Electron.37(2), 165–173 (2001).
[CrossRef]

Tam, H. Y.

X. H. Feng, C. Lu, H. Y. Tam, and P. K. A. Wai, “Reconfigurable microwave photonic filter using multiwavelength erbium-doped fiber laser,” IEEE Photon. Technol. Lett.19(17), 1334–1336 (2007).
[CrossRef]

Wai, P. K. A.

X. H. Feng, C. Lu, H. Y. Tam, and P. K. A. Wai, “Reconfigurable microwave photonic filter using multiwavelength erbium-doped fiber laser,” IEEE Photon. Technol. Lett.19(17), 1334–1336 (2007).
[CrossRef]

Wakabayashi, S.

Wang, L.

J. Skaar, L. Wang, and T. Erdogan, “On the synthesis of fiber Bragg gratings by layer peeling,” IEEE J. Quantum Electron.37(2), 165–173 (2001).
[CrossRef]

Weiner, A. M.

E. Hamidi, D. E. Leaird, and A. M. Weiner, “Tunable programmable microwave photonic filters based on an optical frequency comb,” IEEE Trans. Microw. Theory Tech.58(11), 3269–3278 (2010).
[CrossRef]

Williams, J. A. R.

W. Zhang, J. A. R. Williams, and I. Bennion, “Optical fiber recirculating delay line incorporating a fiber grating array,” IEEE Microw. Compon. Lett.11(5), 217–219 (2001).
[CrossRef]

Xu, E.

Y. Yu, J. Dong, X. Li, E. Xu, L. Zhou, and X. Zhang, “All-optical microwave photonic filter based on electrooptic phase modulator and detuned wavelength division de-multiplexer,” IEEE Trans. Microw. Theory Tech.59(9), 2340–2349 (2011).
[CrossRef]

Xu, E. M.

E. M. Xu, X. L. Zhang, L. N. Zhou, Y. Zhang, and D. X. Huang, “Hybrid active-passive microwave photonic filter with high quality factor,” Chin. Phys. Lett.26, 1–4 (2009).

Yi, X.

Yu, Y.

Y. Yu, J. Dong, X. Li, E. Xu, L. Zhou, and X. Zhang, “All-optical microwave photonic filter based on electrooptic phase modulator and detuned wavelength division de-multiplexer,” IEEE Trans. Microw. Theory Tech.59(9), 2340–2349 (2011).
[CrossRef]

Zhang, W.

W. Zhang, J. A. R. Williams, and I. Bennion, “Optical fiber recirculating delay line incorporating a fiber grating array,” IEEE Microw. Compon. Lett.11(5), 217–219 (2001).
[CrossRef]

Zhang, X.

Y. Yu, J. Dong, X. Li, E. Xu, L. Zhou, and X. Zhang, “All-optical microwave photonic filter based on electrooptic phase modulator and detuned wavelength division de-multiplexer,” IEEE Trans. Microw. Theory Tech.59(9), 2340–2349 (2011).
[CrossRef]

Zhang, X. L.

E. M. Xu, X. L. Zhang, L. N. Zhou, Y. Zhang, and D. X. Huang, “Hybrid active-passive microwave photonic filter with high quality factor,” Chin. Phys. Lett.26, 1–4 (2009).

Zhang, Y.

E. M. Xu, X. L. Zhang, L. N. Zhou, Y. Zhang, and D. X. Huang, “Hybrid active-passive microwave photonic filter with high quality factor,” Chin. Phys. Lett.26, 1–4 (2009).

Zhou, L.

Y. Yu, J. Dong, X. Li, E. Xu, L. Zhou, and X. Zhang, “All-optical microwave photonic filter based on electrooptic phase modulator and detuned wavelength division de-multiplexer,” IEEE Trans. Microw. Theory Tech.59(9), 2340–2349 (2011).
[CrossRef]

Zhou, L. N.

E. M. Xu, X. L. Zhang, L. N. Zhou, Y. Zhang, and D. X. Huang, “Hybrid active-passive microwave photonic filter with high quality factor,” Chin. Phys. Lett.26, 1–4 (2009).

Chin. Phys. Lett.

E. M. Xu, X. L. Zhang, L. N. Zhou, Y. Zhang, and D. X. Huang, “Hybrid active-passive microwave photonic filter with high quality factor,” Chin. Phys. Lett.26, 1–4 (2009).

Electron. Lett.

B. Ortega, J. Mora, J. Capmany, D. Pastor, and R. Garcia-Olcina, “Highly selective microwave photonic filters based on active optical recirculating cavity and tuned modulator hybrid structure,” Electron. Lett.41(20), 1133–1135 (2005).
[CrossRef]

IEEE J. Quantum Electron.

J. Skaar, L. Wang, and T. Erdogan, “On the synthesis of fiber Bragg gratings by layer peeling,” IEEE J. Quantum Electron.37(2), 165–173 (2001).
[CrossRef]

IEEE Microw. Compon. Lett.

W. Zhang, J. A. R. Williams, and I. Bennion, “Optical fiber recirculating delay line incorporating a fiber grating array,” IEEE Microw. Compon. Lett.11(5), 217–219 (2001).
[CrossRef]

IEEE Photon. Technol. Lett.

X. H. Feng, C. Lu, H. Y. Tam, and P. K. A. Wai, “Reconfigurable microwave photonic filter using multiwavelength erbium-doped fiber laser,” IEEE Photon. Technol. Lett.19(17), 1334–1336 (2007).
[CrossRef]

S. Shimotsu, S. Oikawa, T. Saitou, N. Mitsugi, K. Kubodera, T. Kawanishi, and M. Izutsu, “Single side-band modulation performance of a LiNbO3 integrated modulator consisting of four-phase modulator waveguides,” IEEE Photon. Technol. Lett.13(4), 364–366 (2001).
[CrossRef]

IEEE Trans. Microw. Theory Tech.

E. Hamidi, D. E. Leaird, and A. M. Weiner, “Tunable programmable microwave photonic filters based on an optical frequency comb,” IEEE Trans. Microw. Theory Tech.58(11), 3269–3278 (2010).
[CrossRef]

Y. Yu, J. Dong, X. Li, E. Xu, L. Zhou, and X. Zhang, “All-optical microwave photonic filter based on electrooptic phase modulator and detuned wavelength division de-multiplexer,” IEEE Trans. Microw. Theory Tech.59(9), 2340–2349 (2011).
[CrossRef]

R. A. Minasian, “Photonic signal processing of microwave signals,” IEEE Trans. Microw. Theory Tech.54(2), 832–846 (2006).
[CrossRef]

J. Lightwave Technol.

J. Opt. Soc. Am. B

Opt. Express

Other

K. Fröjdh, “New manufacturing of ultra-long FBG’s (> 10 m) whilst maintaining high performance characteristics,” Bragg Gratings, Photosensitivity, and Poling in Glass Waveguides, BMA1, (2010).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

. Structure of the increased-FSR recirculating delay line filter with a time compression unit; τ << T.

Fig. 2
Fig. 2

Simulated frequency response of the 182-tap bandpass filter formed by the FS-ARDL loop (a) without the time compression unit and (b) with the time compression unit.

Fig. 3
Fig. 3

(a) The –3 dB bandwidth and (b) the stopband rejection level of the 182-tap FS-ARDL bandpass filter including the time compression unit versus the CFBG group delay ripple.

Fig. 4
Fig. 4

Simulated frequency response of the 182-tap FS-ARDL bandpass filter including a commercially available CFBG with a GDR of ± 8.3 ps over the operating range.

Fig. 5
Fig. 5

Simulated frequency response of the 182-tap FS-ARDL bandpass filter including the time compression for different wavelength shifts (corresponding to different optical frequency shifts).

Fig. 6
Fig. 6

Experimental setup for increasing the FSR of the recirculating delay line filter.

Fig. 7
Fig. 7

Measured frequency response of the FS-ARDL filter alone.

Fig. 8
Fig. 8

Measured and simulated frequency response of the FS-ARDL filter together with the time compression unit.

Equations (13)

Equations on this page are rendered with MathJax. Learn more.

H(f)=[ (1κ)+ κ 2 i=1 N g i l i (1κ) 2 e i( j2πfT ) ]( t ff P laser π 2 V π )
t( λ i )= τ c +iT
FS R 0 = 1 T = c nL
t CFBG (λ)=G D 0 | D CFBG λ |
t( λ i )= τ c +iT+ t CFBG ( λ i ) = τ c +iT+G D 0 | D CFBG ( λ 0 +iΔλ ) |
H(f)=[ (1κ)+ κ 2 i=1 N g i l i (1κ) 2 e i[ j2πf( T| D CFBG Δλ | ) ] ] l cir R CFBG ( t ff P laser π 2 V π )
FS R 1 = 1 T| D CFBG Δλ | = 1 nL c | D CFBG Δλ |
M= FS R 1 FS R 0 = T T| D CFBG Δλ | = 1 1 | D CFBG Δλ | nL c
D CFBG = | 1 FS R 0 1 FS R 1 | Δλ
t 1 = 2 l 1 + l c c n
t 2 = L+2 l 1 2Δl+ l c c n
t m = (m1)L+2 l 1 2(m1)Δl+ l c c n
T'= L2Δl c n

Metrics