Abstract

We experimentally study the resonance fluorescence from an excited two-level atom when the atomic upper level is coupled by a nonresonant field to a higher-lying state in a rubidium atomic beam. The heights, widths and positions of the fluorescence peaks can be controlled by modifying the detuning of the auxiliary field. We explain the observed spectrum with the transition properties of the dressed states generated by the coupling of the two laser fields. We also attribute the line narrowing to the effects of Spontaneously Generated Coherence between the close-lying levels in the dressed state picture generated by the auxiliary field. And the corresponding spectrum can be viewed as the evidence of Spontaneously Generated Coherence. The experimental results agree well with calculations based on the density-matrix equations.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. Das and G. S. Agarwal, “Photon-photon correlations as a probe of vacuum-induced coherence effects,” Phys. Rev. A77(3), 033850 (2008).
    [CrossRef]
  2. V. V. Temnov and U. Woggon, “Photon statistics in the cooperative spontaneous emission,” Opt. Express17(7), 5774–5782 (2009).
    [CrossRef] [PubMed]
  3. D. G. Norris, L. A. Orozco, P. Barberis-Blostein, and H. J. Carmichael, “Observation of ground-state quantum beats in atomic spontaneous emission,” Phys. Rev. Lett.105(12), 123602 (2010).
    [CrossRef] [PubMed]
  4. W. X. Zhang and J. Zhuang, “Dynamical control of two-level system decay and long time freezing,” Phys. Rev. A79(1), 012310 (2009).
    [CrossRef]
  5. C. L. Ding, J. H. Li, Z. M. Zhan, and X. X. Yang, “Two-dimensional atom localization via spontaneous emission in a coherently driven five-level M-type atomic system,” Phys. Rev. A83(6), 063834 (2011).
    [CrossRef]
  6. M. L. Terraciano, R. O. Knell, D. L. Freimund, L. A. Orozco, J. P. Clemens, and P. R. Rice, “Enhanced spontaneous emission into the mode of a cavity QED system,” Opt. Lett.32(8), 982–984 (2007).
    [CrossRef] [PubMed]
  7. R. Arun, “Interference-induced splitting of resonances in spontaneous emission,” Phys. Rev. A77(3), 033820 (2008).
    [CrossRef]
  8. G. X. Li, J. Evers, and C. H. Keitel, “Spontaneous emission interference in negative-refractive-index waveguides,” Phys. Rev. B80(4), 045102 (2009).
    [CrossRef]
  9. X. Q. Jiang, B. Zhang, Z. W. Lu, and X. D. Sun, “Control of spontaneous emission from a microwave-field-coupled three-level Λ-type atom in photonic crystals,” Phys. Rev. A83(5), 053823 (2011).
    [CrossRef]
  10. S. Evangelou, V. Yannopapas, and E. Paspalakis, “Simulating quantum interference in spontaneous decay near plasmonic nanostructures population dynamics,” Phys. Rev. A83(5), 055805 (2011).
    [CrossRef]
  11. B. R. Mollow, “Power spectrum of light scattered by two-level systems,” Phys. Rev.188(5), 1969–1975 (1969).
    [CrossRef]
  12. F. Schuda, C. R. Stroud, and M. Hercher, “Observation of the resonant Stark effect at optical frequencies,” J. Phys. B7(7), L198–L202 (1974).
    [CrossRef]
  13. F. Y. Wu, R. E. Grove, and S. Ezekiel, “Investigation of the spectrum of resonance fluorescence induced by a monochromatic field,” Phys. Rev. Lett.35(21), 1426–1429 (1975).
    [CrossRef]
  14. R. E. Grove, F. Y. Wu, and S. Ezekiel, “Measurement of the spectrum of resonance fluorescence from a two-level atom in an intense monochromatic field,” Phys. Rev. A15(1), 227–233 (1977).
    [CrossRef]
  15. Y. F. Zhu, Q. L. Wu, A. Lezama, D. J. Gauthier, and T. W. Mossberg, “Resonance fluorescence of two-level atoms under strong bichromatic excitation,” Phys. Rev. A41(11), 6574–6576 (1990).
    [CrossRef] [PubMed]
  16. Z. Ficek and H. S. Freedhoff, “Resonance-fluorescence and absorption spectra of a two-level atom driven by a strong bichromatic field,” Phys. Rev. A48(4), 3092–3104 (1993).
    [CrossRef] [PubMed]
  17. Z. Ficek and H. S. Freedhoff, “Fluorescence and absorption by a two-level atom in a bichromatic field with one strong and one weak component,” Phys. Rev. A53(6), 4275–4287 (1996).
    [CrossRef] [PubMed]
  18. C. C. Yu, J. R. Bochinski, T. M. V. Kordich, T. W. Mossberg, and Z. Ficek, “Driving the driven atom: Spectral signatures,” Phys. Rev. A56(6), R4381–R4384 (1997).
    [CrossRef]
  19. J. R. Bochinski, C. C. Yu, T. Loftus, and T. W. Mossberg, “Vacuum-mediated multiphoton transitions,” Phys. Rev. A63(5), 051402 (2001).
    [CrossRef]
  20. R. M. Whitley and C. R. Stroud., “Double optical resonance,” Phys. Rev. A14(4), 1498–1513 (1976).
    [CrossRef]
  21. S. V. Lawande, R. R. Puri, and R. D’Souza, “Optical-double-resonance spectra and intensity-intensity correlations under intense fields with finite bandwidths: Some analytical results,” Phys. Rev. A33(4), 2504–2516 (1986).
    [CrossRef] [PubMed]
  22. A. S. Jayarao, S. V. Lawande, and R. D’Souza, “Time-dependent spectra of a strongly driven three-level atom,” Phys. Rev. A39(7), 3464–3474 (1989).
    [CrossRef] [PubMed]
  23. L. M. Narducci, M. O. Scully, G.-L. Oppo, P. Ru, and J. R. Tredicce, “Spontaneous emission and absorption properties of a driven three-level system,” Phys. Rev. A42(3), 1630–1649 (1990).
    [CrossRef] [PubMed]
  24. A. S. Manka, H. M. Doss, L. M. Narducci, P. Ru, and G.-L. Oppo, “Spontaneous emission and absorption properties of a driven three-level system. II. The Λ and cascade models,” Phys. Rev. A43(7), 3748–3763 (1991).
    [CrossRef] [PubMed]
  25. C. Fu, Y. Zhang, and C. Gong, “Resonance fluorescence from a three-level system,” Phys. Rev. A45(1), 505–512 (1992).
    [CrossRef] [PubMed]
  26. G. C. Hegerfeldt and M. B. Plenio, “Spectral structures induced by electron shelving,” Phys. Rev. A52(4), 3333–3343 (1995).
    [CrossRef] [PubMed]
  27. M. Kiffner, J. Evers, and C. H. Keitel, “Quantum interference enforced by time-energy complementarity,” Phys. Rev. Lett.96(10), 100403 (2006).
    [CrossRef] [PubMed]
  28. P. Grünwald and W. Vogel, “Entanglement in atomic resonance fluorescence,” Phys. Rev. Lett.104(23), 233602 (2010).
    [CrossRef] [PubMed]
  29. O. Postavaru, Z. Harman, and C. H. Keitel, “High-precision metrology of highly charged ions via relativistic resonance fluorescence,” Phys. Rev. Lett.106(3), 033001 (2011).
    [CrossRef] [PubMed]
  30. A. Muller, E. B. Flagg, P. Bianucci, X. Y. Wang, D. G. Deppe, W. Ma, J. Zhang, G. J. Salamo, M. Xiao, and C. K. Shih, “Resonance fluorescence from a coherently driven semiconductor quantum dot in a cavity,” Phys. Rev. Lett.99(18), 187402 (2007).
    [CrossRef] [PubMed]
  31. G. Wrigge, I. Gerhardt, J. Hwang, G. Zumofen, and V. Sandoghdar, “Efficient coupling of photons to a single molecule and the observation of its resonance fluorescence,” Nat. Phys.4(1), 60–66 (2008).
    [CrossRef]
  32. O. Astafiev, A. M. Zagoskin, A. A. Abdumalikov, Y. A. Pashkin, T. Yamamoto, K. Inomata, Y. Nakamura, and J. S. Tsai, “Resonance fluorescence of a single artificial atom,” Science327(5967), 840–843 (2010).
    [CrossRef] [PubMed]
  33. Y. Gu, L. Huang, O. J. F. Martin, and Q. H. Gong, “Resonance fluorescence of single molecules assisted by a plasmonic structure,” Phys. Rev. B81(19), 193103 (2010).
    [CrossRef]
  34. P. Zhou and S. Swain, “Ultranarrow spectral lines via quantum interference,” Phys. Rev. Lett.77(19), 3995–3998 (1996).
    [CrossRef] [PubMed]
  35. F. L. Li and S. Y. Zhu, “Resonance fluorescence quenching and spectral line narrowing via quantum interference in a four-level atom driven by two coherent fields,” Phys. Rev. A59(3), 2330–2341 (1999).
    [CrossRef]
  36. F. L. Li, S. Y. Gao, and S. Y. Zhu, “Enhancement of steady-state squeezing in the resonance fluorescence of a coherently driven four-level atom of Λ configuration via quantum interference,” Phys. Rev. A67(6), 063818 (2003).
    [CrossRef]
  37. M. A. Macovei, “Enhancing superfluorescence via decay interference,” J. Phys. B40(2), 387–392 (2007).
    [CrossRef]
  38. Z. Ficek and S. Swain, “Simulating quantum interference in a three-level system with perpendicular transition dipole moments,” Phys. Rev. A69(2), 023401 (2004).
    [CrossRef]
  39. Q. Xu, H. D. Zhou, G. J. Meng, and J. W. Yin, “Simultaneous narrowing of the central peak and sidebands via simulation of quantum interference,” J. Phys. B40(16), 3197–3210 (2007).
    [CrossRef]
  40. C. L. Wang and Y. L. Meng, “Effects of spontaneously generated coherence on resonance fluorescence in a microwave-driven four-level atomic system,” Opt. Commun.285(10-11), 2632–2637 (2012).
    [CrossRef]
  41. C. L. Wang, Z. H. Kang, S. C. Tian, Y. Jiang, and J. Y. Gao, “Effect of spontaneously generated coherence on absorption in a V-type system: Investigation in dressed states,” Phys. Rev. A79(4), 043810 (2009).
    [CrossRef]
  42. S. C. Tian, Z. H. Kang, C. L. Wang, R. G. Wan, J. Kou, H. Zhang, Y. Jiang, H. N. Cui, and J. Y. Gao, “Observation of spontaneously generated coherence on absorption in rubidium atomic beam,” Opt. Commun.285(3), 294–299 (2012).
    [CrossRef]
  43. D. J. Gauthier, Y. F. Zhu, and T. W. Mossberg, “Observation of linewidth narrowing due to coherent stabilization of quantum fluctuations,” Phys. Rev. Lett.66(19), 2460–2463 (1991).
    [CrossRef] [PubMed]
  44. C. Cohen-Tannoudji and S. Reynaud, “Dressed-atom description of resonance fluorescence and absorption spectra of a multi-level atom in an intense laser beam,” J. Phys. B10(3), 345–363 (1977).
    [CrossRef]
  45. S. Y. Zhu, L. M. Narducci, and M. O. Scully, “Quantum-mechanical interference effects in the spontaneous-emission spectrum of a driven atom,” Phys. Rev. A52(6), 4791–4802 (1995).
    [CrossRef] [PubMed]

2012 (2)

C. L. Wang and Y. L. Meng, “Effects of spontaneously generated coherence on resonance fluorescence in a microwave-driven four-level atomic system,” Opt. Commun.285(10-11), 2632–2637 (2012).
[CrossRef]

S. C. Tian, Z. H. Kang, C. L. Wang, R. G. Wan, J. Kou, H. Zhang, Y. Jiang, H. N. Cui, and J. Y. Gao, “Observation of spontaneously generated coherence on absorption in rubidium atomic beam,” Opt. Commun.285(3), 294–299 (2012).
[CrossRef]

2011 (4)

C. L. Ding, J. H. Li, Z. M. Zhan, and X. X. Yang, “Two-dimensional atom localization via spontaneous emission in a coherently driven five-level M-type atomic system,” Phys. Rev. A83(6), 063834 (2011).
[CrossRef]

O. Postavaru, Z. Harman, and C. H. Keitel, “High-precision metrology of highly charged ions via relativistic resonance fluorescence,” Phys. Rev. Lett.106(3), 033001 (2011).
[CrossRef] [PubMed]

X. Q. Jiang, B. Zhang, Z. W. Lu, and X. D. Sun, “Control of spontaneous emission from a microwave-field-coupled three-level Λ-type atom in photonic crystals,” Phys. Rev. A83(5), 053823 (2011).
[CrossRef]

S. Evangelou, V. Yannopapas, and E. Paspalakis, “Simulating quantum interference in spontaneous decay near plasmonic nanostructures population dynamics,” Phys. Rev. A83(5), 055805 (2011).
[CrossRef]

2010 (4)

P. Grünwald and W. Vogel, “Entanglement in atomic resonance fluorescence,” Phys. Rev. Lett.104(23), 233602 (2010).
[CrossRef] [PubMed]

O. Astafiev, A. M. Zagoskin, A. A. Abdumalikov, Y. A. Pashkin, T. Yamamoto, K. Inomata, Y. Nakamura, and J. S. Tsai, “Resonance fluorescence of a single artificial atom,” Science327(5967), 840–843 (2010).
[CrossRef] [PubMed]

Y. Gu, L. Huang, O. J. F. Martin, and Q. H. Gong, “Resonance fluorescence of single molecules assisted by a plasmonic structure,” Phys. Rev. B81(19), 193103 (2010).
[CrossRef]

D. G. Norris, L. A. Orozco, P. Barberis-Blostein, and H. J. Carmichael, “Observation of ground-state quantum beats in atomic spontaneous emission,” Phys. Rev. Lett.105(12), 123602 (2010).
[CrossRef] [PubMed]

2009 (4)

W. X. Zhang and J. Zhuang, “Dynamical control of two-level system decay and long time freezing,” Phys. Rev. A79(1), 012310 (2009).
[CrossRef]

V. V. Temnov and U. Woggon, “Photon statistics in the cooperative spontaneous emission,” Opt. Express17(7), 5774–5782 (2009).
[CrossRef] [PubMed]

C. L. Wang, Z. H. Kang, S. C. Tian, Y. Jiang, and J. Y. Gao, “Effect of spontaneously generated coherence on absorption in a V-type system: Investigation in dressed states,” Phys. Rev. A79(4), 043810 (2009).
[CrossRef]

G. X. Li, J. Evers, and C. H. Keitel, “Spontaneous emission interference in negative-refractive-index waveguides,” Phys. Rev. B80(4), 045102 (2009).
[CrossRef]

2008 (3)

R. Arun, “Interference-induced splitting of resonances in spontaneous emission,” Phys. Rev. A77(3), 033820 (2008).
[CrossRef]

G. Wrigge, I. Gerhardt, J. Hwang, G. Zumofen, and V. Sandoghdar, “Efficient coupling of photons to a single molecule and the observation of its resonance fluorescence,” Nat. Phys.4(1), 60–66 (2008).
[CrossRef]

S. Das and G. S. Agarwal, “Photon-photon correlations as a probe of vacuum-induced coherence effects,” Phys. Rev. A77(3), 033850 (2008).
[CrossRef]

2007 (4)

M. L. Terraciano, R. O. Knell, D. L. Freimund, L. A. Orozco, J. P. Clemens, and P. R. Rice, “Enhanced spontaneous emission into the mode of a cavity QED system,” Opt. Lett.32(8), 982–984 (2007).
[CrossRef] [PubMed]

Q. Xu, H. D. Zhou, G. J. Meng, and J. W. Yin, “Simultaneous narrowing of the central peak and sidebands via simulation of quantum interference,” J. Phys. B40(16), 3197–3210 (2007).
[CrossRef]

A. Muller, E. B. Flagg, P. Bianucci, X. Y. Wang, D. G. Deppe, W. Ma, J. Zhang, G. J. Salamo, M. Xiao, and C. K. Shih, “Resonance fluorescence from a coherently driven semiconductor quantum dot in a cavity,” Phys. Rev. Lett.99(18), 187402 (2007).
[CrossRef] [PubMed]

M. A. Macovei, “Enhancing superfluorescence via decay interference,” J. Phys. B40(2), 387–392 (2007).
[CrossRef]

2006 (1)

M. Kiffner, J. Evers, and C. H. Keitel, “Quantum interference enforced by time-energy complementarity,” Phys. Rev. Lett.96(10), 100403 (2006).
[CrossRef] [PubMed]

2004 (1)

Z. Ficek and S. Swain, “Simulating quantum interference in a three-level system with perpendicular transition dipole moments,” Phys. Rev. A69(2), 023401 (2004).
[CrossRef]

2003 (1)

F. L. Li, S. Y. Gao, and S. Y. Zhu, “Enhancement of steady-state squeezing in the resonance fluorescence of a coherently driven four-level atom of Λ configuration via quantum interference,” Phys. Rev. A67(6), 063818 (2003).
[CrossRef]

2001 (1)

J. R. Bochinski, C. C. Yu, T. Loftus, and T. W. Mossberg, “Vacuum-mediated multiphoton transitions,” Phys. Rev. A63(5), 051402 (2001).
[CrossRef]

1999 (1)

F. L. Li and S. Y. Zhu, “Resonance fluorescence quenching and spectral line narrowing via quantum interference in a four-level atom driven by two coherent fields,” Phys. Rev. A59(3), 2330–2341 (1999).
[CrossRef]

1997 (1)

C. C. Yu, J. R. Bochinski, T. M. V. Kordich, T. W. Mossberg, and Z. Ficek, “Driving the driven atom: Spectral signatures,” Phys. Rev. A56(6), R4381–R4384 (1997).
[CrossRef]

1996 (2)

Z. Ficek and H. S. Freedhoff, “Fluorescence and absorption by a two-level atom in a bichromatic field with one strong and one weak component,” Phys. Rev. A53(6), 4275–4287 (1996).
[CrossRef] [PubMed]

P. Zhou and S. Swain, “Ultranarrow spectral lines via quantum interference,” Phys. Rev. Lett.77(19), 3995–3998 (1996).
[CrossRef] [PubMed]

1995 (2)

G. C. Hegerfeldt and M. B. Plenio, “Spectral structures induced by electron shelving,” Phys. Rev. A52(4), 3333–3343 (1995).
[CrossRef] [PubMed]

S. Y. Zhu, L. M. Narducci, and M. O. Scully, “Quantum-mechanical interference effects in the spontaneous-emission spectrum of a driven atom,” Phys. Rev. A52(6), 4791–4802 (1995).
[CrossRef] [PubMed]

1993 (1)

Z. Ficek and H. S. Freedhoff, “Resonance-fluorescence and absorption spectra of a two-level atom driven by a strong bichromatic field,” Phys. Rev. A48(4), 3092–3104 (1993).
[CrossRef] [PubMed]

1992 (1)

C. Fu, Y. Zhang, and C. Gong, “Resonance fluorescence from a three-level system,” Phys. Rev. A45(1), 505–512 (1992).
[CrossRef] [PubMed]

1991 (2)

A. S. Manka, H. M. Doss, L. M. Narducci, P. Ru, and G.-L. Oppo, “Spontaneous emission and absorption properties of a driven three-level system. II. The Λ and cascade models,” Phys. Rev. A43(7), 3748–3763 (1991).
[CrossRef] [PubMed]

D. J. Gauthier, Y. F. Zhu, and T. W. Mossberg, “Observation of linewidth narrowing due to coherent stabilization of quantum fluctuations,” Phys. Rev. Lett.66(19), 2460–2463 (1991).
[CrossRef] [PubMed]

1990 (2)

L. M. Narducci, M. O. Scully, G.-L. Oppo, P. Ru, and J. R. Tredicce, “Spontaneous emission and absorption properties of a driven three-level system,” Phys. Rev. A42(3), 1630–1649 (1990).
[CrossRef] [PubMed]

Y. F. Zhu, Q. L. Wu, A. Lezama, D. J. Gauthier, and T. W. Mossberg, “Resonance fluorescence of two-level atoms under strong bichromatic excitation,” Phys. Rev. A41(11), 6574–6576 (1990).
[CrossRef] [PubMed]

1989 (1)

A. S. Jayarao, S. V. Lawande, and R. D’Souza, “Time-dependent spectra of a strongly driven three-level atom,” Phys. Rev. A39(7), 3464–3474 (1989).
[CrossRef] [PubMed]

1986 (1)

S. V. Lawande, R. R. Puri, and R. D’Souza, “Optical-double-resonance spectra and intensity-intensity correlations under intense fields with finite bandwidths: Some analytical results,” Phys. Rev. A33(4), 2504–2516 (1986).
[CrossRef] [PubMed]

1977 (2)

R. E. Grove, F. Y. Wu, and S. Ezekiel, “Measurement of the spectrum of resonance fluorescence from a two-level atom in an intense monochromatic field,” Phys. Rev. A15(1), 227–233 (1977).
[CrossRef]

C. Cohen-Tannoudji and S. Reynaud, “Dressed-atom description of resonance fluorescence and absorption spectra of a multi-level atom in an intense laser beam,” J. Phys. B10(3), 345–363 (1977).
[CrossRef]

1976 (1)

R. M. Whitley and C. R. Stroud., “Double optical resonance,” Phys. Rev. A14(4), 1498–1513 (1976).
[CrossRef]

1975 (1)

F. Y. Wu, R. E. Grove, and S. Ezekiel, “Investigation of the spectrum of resonance fluorescence induced by a monochromatic field,” Phys. Rev. Lett.35(21), 1426–1429 (1975).
[CrossRef]

1974 (1)

F. Schuda, C. R. Stroud, and M. Hercher, “Observation of the resonant Stark effect at optical frequencies,” J. Phys. B7(7), L198–L202 (1974).
[CrossRef]

1969 (1)

B. R. Mollow, “Power spectrum of light scattered by two-level systems,” Phys. Rev.188(5), 1969–1975 (1969).
[CrossRef]

Abdumalikov, A. A.

O. Astafiev, A. M. Zagoskin, A. A. Abdumalikov, Y. A. Pashkin, T. Yamamoto, K. Inomata, Y. Nakamura, and J. S. Tsai, “Resonance fluorescence of a single artificial atom,” Science327(5967), 840–843 (2010).
[CrossRef] [PubMed]

Agarwal, G. S.

S. Das and G. S. Agarwal, “Photon-photon correlations as a probe of vacuum-induced coherence effects,” Phys. Rev. A77(3), 033850 (2008).
[CrossRef]

Arun, R.

R. Arun, “Interference-induced splitting of resonances in spontaneous emission,” Phys. Rev. A77(3), 033820 (2008).
[CrossRef]

Astafiev, O.

O. Astafiev, A. M. Zagoskin, A. A. Abdumalikov, Y. A. Pashkin, T. Yamamoto, K. Inomata, Y. Nakamura, and J. S. Tsai, “Resonance fluorescence of a single artificial atom,” Science327(5967), 840–843 (2010).
[CrossRef] [PubMed]

Barberis-Blostein, P.

D. G. Norris, L. A. Orozco, P. Barberis-Blostein, and H. J. Carmichael, “Observation of ground-state quantum beats in atomic spontaneous emission,” Phys. Rev. Lett.105(12), 123602 (2010).
[CrossRef] [PubMed]

Bianucci, P.

A. Muller, E. B. Flagg, P. Bianucci, X. Y. Wang, D. G. Deppe, W. Ma, J. Zhang, G. J. Salamo, M. Xiao, and C. K. Shih, “Resonance fluorescence from a coherently driven semiconductor quantum dot in a cavity,” Phys. Rev. Lett.99(18), 187402 (2007).
[CrossRef] [PubMed]

Bochinski, J. R.

J. R. Bochinski, C. C. Yu, T. Loftus, and T. W. Mossberg, “Vacuum-mediated multiphoton transitions,” Phys. Rev. A63(5), 051402 (2001).
[CrossRef]

C. C. Yu, J. R. Bochinski, T. M. V. Kordich, T. W. Mossberg, and Z. Ficek, “Driving the driven atom: Spectral signatures,” Phys. Rev. A56(6), R4381–R4384 (1997).
[CrossRef]

Carmichael, H. J.

D. G. Norris, L. A. Orozco, P. Barberis-Blostein, and H. J. Carmichael, “Observation of ground-state quantum beats in atomic spontaneous emission,” Phys. Rev. Lett.105(12), 123602 (2010).
[CrossRef] [PubMed]

Clemens, J. P.

Cohen-Tannoudji, C.

C. Cohen-Tannoudji and S. Reynaud, “Dressed-atom description of resonance fluorescence and absorption spectra of a multi-level atom in an intense laser beam,” J. Phys. B10(3), 345–363 (1977).
[CrossRef]

Cui, H. N.

S. C. Tian, Z. H. Kang, C. L. Wang, R. G. Wan, J. Kou, H. Zhang, Y. Jiang, H. N. Cui, and J. Y. Gao, “Observation of spontaneously generated coherence on absorption in rubidium atomic beam,” Opt. Commun.285(3), 294–299 (2012).
[CrossRef]

D’Souza, R.

A. S. Jayarao, S. V. Lawande, and R. D’Souza, “Time-dependent spectra of a strongly driven three-level atom,” Phys. Rev. A39(7), 3464–3474 (1989).
[CrossRef] [PubMed]

S. V. Lawande, R. R. Puri, and R. D’Souza, “Optical-double-resonance spectra and intensity-intensity correlations under intense fields with finite bandwidths: Some analytical results,” Phys. Rev. A33(4), 2504–2516 (1986).
[CrossRef] [PubMed]

Das, S.

S. Das and G. S. Agarwal, “Photon-photon correlations as a probe of vacuum-induced coherence effects,” Phys. Rev. A77(3), 033850 (2008).
[CrossRef]

Deppe, D. G.

A. Muller, E. B. Flagg, P. Bianucci, X. Y. Wang, D. G. Deppe, W. Ma, J. Zhang, G. J. Salamo, M. Xiao, and C. K. Shih, “Resonance fluorescence from a coherently driven semiconductor quantum dot in a cavity,” Phys. Rev. Lett.99(18), 187402 (2007).
[CrossRef] [PubMed]

Ding, C. L.

C. L. Ding, J. H. Li, Z. M. Zhan, and X. X. Yang, “Two-dimensional atom localization via spontaneous emission in a coherently driven five-level M-type atomic system,” Phys. Rev. A83(6), 063834 (2011).
[CrossRef]

Doss, H. M.

A. S. Manka, H. M. Doss, L. M. Narducci, P. Ru, and G.-L. Oppo, “Spontaneous emission and absorption properties of a driven three-level system. II. The Λ and cascade models,” Phys. Rev. A43(7), 3748–3763 (1991).
[CrossRef] [PubMed]

Evangelou, S.

S. Evangelou, V. Yannopapas, and E. Paspalakis, “Simulating quantum interference in spontaneous decay near plasmonic nanostructures population dynamics,” Phys. Rev. A83(5), 055805 (2011).
[CrossRef]

Evers, J.

G. X. Li, J. Evers, and C. H. Keitel, “Spontaneous emission interference in negative-refractive-index waveguides,” Phys. Rev. B80(4), 045102 (2009).
[CrossRef]

M. Kiffner, J. Evers, and C. H. Keitel, “Quantum interference enforced by time-energy complementarity,” Phys. Rev. Lett.96(10), 100403 (2006).
[CrossRef] [PubMed]

Ezekiel, S.

R. E. Grove, F. Y. Wu, and S. Ezekiel, “Measurement of the spectrum of resonance fluorescence from a two-level atom in an intense monochromatic field,” Phys. Rev. A15(1), 227–233 (1977).
[CrossRef]

F. Y. Wu, R. E. Grove, and S. Ezekiel, “Investigation of the spectrum of resonance fluorescence induced by a monochromatic field,” Phys. Rev. Lett.35(21), 1426–1429 (1975).
[CrossRef]

Ficek, Z.

Z. Ficek and S. Swain, “Simulating quantum interference in a three-level system with perpendicular transition dipole moments,” Phys. Rev. A69(2), 023401 (2004).
[CrossRef]

C. C. Yu, J. R. Bochinski, T. M. V. Kordich, T. W. Mossberg, and Z. Ficek, “Driving the driven atom: Spectral signatures,” Phys. Rev. A56(6), R4381–R4384 (1997).
[CrossRef]

Z. Ficek and H. S. Freedhoff, “Fluorescence and absorption by a two-level atom in a bichromatic field with one strong and one weak component,” Phys. Rev. A53(6), 4275–4287 (1996).
[CrossRef] [PubMed]

Z. Ficek and H. S. Freedhoff, “Resonance-fluorescence and absorption spectra of a two-level atom driven by a strong bichromatic field,” Phys. Rev. A48(4), 3092–3104 (1993).
[CrossRef] [PubMed]

Flagg, E. B.

A. Muller, E. B. Flagg, P. Bianucci, X. Y. Wang, D. G. Deppe, W. Ma, J. Zhang, G. J. Salamo, M. Xiao, and C. K. Shih, “Resonance fluorescence from a coherently driven semiconductor quantum dot in a cavity,” Phys. Rev. Lett.99(18), 187402 (2007).
[CrossRef] [PubMed]

Freedhoff, H. S.

Z. Ficek and H. S. Freedhoff, “Fluorescence and absorption by a two-level atom in a bichromatic field with one strong and one weak component,” Phys. Rev. A53(6), 4275–4287 (1996).
[CrossRef] [PubMed]

Z. Ficek and H. S. Freedhoff, “Resonance-fluorescence and absorption spectra of a two-level atom driven by a strong bichromatic field,” Phys. Rev. A48(4), 3092–3104 (1993).
[CrossRef] [PubMed]

Freimund, D. L.

Fu, C.

C. Fu, Y. Zhang, and C. Gong, “Resonance fluorescence from a three-level system,” Phys. Rev. A45(1), 505–512 (1992).
[CrossRef] [PubMed]

Gao, J. Y.

S. C. Tian, Z. H. Kang, C. L. Wang, R. G. Wan, J. Kou, H. Zhang, Y. Jiang, H. N. Cui, and J. Y. Gao, “Observation of spontaneously generated coherence on absorption in rubidium atomic beam,” Opt. Commun.285(3), 294–299 (2012).
[CrossRef]

C. L. Wang, Z. H. Kang, S. C. Tian, Y. Jiang, and J. Y. Gao, “Effect of spontaneously generated coherence on absorption in a V-type system: Investigation in dressed states,” Phys. Rev. A79(4), 043810 (2009).
[CrossRef]

Gao, S. Y.

F. L. Li, S. Y. Gao, and S. Y. Zhu, “Enhancement of steady-state squeezing in the resonance fluorescence of a coherently driven four-level atom of Λ configuration via quantum interference,” Phys. Rev. A67(6), 063818 (2003).
[CrossRef]

Gauthier, D. J.

D. J. Gauthier, Y. F. Zhu, and T. W. Mossberg, “Observation of linewidth narrowing due to coherent stabilization of quantum fluctuations,” Phys. Rev. Lett.66(19), 2460–2463 (1991).
[CrossRef] [PubMed]

Y. F. Zhu, Q. L. Wu, A. Lezama, D. J. Gauthier, and T. W. Mossberg, “Resonance fluorescence of two-level atoms under strong bichromatic excitation,” Phys. Rev. A41(11), 6574–6576 (1990).
[CrossRef] [PubMed]

Gerhardt, I.

G. Wrigge, I. Gerhardt, J. Hwang, G. Zumofen, and V. Sandoghdar, “Efficient coupling of photons to a single molecule and the observation of its resonance fluorescence,” Nat. Phys.4(1), 60–66 (2008).
[CrossRef]

Gong, C.

C. Fu, Y. Zhang, and C. Gong, “Resonance fluorescence from a three-level system,” Phys. Rev. A45(1), 505–512 (1992).
[CrossRef] [PubMed]

Gong, Q. H.

Y. Gu, L. Huang, O. J. F. Martin, and Q. H. Gong, “Resonance fluorescence of single molecules assisted by a plasmonic structure,” Phys. Rev. B81(19), 193103 (2010).
[CrossRef]

Grove, R. E.

R. E. Grove, F. Y. Wu, and S. Ezekiel, “Measurement of the spectrum of resonance fluorescence from a two-level atom in an intense monochromatic field,” Phys. Rev. A15(1), 227–233 (1977).
[CrossRef]

F. Y. Wu, R. E. Grove, and S. Ezekiel, “Investigation of the spectrum of resonance fluorescence induced by a monochromatic field,” Phys. Rev. Lett.35(21), 1426–1429 (1975).
[CrossRef]

Grünwald, P.

P. Grünwald and W. Vogel, “Entanglement in atomic resonance fluorescence,” Phys. Rev. Lett.104(23), 233602 (2010).
[CrossRef] [PubMed]

Gu, Y.

Y. Gu, L. Huang, O. J. F. Martin, and Q. H. Gong, “Resonance fluorescence of single molecules assisted by a plasmonic structure,” Phys. Rev. B81(19), 193103 (2010).
[CrossRef]

Harman, Z.

O. Postavaru, Z. Harman, and C. H. Keitel, “High-precision metrology of highly charged ions via relativistic resonance fluorescence,” Phys. Rev. Lett.106(3), 033001 (2011).
[CrossRef] [PubMed]

Hegerfeldt, G. C.

G. C. Hegerfeldt and M. B. Plenio, “Spectral structures induced by electron shelving,” Phys. Rev. A52(4), 3333–3343 (1995).
[CrossRef] [PubMed]

Hercher, M.

F. Schuda, C. R. Stroud, and M. Hercher, “Observation of the resonant Stark effect at optical frequencies,” J. Phys. B7(7), L198–L202 (1974).
[CrossRef]

Huang, L.

Y. Gu, L. Huang, O. J. F. Martin, and Q. H. Gong, “Resonance fluorescence of single molecules assisted by a plasmonic structure,” Phys. Rev. B81(19), 193103 (2010).
[CrossRef]

Hwang, J.

G. Wrigge, I. Gerhardt, J. Hwang, G. Zumofen, and V. Sandoghdar, “Efficient coupling of photons to a single molecule and the observation of its resonance fluorescence,” Nat. Phys.4(1), 60–66 (2008).
[CrossRef]

Inomata, K.

O. Astafiev, A. M. Zagoskin, A. A. Abdumalikov, Y. A. Pashkin, T. Yamamoto, K. Inomata, Y. Nakamura, and J. S. Tsai, “Resonance fluorescence of a single artificial atom,” Science327(5967), 840–843 (2010).
[CrossRef] [PubMed]

Jayarao, A. S.

A. S. Jayarao, S. V. Lawande, and R. D’Souza, “Time-dependent spectra of a strongly driven three-level atom,” Phys. Rev. A39(7), 3464–3474 (1989).
[CrossRef] [PubMed]

Jiang, X. Q.

X. Q. Jiang, B. Zhang, Z. W. Lu, and X. D. Sun, “Control of spontaneous emission from a microwave-field-coupled three-level Λ-type atom in photonic crystals,” Phys. Rev. A83(5), 053823 (2011).
[CrossRef]

Jiang, Y.

S. C. Tian, Z. H. Kang, C. L. Wang, R. G. Wan, J. Kou, H. Zhang, Y. Jiang, H. N. Cui, and J. Y. Gao, “Observation of spontaneously generated coherence on absorption in rubidium atomic beam,” Opt. Commun.285(3), 294–299 (2012).
[CrossRef]

C. L. Wang, Z. H. Kang, S. C. Tian, Y. Jiang, and J. Y. Gao, “Effect of spontaneously generated coherence on absorption in a V-type system: Investigation in dressed states,” Phys. Rev. A79(4), 043810 (2009).
[CrossRef]

Kang, Z. H.

S. C. Tian, Z. H. Kang, C. L. Wang, R. G. Wan, J. Kou, H. Zhang, Y. Jiang, H. N. Cui, and J. Y. Gao, “Observation of spontaneously generated coherence on absorption in rubidium atomic beam,” Opt. Commun.285(3), 294–299 (2012).
[CrossRef]

C. L. Wang, Z. H. Kang, S. C. Tian, Y. Jiang, and J. Y. Gao, “Effect of spontaneously generated coherence on absorption in a V-type system: Investigation in dressed states,” Phys. Rev. A79(4), 043810 (2009).
[CrossRef]

Keitel, C. H.

O. Postavaru, Z. Harman, and C. H. Keitel, “High-precision metrology of highly charged ions via relativistic resonance fluorescence,” Phys. Rev. Lett.106(3), 033001 (2011).
[CrossRef] [PubMed]

G. X. Li, J. Evers, and C. H. Keitel, “Spontaneous emission interference in negative-refractive-index waveguides,” Phys. Rev. B80(4), 045102 (2009).
[CrossRef]

M. Kiffner, J. Evers, and C. H. Keitel, “Quantum interference enforced by time-energy complementarity,” Phys. Rev. Lett.96(10), 100403 (2006).
[CrossRef] [PubMed]

Kiffner, M.

M. Kiffner, J. Evers, and C. H. Keitel, “Quantum interference enforced by time-energy complementarity,” Phys. Rev. Lett.96(10), 100403 (2006).
[CrossRef] [PubMed]

Knell, R. O.

Kordich, T. M. V.

C. C. Yu, J. R. Bochinski, T. M. V. Kordich, T. W. Mossberg, and Z. Ficek, “Driving the driven atom: Spectral signatures,” Phys. Rev. A56(6), R4381–R4384 (1997).
[CrossRef]

Kou, J.

S. C. Tian, Z. H. Kang, C. L. Wang, R. G. Wan, J. Kou, H. Zhang, Y. Jiang, H. N. Cui, and J. Y. Gao, “Observation of spontaneously generated coherence on absorption in rubidium atomic beam,” Opt. Commun.285(3), 294–299 (2012).
[CrossRef]

Lawande, S. V.

A. S. Jayarao, S. V. Lawande, and R. D’Souza, “Time-dependent spectra of a strongly driven three-level atom,” Phys. Rev. A39(7), 3464–3474 (1989).
[CrossRef] [PubMed]

S. V. Lawande, R. R. Puri, and R. D’Souza, “Optical-double-resonance spectra and intensity-intensity correlations under intense fields with finite bandwidths: Some analytical results,” Phys. Rev. A33(4), 2504–2516 (1986).
[CrossRef] [PubMed]

Lezama, A.

Y. F. Zhu, Q. L. Wu, A. Lezama, D. J. Gauthier, and T. W. Mossberg, “Resonance fluorescence of two-level atoms under strong bichromatic excitation,” Phys. Rev. A41(11), 6574–6576 (1990).
[CrossRef] [PubMed]

Li, F. L.

F. L. Li, S. Y. Gao, and S. Y. Zhu, “Enhancement of steady-state squeezing in the resonance fluorescence of a coherently driven four-level atom of Λ configuration via quantum interference,” Phys. Rev. A67(6), 063818 (2003).
[CrossRef]

F. L. Li and S. Y. Zhu, “Resonance fluorescence quenching and spectral line narrowing via quantum interference in a four-level atom driven by two coherent fields,” Phys. Rev. A59(3), 2330–2341 (1999).
[CrossRef]

Li, G. X.

G. X. Li, J. Evers, and C. H. Keitel, “Spontaneous emission interference in negative-refractive-index waveguides,” Phys. Rev. B80(4), 045102 (2009).
[CrossRef]

Li, J. H.

C. L. Ding, J. H. Li, Z. M. Zhan, and X. X. Yang, “Two-dimensional atom localization via spontaneous emission in a coherently driven five-level M-type atomic system,” Phys. Rev. A83(6), 063834 (2011).
[CrossRef]

Loftus, T.

J. R. Bochinski, C. C. Yu, T. Loftus, and T. W. Mossberg, “Vacuum-mediated multiphoton transitions,” Phys. Rev. A63(5), 051402 (2001).
[CrossRef]

Lu, Z. W.

X. Q. Jiang, B. Zhang, Z. W. Lu, and X. D. Sun, “Control of spontaneous emission from a microwave-field-coupled three-level Λ-type atom in photonic crystals,” Phys. Rev. A83(5), 053823 (2011).
[CrossRef]

Ma, W.

A. Muller, E. B. Flagg, P. Bianucci, X. Y. Wang, D. G. Deppe, W. Ma, J. Zhang, G. J. Salamo, M. Xiao, and C. K. Shih, “Resonance fluorescence from a coherently driven semiconductor quantum dot in a cavity,” Phys. Rev. Lett.99(18), 187402 (2007).
[CrossRef] [PubMed]

Macovei, M. A.

M. A. Macovei, “Enhancing superfluorescence via decay interference,” J. Phys. B40(2), 387–392 (2007).
[CrossRef]

Manka, A. S.

A. S. Manka, H. M. Doss, L. M. Narducci, P. Ru, and G.-L. Oppo, “Spontaneous emission and absorption properties of a driven three-level system. II. The Λ and cascade models,” Phys. Rev. A43(7), 3748–3763 (1991).
[CrossRef] [PubMed]

Martin, O. J. F.

Y. Gu, L. Huang, O. J. F. Martin, and Q. H. Gong, “Resonance fluorescence of single molecules assisted by a plasmonic structure,” Phys. Rev. B81(19), 193103 (2010).
[CrossRef]

Meng, G. J.

Q. Xu, H. D. Zhou, G. J. Meng, and J. W. Yin, “Simultaneous narrowing of the central peak and sidebands via simulation of quantum interference,” J. Phys. B40(16), 3197–3210 (2007).
[CrossRef]

Meng, Y. L.

C. L. Wang and Y. L. Meng, “Effects of spontaneously generated coherence on resonance fluorescence in a microwave-driven four-level atomic system,” Opt. Commun.285(10-11), 2632–2637 (2012).
[CrossRef]

Mollow, B. R.

B. R. Mollow, “Power spectrum of light scattered by two-level systems,” Phys. Rev.188(5), 1969–1975 (1969).
[CrossRef]

Mossberg, T. W.

J. R. Bochinski, C. C. Yu, T. Loftus, and T. W. Mossberg, “Vacuum-mediated multiphoton transitions,” Phys. Rev. A63(5), 051402 (2001).
[CrossRef]

C. C. Yu, J. R. Bochinski, T. M. V. Kordich, T. W. Mossberg, and Z. Ficek, “Driving the driven atom: Spectral signatures,” Phys. Rev. A56(6), R4381–R4384 (1997).
[CrossRef]

D. J. Gauthier, Y. F. Zhu, and T. W. Mossberg, “Observation of linewidth narrowing due to coherent stabilization of quantum fluctuations,” Phys. Rev. Lett.66(19), 2460–2463 (1991).
[CrossRef] [PubMed]

Y. F. Zhu, Q. L. Wu, A. Lezama, D. J. Gauthier, and T. W. Mossberg, “Resonance fluorescence of two-level atoms under strong bichromatic excitation,” Phys. Rev. A41(11), 6574–6576 (1990).
[CrossRef] [PubMed]

Muller, A.

A. Muller, E. B. Flagg, P. Bianucci, X. Y. Wang, D. G. Deppe, W. Ma, J. Zhang, G. J. Salamo, M. Xiao, and C. K. Shih, “Resonance fluorescence from a coherently driven semiconductor quantum dot in a cavity,” Phys. Rev. Lett.99(18), 187402 (2007).
[CrossRef] [PubMed]

Nakamura, Y.

O. Astafiev, A. M. Zagoskin, A. A. Abdumalikov, Y. A. Pashkin, T. Yamamoto, K. Inomata, Y. Nakamura, and J. S. Tsai, “Resonance fluorescence of a single artificial atom,” Science327(5967), 840–843 (2010).
[CrossRef] [PubMed]

Narducci, L. M.

S. Y. Zhu, L. M. Narducci, and M. O. Scully, “Quantum-mechanical interference effects in the spontaneous-emission spectrum of a driven atom,” Phys. Rev. A52(6), 4791–4802 (1995).
[CrossRef] [PubMed]

A. S. Manka, H. M. Doss, L. M. Narducci, P. Ru, and G.-L. Oppo, “Spontaneous emission and absorption properties of a driven three-level system. II. The Λ and cascade models,” Phys. Rev. A43(7), 3748–3763 (1991).
[CrossRef] [PubMed]

L. M. Narducci, M. O. Scully, G.-L. Oppo, P. Ru, and J. R. Tredicce, “Spontaneous emission and absorption properties of a driven three-level system,” Phys. Rev. A42(3), 1630–1649 (1990).
[CrossRef] [PubMed]

Norris, D. G.

D. G. Norris, L. A. Orozco, P. Barberis-Blostein, and H. J. Carmichael, “Observation of ground-state quantum beats in atomic spontaneous emission,” Phys. Rev. Lett.105(12), 123602 (2010).
[CrossRef] [PubMed]

Oppo, G.-L.

A. S. Manka, H. M. Doss, L. M. Narducci, P. Ru, and G.-L. Oppo, “Spontaneous emission and absorption properties of a driven three-level system. II. The Λ and cascade models,” Phys. Rev. A43(7), 3748–3763 (1991).
[CrossRef] [PubMed]

L. M. Narducci, M. O. Scully, G.-L. Oppo, P. Ru, and J. R. Tredicce, “Spontaneous emission and absorption properties of a driven three-level system,” Phys. Rev. A42(3), 1630–1649 (1990).
[CrossRef] [PubMed]

Orozco, L. A.

D. G. Norris, L. A. Orozco, P. Barberis-Blostein, and H. J. Carmichael, “Observation of ground-state quantum beats in atomic spontaneous emission,” Phys. Rev. Lett.105(12), 123602 (2010).
[CrossRef] [PubMed]

M. L. Terraciano, R. O. Knell, D. L. Freimund, L. A. Orozco, J. P. Clemens, and P. R. Rice, “Enhanced spontaneous emission into the mode of a cavity QED system,” Opt. Lett.32(8), 982–984 (2007).
[CrossRef] [PubMed]

Pashkin, Y. A.

O. Astafiev, A. M. Zagoskin, A. A. Abdumalikov, Y. A. Pashkin, T. Yamamoto, K. Inomata, Y. Nakamura, and J. S. Tsai, “Resonance fluorescence of a single artificial atom,” Science327(5967), 840–843 (2010).
[CrossRef] [PubMed]

Paspalakis, E.

S. Evangelou, V. Yannopapas, and E. Paspalakis, “Simulating quantum interference in spontaneous decay near plasmonic nanostructures population dynamics,” Phys. Rev. A83(5), 055805 (2011).
[CrossRef]

Plenio, M. B.

G. C. Hegerfeldt and M. B. Plenio, “Spectral structures induced by electron shelving,” Phys. Rev. A52(4), 3333–3343 (1995).
[CrossRef] [PubMed]

Postavaru, O.

O. Postavaru, Z. Harman, and C. H. Keitel, “High-precision metrology of highly charged ions via relativistic resonance fluorescence,” Phys. Rev. Lett.106(3), 033001 (2011).
[CrossRef] [PubMed]

Puri, R. R.

S. V. Lawande, R. R. Puri, and R. D’Souza, “Optical-double-resonance spectra and intensity-intensity correlations under intense fields with finite bandwidths: Some analytical results,” Phys. Rev. A33(4), 2504–2516 (1986).
[CrossRef] [PubMed]

Reynaud, S.

C. Cohen-Tannoudji and S. Reynaud, “Dressed-atom description of resonance fluorescence and absorption spectra of a multi-level atom in an intense laser beam,” J. Phys. B10(3), 345–363 (1977).
[CrossRef]

Rice, P. R.

Ru, P.

A. S. Manka, H. M. Doss, L. M. Narducci, P. Ru, and G.-L. Oppo, “Spontaneous emission and absorption properties of a driven three-level system. II. The Λ and cascade models,” Phys. Rev. A43(7), 3748–3763 (1991).
[CrossRef] [PubMed]

L. M. Narducci, M. O. Scully, G.-L. Oppo, P. Ru, and J. R. Tredicce, “Spontaneous emission and absorption properties of a driven three-level system,” Phys. Rev. A42(3), 1630–1649 (1990).
[CrossRef] [PubMed]

Salamo, G. J.

A. Muller, E. B. Flagg, P. Bianucci, X. Y. Wang, D. G. Deppe, W. Ma, J. Zhang, G. J. Salamo, M. Xiao, and C. K. Shih, “Resonance fluorescence from a coherently driven semiconductor quantum dot in a cavity,” Phys. Rev. Lett.99(18), 187402 (2007).
[CrossRef] [PubMed]

Sandoghdar, V.

G. Wrigge, I. Gerhardt, J. Hwang, G. Zumofen, and V. Sandoghdar, “Efficient coupling of photons to a single molecule and the observation of its resonance fluorescence,” Nat. Phys.4(1), 60–66 (2008).
[CrossRef]

Schuda, F.

F. Schuda, C. R. Stroud, and M. Hercher, “Observation of the resonant Stark effect at optical frequencies,” J. Phys. B7(7), L198–L202 (1974).
[CrossRef]

Scully, M. O.

S. Y. Zhu, L. M. Narducci, and M. O. Scully, “Quantum-mechanical interference effects in the spontaneous-emission spectrum of a driven atom,” Phys. Rev. A52(6), 4791–4802 (1995).
[CrossRef] [PubMed]

L. M. Narducci, M. O. Scully, G.-L. Oppo, P. Ru, and J. R. Tredicce, “Spontaneous emission and absorption properties of a driven three-level system,” Phys. Rev. A42(3), 1630–1649 (1990).
[CrossRef] [PubMed]

Shih, C. K.

A. Muller, E. B. Flagg, P. Bianucci, X. Y. Wang, D. G. Deppe, W. Ma, J. Zhang, G. J. Salamo, M. Xiao, and C. K. Shih, “Resonance fluorescence from a coherently driven semiconductor quantum dot in a cavity,” Phys. Rev. Lett.99(18), 187402 (2007).
[CrossRef] [PubMed]

Stroud, C. R.

R. M. Whitley and C. R. Stroud., “Double optical resonance,” Phys. Rev. A14(4), 1498–1513 (1976).
[CrossRef]

F. Schuda, C. R. Stroud, and M. Hercher, “Observation of the resonant Stark effect at optical frequencies,” J. Phys. B7(7), L198–L202 (1974).
[CrossRef]

Sun, X. D.

X. Q. Jiang, B. Zhang, Z. W. Lu, and X. D. Sun, “Control of spontaneous emission from a microwave-field-coupled three-level Λ-type atom in photonic crystals,” Phys. Rev. A83(5), 053823 (2011).
[CrossRef]

Swain, S.

Z. Ficek and S. Swain, “Simulating quantum interference in a three-level system with perpendicular transition dipole moments,” Phys. Rev. A69(2), 023401 (2004).
[CrossRef]

P. Zhou and S. Swain, “Ultranarrow spectral lines via quantum interference,” Phys. Rev. Lett.77(19), 3995–3998 (1996).
[CrossRef] [PubMed]

Temnov, V. V.

Terraciano, M. L.

Tian, S. C.

S. C. Tian, Z. H. Kang, C. L. Wang, R. G. Wan, J. Kou, H. Zhang, Y. Jiang, H. N. Cui, and J. Y. Gao, “Observation of spontaneously generated coherence on absorption in rubidium atomic beam,” Opt. Commun.285(3), 294–299 (2012).
[CrossRef]

C. L. Wang, Z. H. Kang, S. C. Tian, Y. Jiang, and J. Y. Gao, “Effect of spontaneously generated coherence on absorption in a V-type system: Investigation in dressed states,” Phys. Rev. A79(4), 043810 (2009).
[CrossRef]

Tredicce, J. R.

L. M. Narducci, M. O. Scully, G.-L. Oppo, P. Ru, and J. R. Tredicce, “Spontaneous emission and absorption properties of a driven three-level system,” Phys. Rev. A42(3), 1630–1649 (1990).
[CrossRef] [PubMed]

Tsai, J. S.

O. Astafiev, A. M. Zagoskin, A. A. Abdumalikov, Y. A. Pashkin, T. Yamamoto, K. Inomata, Y. Nakamura, and J. S. Tsai, “Resonance fluorescence of a single artificial atom,” Science327(5967), 840–843 (2010).
[CrossRef] [PubMed]

Vogel, W.

P. Grünwald and W. Vogel, “Entanglement in atomic resonance fluorescence,” Phys. Rev. Lett.104(23), 233602 (2010).
[CrossRef] [PubMed]

Wan, R. G.

S. C. Tian, Z. H. Kang, C. L. Wang, R. G. Wan, J. Kou, H. Zhang, Y. Jiang, H. N. Cui, and J. Y. Gao, “Observation of spontaneously generated coherence on absorption in rubidium atomic beam,” Opt. Commun.285(3), 294–299 (2012).
[CrossRef]

Wang, C. L.

S. C. Tian, Z. H. Kang, C. L. Wang, R. G. Wan, J. Kou, H. Zhang, Y. Jiang, H. N. Cui, and J. Y. Gao, “Observation of spontaneously generated coherence on absorption in rubidium atomic beam,” Opt. Commun.285(3), 294–299 (2012).
[CrossRef]

C. L. Wang and Y. L. Meng, “Effects of spontaneously generated coherence on resonance fluorescence in a microwave-driven four-level atomic system,” Opt. Commun.285(10-11), 2632–2637 (2012).
[CrossRef]

C. L. Wang, Z. H. Kang, S. C. Tian, Y. Jiang, and J. Y. Gao, “Effect of spontaneously generated coherence on absorption in a V-type system: Investigation in dressed states,” Phys. Rev. A79(4), 043810 (2009).
[CrossRef]

Wang, X. Y.

A. Muller, E. B. Flagg, P. Bianucci, X. Y. Wang, D. G. Deppe, W. Ma, J. Zhang, G. J. Salamo, M. Xiao, and C. K. Shih, “Resonance fluorescence from a coherently driven semiconductor quantum dot in a cavity,” Phys. Rev. Lett.99(18), 187402 (2007).
[CrossRef] [PubMed]

Whitley, R. M.

R. M. Whitley and C. R. Stroud., “Double optical resonance,” Phys. Rev. A14(4), 1498–1513 (1976).
[CrossRef]

Woggon, U.

Wrigge, G.

G. Wrigge, I. Gerhardt, J. Hwang, G. Zumofen, and V. Sandoghdar, “Efficient coupling of photons to a single molecule and the observation of its resonance fluorescence,” Nat. Phys.4(1), 60–66 (2008).
[CrossRef]

Wu, F. Y.

R. E. Grove, F. Y. Wu, and S. Ezekiel, “Measurement of the spectrum of resonance fluorescence from a two-level atom in an intense monochromatic field,” Phys. Rev. A15(1), 227–233 (1977).
[CrossRef]

F. Y. Wu, R. E. Grove, and S. Ezekiel, “Investigation of the spectrum of resonance fluorescence induced by a monochromatic field,” Phys. Rev. Lett.35(21), 1426–1429 (1975).
[CrossRef]

Wu, Q. L.

Y. F. Zhu, Q. L. Wu, A. Lezama, D. J. Gauthier, and T. W. Mossberg, “Resonance fluorescence of two-level atoms under strong bichromatic excitation,” Phys. Rev. A41(11), 6574–6576 (1990).
[CrossRef] [PubMed]

Xiao, M.

A. Muller, E. B. Flagg, P. Bianucci, X. Y. Wang, D. G. Deppe, W. Ma, J. Zhang, G. J. Salamo, M. Xiao, and C. K. Shih, “Resonance fluorescence from a coherently driven semiconductor quantum dot in a cavity,” Phys. Rev. Lett.99(18), 187402 (2007).
[CrossRef] [PubMed]

Xu, Q.

Q. Xu, H. D. Zhou, G. J. Meng, and J. W. Yin, “Simultaneous narrowing of the central peak and sidebands via simulation of quantum interference,” J. Phys. B40(16), 3197–3210 (2007).
[CrossRef]

Yamamoto, T.

O. Astafiev, A. M. Zagoskin, A. A. Abdumalikov, Y. A. Pashkin, T. Yamamoto, K. Inomata, Y. Nakamura, and J. S. Tsai, “Resonance fluorescence of a single artificial atom,” Science327(5967), 840–843 (2010).
[CrossRef] [PubMed]

Yang, X. X.

C. L. Ding, J. H. Li, Z. M. Zhan, and X. X. Yang, “Two-dimensional atom localization via spontaneous emission in a coherently driven five-level M-type atomic system,” Phys. Rev. A83(6), 063834 (2011).
[CrossRef]

Yannopapas, V.

S. Evangelou, V. Yannopapas, and E. Paspalakis, “Simulating quantum interference in spontaneous decay near plasmonic nanostructures population dynamics,” Phys. Rev. A83(5), 055805 (2011).
[CrossRef]

Yin, J. W.

Q. Xu, H. D. Zhou, G. J. Meng, and J. W. Yin, “Simultaneous narrowing of the central peak and sidebands via simulation of quantum interference,” J. Phys. B40(16), 3197–3210 (2007).
[CrossRef]

Yu, C. C.

J. R. Bochinski, C. C. Yu, T. Loftus, and T. W. Mossberg, “Vacuum-mediated multiphoton transitions,” Phys. Rev. A63(5), 051402 (2001).
[CrossRef]

C. C. Yu, J. R. Bochinski, T. M. V. Kordich, T. W. Mossberg, and Z. Ficek, “Driving the driven atom: Spectral signatures,” Phys. Rev. A56(6), R4381–R4384 (1997).
[CrossRef]

Zagoskin, A. M.

O. Astafiev, A. M. Zagoskin, A. A. Abdumalikov, Y. A. Pashkin, T. Yamamoto, K. Inomata, Y. Nakamura, and J. S. Tsai, “Resonance fluorescence of a single artificial atom,” Science327(5967), 840–843 (2010).
[CrossRef] [PubMed]

Zhan, Z. M.

C. L. Ding, J. H. Li, Z. M. Zhan, and X. X. Yang, “Two-dimensional atom localization via spontaneous emission in a coherently driven five-level M-type atomic system,” Phys. Rev. A83(6), 063834 (2011).
[CrossRef]

Zhang, B.

X. Q. Jiang, B. Zhang, Z. W. Lu, and X. D. Sun, “Control of spontaneous emission from a microwave-field-coupled three-level Λ-type atom in photonic crystals,” Phys. Rev. A83(5), 053823 (2011).
[CrossRef]

Zhang, H.

S. C. Tian, Z. H. Kang, C. L. Wang, R. G. Wan, J. Kou, H. Zhang, Y. Jiang, H. N. Cui, and J. Y. Gao, “Observation of spontaneously generated coherence on absorption in rubidium atomic beam,” Opt. Commun.285(3), 294–299 (2012).
[CrossRef]

Zhang, J.

A. Muller, E. B. Flagg, P. Bianucci, X. Y. Wang, D. G. Deppe, W. Ma, J. Zhang, G. J. Salamo, M. Xiao, and C. K. Shih, “Resonance fluorescence from a coherently driven semiconductor quantum dot in a cavity,” Phys. Rev. Lett.99(18), 187402 (2007).
[CrossRef] [PubMed]

Zhang, W. X.

W. X. Zhang and J. Zhuang, “Dynamical control of two-level system decay and long time freezing,” Phys. Rev. A79(1), 012310 (2009).
[CrossRef]

Zhang, Y.

C. Fu, Y. Zhang, and C. Gong, “Resonance fluorescence from a three-level system,” Phys. Rev. A45(1), 505–512 (1992).
[CrossRef] [PubMed]

Zhou, H. D.

Q. Xu, H. D. Zhou, G. J. Meng, and J. W. Yin, “Simultaneous narrowing of the central peak and sidebands via simulation of quantum interference,” J. Phys. B40(16), 3197–3210 (2007).
[CrossRef]

Zhou, P.

P. Zhou and S. Swain, “Ultranarrow spectral lines via quantum interference,” Phys. Rev. Lett.77(19), 3995–3998 (1996).
[CrossRef] [PubMed]

Zhu, S. Y.

F. L. Li, S. Y. Gao, and S. Y. Zhu, “Enhancement of steady-state squeezing in the resonance fluorescence of a coherently driven four-level atom of Λ configuration via quantum interference,” Phys. Rev. A67(6), 063818 (2003).
[CrossRef]

F. L. Li and S. Y. Zhu, “Resonance fluorescence quenching and spectral line narrowing via quantum interference in a four-level atom driven by two coherent fields,” Phys. Rev. A59(3), 2330–2341 (1999).
[CrossRef]

S. Y. Zhu, L. M. Narducci, and M. O. Scully, “Quantum-mechanical interference effects in the spontaneous-emission spectrum of a driven atom,” Phys. Rev. A52(6), 4791–4802 (1995).
[CrossRef] [PubMed]

Zhu, Y. F.

D. J. Gauthier, Y. F. Zhu, and T. W. Mossberg, “Observation of linewidth narrowing due to coherent stabilization of quantum fluctuations,” Phys. Rev. Lett.66(19), 2460–2463 (1991).
[CrossRef] [PubMed]

Y. F. Zhu, Q. L. Wu, A. Lezama, D. J. Gauthier, and T. W. Mossberg, “Resonance fluorescence of two-level atoms under strong bichromatic excitation,” Phys. Rev. A41(11), 6574–6576 (1990).
[CrossRef] [PubMed]

Zhuang, J.

W. X. Zhang and J. Zhuang, “Dynamical control of two-level system decay and long time freezing,” Phys. Rev. A79(1), 012310 (2009).
[CrossRef]

Zumofen, G.

G. Wrigge, I. Gerhardt, J. Hwang, G. Zumofen, and V. Sandoghdar, “Efficient coupling of photons to a single molecule and the observation of its resonance fluorescence,” Nat. Phys.4(1), 60–66 (2008).
[CrossRef]

J. Phys. B (4)

F. Schuda, C. R. Stroud, and M. Hercher, “Observation of the resonant Stark effect at optical frequencies,” J. Phys. B7(7), L198–L202 (1974).
[CrossRef]

M. A. Macovei, “Enhancing superfluorescence via decay interference,” J. Phys. B40(2), 387–392 (2007).
[CrossRef]

Q. Xu, H. D. Zhou, G. J. Meng, and J. W. Yin, “Simultaneous narrowing of the central peak and sidebands via simulation of quantum interference,” J. Phys. B40(16), 3197–3210 (2007).
[CrossRef]

C. Cohen-Tannoudji and S. Reynaud, “Dressed-atom description of resonance fluorescence and absorption spectra of a multi-level atom in an intense laser beam,” J. Phys. B10(3), 345–363 (1977).
[CrossRef]

Nat. Phys. (1)

G. Wrigge, I. Gerhardt, J. Hwang, G. Zumofen, and V. Sandoghdar, “Efficient coupling of photons to a single molecule and the observation of its resonance fluorescence,” Nat. Phys.4(1), 60–66 (2008).
[CrossRef]

Opt. Commun. (2)

C. L. Wang and Y. L. Meng, “Effects of spontaneously generated coherence on resonance fluorescence in a microwave-driven four-level atomic system,” Opt. Commun.285(10-11), 2632–2637 (2012).
[CrossRef]

S. C. Tian, Z. H. Kang, C. L. Wang, R. G. Wan, J. Kou, H. Zhang, Y. Jiang, H. N. Cui, and J. Y. Gao, “Observation of spontaneously generated coherence on absorption in rubidium atomic beam,” Opt. Commun.285(3), 294–299 (2012).
[CrossRef]

Opt. Express (1)

Opt. Lett. (1)

Phys. Rev. (1)

B. R. Mollow, “Power spectrum of light scattered by two-level systems,” Phys. Rev.188(5), 1969–1975 (1969).
[CrossRef]

Phys. Rev. A (24)

W. X. Zhang and J. Zhuang, “Dynamical control of two-level system decay and long time freezing,” Phys. Rev. A79(1), 012310 (2009).
[CrossRef]

C. L. Ding, J. H. Li, Z. M. Zhan, and X. X. Yang, “Two-dimensional atom localization via spontaneous emission in a coherently driven five-level M-type atomic system,” Phys. Rev. A83(6), 063834 (2011).
[CrossRef]

S. Das and G. S. Agarwal, “Photon-photon correlations as a probe of vacuum-induced coherence effects,” Phys. Rev. A77(3), 033850 (2008).
[CrossRef]

S. Y. Zhu, L. M. Narducci, and M. O. Scully, “Quantum-mechanical interference effects in the spontaneous-emission spectrum of a driven atom,” Phys. Rev. A52(6), 4791–4802 (1995).
[CrossRef] [PubMed]

C. L. Wang, Z. H. Kang, S. C. Tian, Y. Jiang, and J. Y. Gao, “Effect of spontaneously generated coherence on absorption in a V-type system: Investigation in dressed states,” Phys. Rev. A79(4), 043810 (2009).
[CrossRef]

Z. Ficek and S. Swain, “Simulating quantum interference in a three-level system with perpendicular transition dipole moments,” Phys. Rev. A69(2), 023401 (2004).
[CrossRef]

F. L. Li and S. Y. Zhu, “Resonance fluorescence quenching and spectral line narrowing via quantum interference in a four-level atom driven by two coherent fields,” Phys. Rev. A59(3), 2330–2341 (1999).
[CrossRef]

F. L. Li, S. Y. Gao, and S. Y. Zhu, “Enhancement of steady-state squeezing in the resonance fluorescence of a coherently driven four-level atom of Λ configuration via quantum interference,” Phys. Rev. A67(6), 063818 (2003).
[CrossRef]

R. Arun, “Interference-induced splitting of resonances in spontaneous emission,” Phys. Rev. A77(3), 033820 (2008).
[CrossRef]

X. Q. Jiang, B. Zhang, Z. W. Lu, and X. D. Sun, “Control of spontaneous emission from a microwave-field-coupled three-level Λ-type atom in photonic crystals,” Phys. Rev. A83(5), 053823 (2011).
[CrossRef]

S. Evangelou, V. Yannopapas, and E. Paspalakis, “Simulating quantum interference in spontaneous decay near plasmonic nanostructures population dynamics,” Phys. Rev. A83(5), 055805 (2011).
[CrossRef]

R. E. Grove, F. Y. Wu, and S. Ezekiel, “Measurement of the spectrum of resonance fluorescence from a two-level atom in an intense monochromatic field,” Phys. Rev. A15(1), 227–233 (1977).
[CrossRef]

Y. F. Zhu, Q. L. Wu, A. Lezama, D. J. Gauthier, and T. W. Mossberg, “Resonance fluorescence of two-level atoms under strong bichromatic excitation,” Phys. Rev. A41(11), 6574–6576 (1990).
[CrossRef] [PubMed]

Z. Ficek and H. S. Freedhoff, “Resonance-fluorescence and absorption spectra of a two-level atom driven by a strong bichromatic field,” Phys. Rev. A48(4), 3092–3104 (1993).
[CrossRef] [PubMed]

Z. Ficek and H. S. Freedhoff, “Fluorescence and absorption by a two-level atom in a bichromatic field with one strong and one weak component,” Phys. Rev. A53(6), 4275–4287 (1996).
[CrossRef] [PubMed]

C. C. Yu, J. R. Bochinski, T. M. V. Kordich, T. W. Mossberg, and Z. Ficek, “Driving the driven atom: Spectral signatures,” Phys. Rev. A56(6), R4381–R4384 (1997).
[CrossRef]

J. R. Bochinski, C. C. Yu, T. Loftus, and T. W. Mossberg, “Vacuum-mediated multiphoton transitions,” Phys. Rev. A63(5), 051402 (2001).
[CrossRef]

R. M. Whitley and C. R. Stroud., “Double optical resonance,” Phys. Rev. A14(4), 1498–1513 (1976).
[CrossRef]

S. V. Lawande, R. R. Puri, and R. D’Souza, “Optical-double-resonance spectra and intensity-intensity correlations under intense fields with finite bandwidths: Some analytical results,” Phys. Rev. A33(4), 2504–2516 (1986).
[CrossRef] [PubMed]

A. S. Jayarao, S. V. Lawande, and R. D’Souza, “Time-dependent spectra of a strongly driven three-level atom,” Phys. Rev. A39(7), 3464–3474 (1989).
[CrossRef] [PubMed]

L. M. Narducci, M. O. Scully, G.-L. Oppo, P. Ru, and J. R. Tredicce, “Spontaneous emission and absorption properties of a driven three-level system,” Phys. Rev. A42(3), 1630–1649 (1990).
[CrossRef] [PubMed]

A. S. Manka, H. M. Doss, L. M. Narducci, P. Ru, and G.-L. Oppo, “Spontaneous emission and absorption properties of a driven three-level system. II. The Λ and cascade models,” Phys. Rev. A43(7), 3748–3763 (1991).
[CrossRef] [PubMed]

C. Fu, Y. Zhang, and C. Gong, “Resonance fluorescence from a three-level system,” Phys. Rev. A45(1), 505–512 (1992).
[CrossRef] [PubMed]

G. C. Hegerfeldt and M. B. Plenio, “Spectral structures induced by electron shelving,” Phys. Rev. A52(4), 3333–3343 (1995).
[CrossRef] [PubMed]

Phys. Rev. B (2)

G. X. Li, J. Evers, and C. H. Keitel, “Spontaneous emission interference in negative-refractive-index waveguides,” Phys. Rev. B80(4), 045102 (2009).
[CrossRef]

Y. Gu, L. Huang, O. J. F. Martin, and Q. H. Gong, “Resonance fluorescence of single molecules assisted by a plasmonic structure,” Phys. Rev. B81(19), 193103 (2010).
[CrossRef]

Phys. Rev. Lett. (8)

P. Zhou and S. Swain, “Ultranarrow spectral lines via quantum interference,” Phys. Rev. Lett.77(19), 3995–3998 (1996).
[CrossRef] [PubMed]

F. Y. Wu, R. E. Grove, and S. Ezekiel, “Investigation of the spectrum of resonance fluorescence induced by a monochromatic field,” Phys. Rev. Lett.35(21), 1426–1429 (1975).
[CrossRef]

M. Kiffner, J. Evers, and C. H. Keitel, “Quantum interference enforced by time-energy complementarity,” Phys. Rev. Lett.96(10), 100403 (2006).
[CrossRef] [PubMed]

P. Grünwald and W. Vogel, “Entanglement in atomic resonance fluorescence,” Phys. Rev. Lett.104(23), 233602 (2010).
[CrossRef] [PubMed]

O. Postavaru, Z. Harman, and C. H. Keitel, “High-precision metrology of highly charged ions via relativistic resonance fluorescence,” Phys. Rev. Lett.106(3), 033001 (2011).
[CrossRef] [PubMed]

A. Muller, E. B. Flagg, P. Bianucci, X. Y. Wang, D. G. Deppe, W. Ma, J. Zhang, G. J. Salamo, M. Xiao, and C. K. Shih, “Resonance fluorescence from a coherently driven semiconductor quantum dot in a cavity,” Phys. Rev. Lett.99(18), 187402 (2007).
[CrossRef] [PubMed]

D. G. Norris, L. A. Orozco, P. Barberis-Blostein, and H. J. Carmichael, “Observation of ground-state quantum beats in atomic spontaneous emission,” Phys. Rev. Lett.105(12), 123602 (2010).
[CrossRef] [PubMed]

D. J. Gauthier, Y. F. Zhu, and T. W. Mossberg, “Observation of linewidth narrowing due to coherent stabilization of quantum fluctuations,” Phys. Rev. Lett.66(19), 2460–2463 (1991).
[CrossRef] [PubMed]

Science (1)

O. Astafiev, A. M. Zagoskin, A. A. Abdumalikov, Y. A. Pashkin, T. Yamamoto, K. Inomata, Y. Nakamura, and J. S. Tsai, “Resonance fluorescence of a single artificial atom,” Science327(5967), 840–843 (2010).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Energy-level scheme for R 85 b .

Fig. 2
Fig. 2

Schematic diagram of the experimental setup. ECDL: external cavity diode laser; Ti:Sapphire: 
coherent-899 Ti:sapphire laser ; A1 and A2: apertures; L: lens; FP: Fabry-Pérot interferometer.

Fig. 3
Fig. 3

(a) Observed fluorescence spectrum of two-level system for Ω 1 =10MHz , Ω 2 =0 ; (b)-(e) Observed fluorescence spectrum of three-level cascade system for Ω 1 =10MHz , Ω 2 =6MHz . (b) Δ 2 =4MHz , (c) Δ 2 =8MHz , (d) Δ 2 =20MHz , (e) Δ 2 =30MHz . Other parameters are Δ 1 0 , γ 2 =6MHz , γ 3 =0.43MHz . Solid blue curves are the experimental results; dotted red curves are the theoretical simulation.

Fig. 4
Fig. 4

The energy scheme under consideration. (a) In the bare-state basis. (b) In the dresse-dstate basis of the two laser fields. (c) In the dressed-state basis of the laser field ω 2 .

Fig. 5
Fig. 5

Properties as a function of the detuning Δ 2 , (a) The eigen energies, (b) steady-state population of the bare-state, (c) decay rates Γ ij , (d) steady-state population of the dressed-state, (e) decay rates Γ i i .

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

H= Δ 1 |22|+( Δ 1 + Δ 2 )|33|+( Ω 1 |12|+ Ω 2 |23|+H.c.),
|i=cosφcosθ|1+sinφ|2+cosφsinθ|3,
tanφ= AB A 2 + B 2 ,
tanθ= A B ,
A= λ i Ω 1 ,
B= λ i ( Δ 1 + Δ 2 ) Ω 2 ,
|i= C ik |k, (i=a,b,c;k=1,2,3).
R ij = | j|P|i | 2 = | C j1 | 2 μ 12 2 | C i2 | 2 , (i,j=a,b,c )

Metrics