Abstract

Silicon unique modulation mechanism based on free-carrier dispersion (FCD) effect determines that there is operation and performance difference from LiNbO3 modulator when achieving various optical modulation formats. In this paper, the influence of nonlinear FCD and free carrier absorption (FCA) effect on the return-to-zero (RZ)-DPSK generation scheme is numerically analyzed. Silicon waveguide with p-n diode is adopted and the reverse bias is the key factor which should be chosen carefully. Performance analysis includes two parts: the property of the generated optical signal and the dispersion penalty which is related to chirp. The simulation results show that the output phase of the optical RZ-DPSK signal has undesirable distortion and the power has considerable loss. Furthermore, the simulation of modulator with 20 dB extinction ratio is also performed for relative analysis. The poor extinction ratio will further impact the characteristic. Even the push-pull operation is utilized, there is a residual chirp resulting from FCA and nonlinear FCD effect. This kind of chirp is characterized by the dispersion penalty.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. J. Winzer and R. J. Essiambre, “Advanced modulation formats for high-capacity optical transport networks,” J. Lightwave Technol.24(12), 4711–4728 (2006).
    [CrossRef]
  2. P. J. Winzer and R. J. Essiambre, “Advanced optical modulation formats,” Proc. IEEE94(5), 952–985 (2006).
    [CrossRef]
  3. G. T. Reed, “Device physics: the optical age of silicon,” Nature427(6975), 595–596 (2004).
    [CrossRef] [PubMed]
  4. S. J. B. Yoo, “Future prospects of silicon photonics in next generation communication and computing systems,” Electron. Lett.45(12), 584–588 (2009).
    [CrossRef]
  5. S. Chandrasekhar and X. Liu, “40 Gb/s DBPSK and DQPSK formats for transparent 50 GHz DWDM transmission,” Bell Labs Tech. J.14(4), 11–25 (2010).
    [CrossRef]
  6. L. Zhang, J. Y. Yang, M. Song, Y. Li, B. Zhang, R. G. Beausoleil, and A. E. Willner, “Microring-based modulation and demodulation of DPSK signal,” Opt. Express15(18), 11564–11569 (2007).
    [CrossRef] [PubMed]
  7. K. Padmaraju, N. Ophir, Q. Xu, B. Schmidt, J. Shakya, S. Manipatruni, M. Lipson, and K. Bergman, “Error-free transmission of microring-modulated BPSK,” Opt. Express20(8), 8681–8688 (2012).
    [CrossRef] [PubMed]
  8. K. Ogawa, K. Goi, H. Kusaka, K. Oda, T. Y. Liow, X. Tu, G. Q. Lo, and D. L. Kwong, “20-Gbps silicon photonic waveguide nested Mach-Zehnder QPSK modulator,” in National Fiber Opt. Engin. Conf., (2012).
  9. N. Kikuchi, H. Sanjoh, Y. Shibata, K. Tsuzuki, T. Sato, E. Yamada, T. Ishibashi and H. Yasaka, “80-Gbit/s InP DQPSK modulator with an n-p-i-n structure,” in ECOC, 1–2 (2007)
  10. R. Soref and B. Bennett, “Electro optical effects in silicon,” Quantum Electron.23(1), 123–129 (1987).
    [CrossRef]
  11. Y. Wei, Y. Zhao, J. Yang, M. Wang, and X. Jiang, “Chirp characteristics of silicon Mach–Zehnder modulator under small-signal modulation,” J. Lightwave Technol.29(7), 1011–1017 (2011).
    [CrossRef]
  12. Y. J. Wen, A. Nirmalathas, and D. S. Lee, “RZ/CSRZ-DPSK and chirped NRZ signal generation using a single-stage dual-electrode Mach-Zehnder modulator,” IEEE Photon. Technol. Lett.16(11), 2466–2468 (2004).
    [CrossRef]
  13. H. Yu, W. Bogaerts, and A. D. Keersgieter, “Optimization of ion implantation condition for depletion-type silicon optical modulators,” Quantum Electron.46(12), 1763–1768 (2010).
    [CrossRef]
  14. Online Available: http://www.silvaco.com .
  15. K. Croussore, I. Kim, C. Kim, Y. Han, and G. Li, “Phase-and-amplitude regeneration of differential phase-shift keyed signals using a phase-sensitive amplifier,” Opt. Express14(6), 2085–2094 (2006).
    [CrossRef] [PubMed]
  16. K. Cvecek, K. Sponsel, C. Stephan, G. Onishchukov, R. Ludwig, C. Schubert, B. Schmauss, and G. Leuchs, “Phase-preserving amplitude regeneration for a WDM RZ-DPSK signal using a nonlinear amplifying loop mirror,” Opt. Express16(3), 1923–1928 (2008).
    [CrossRef] [PubMed]
  17. H. Kim and A. H. Gnauck, “Chirp characteristics of dual-drive Mach-Zehnder modulator with a finite DC extinction ratio,” IEEE Photon. Technol. Lett.14(3), 298–300 (2002).
    [CrossRef]
  18. A. H. Gnauck, S. K. Korotky, J. J. Veselka, J. Nagel, C. T. Kemmerer, W. J. Minford, and D. T. Moser, “Dispersion penalty reduction using an optical modulator with adjustable chirp,” IEEE Photon. Technol. Lett.3(10), 916–918 (1991).
    [CrossRef]

2012

2011

2010

S. Chandrasekhar and X. Liu, “40 Gb/s DBPSK and DQPSK formats for transparent 50 GHz DWDM transmission,” Bell Labs Tech. J.14(4), 11–25 (2010).
[CrossRef]

H. Yu, W. Bogaerts, and A. D. Keersgieter, “Optimization of ion implantation condition for depletion-type silicon optical modulators,” Quantum Electron.46(12), 1763–1768 (2010).
[CrossRef]

2009

S. J. B. Yoo, “Future prospects of silicon photonics in next generation communication and computing systems,” Electron. Lett.45(12), 584–588 (2009).
[CrossRef]

2008

2007

2006

2004

G. T. Reed, “Device physics: the optical age of silicon,” Nature427(6975), 595–596 (2004).
[CrossRef] [PubMed]

Y. J. Wen, A. Nirmalathas, and D. S. Lee, “RZ/CSRZ-DPSK and chirped NRZ signal generation using a single-stage dual-electrode Mach-Zehnder modulator,” IEEE Photon. Technol. Lett.16(11), 2466–2468 (2004).
[CrossRef]

2002

H. Kim and A. H. Gnauck, “Chirp characteristics of dual-drive Mach-Zehnder modulator with a finite DC extinction ratio,” IEEE Photon. Technol. Lett.14(3), 298–300 (2002).
[CrossRef]

1991

A. H. Gnauck, S. K. Korotky, J. J. Veselka, J. Nagel, C. T. Kemmerer, W. J. Minford, and D. T. Moser, “Dispersion penalty reduction using an optical modulator with adjustable chirp,” IEEE Photon. Technol. Lett.3(10), 916–918 (1991).
[CrossRef]

1987

R. Soref and B. Bennett, “Electro optical effects in silicon,” Quantum Electron.23(1), 123–129 (1987).
[CrossRef]

Beausoleil, R. G.

Bennett, B.

R. Soref and B. Bennett, “Electro optical effects in silicon,” Quantum Electron.23(1), 123–129 (1987).
[CrossRef]

Bergman, K.

Bogaerts, W.

H. Yu, W. Bogaerts, and A. D. Keersgieter, “Optimization of ion implantation condition for depletion-type silicon optical modulators,” Quantum Electron.46(12), 1763–1768 (2010).
[CrossRef]

Chandrasekhar, S.

S. Chandrasekhar and X. Liu, “40 Gb/s DBPSK and DQPSK formats for transparent 50 GHz DWDM transmission,” Bell Labs Tech. J.14(4), 11–25 (2010).
[CrossRef]

Croussore, K.

Cvecek, K.

Essiambre, R. J.

Gnauck, A. H.

H. Kim and A. H. Gnauck, “Chirp characteristics of dual-drive Mach-Zehnder modulator with a finite DC extinction ratio,” IEEE Photon. Technol. Lett.14(3), 298–300 (2002).
[CrossRef]

A. H. Gnauck, S. K. Korotky, J. J. Veselka, J. Nagel, C. T. Kemmerer, W. J. Minford, and D. T. Moser, “Dispersion penalty reduction using an optical modulator with adjustable chirp,” IEEE Photon. Technol. Lett.3(10), 916–918 (1991).
[CrossRef]

Han, Y.

Jiang, X.

Keersgieter, A. D.

H. Yu, W. Bogaerts, and A. D. Keersgieter, “Optimization of ion implantation condition for depletion-type silicon optical modulators,” Quantum Electron.46(12), 1763–1768 (2010).
[CrossRef]

Kemmerer, C. T.

A. H. Gnauck, S. K. Korotky, J. J. Veselka, J. Nagel, C. T. Kemmerer, W. J. Minford, and D. T. Moser, “Dispersion penalty reduction using an optical modulator with adjustable chirp,” IEEE Photon. Technol. Lett.3(10), 916–918 (1991).
[CrossRef]

Kim, C.

Kim, H.

H. Kim and A. H. Gnauck, “Chirp characteristics of dual-drive Mach-Zehnder modulator with a finite DC extinction ratio,” IEEE Photon. Technol. Lett.14(3), 298–300 (2002).
[CrossRef]

Kim, I.

Korotky, S. K.

A. H. Gnauck, S. K. Korotky, J. J. Veselka, J. Nagel, C. T. Kemmerer, W. J. Minford, and D. T. Moser, “Dispersion penalty reduction using an optical modulator with adjustable chirp,” IEEE Photon. Technol. Lett.3(10), 916–918 (1991).
[CrossRef]

Lee, D. S.

Y. J. Wen, A. Nirmalathas, and D. S. Lee, “RZ/CSRZ-DPSK and chirped NRZ signal generation using a single-stage dual-electrode Mach-Zehnder modulator,” IEEE Photon. Technol. Lett.16(11), 2466–2468 (2004).
[CrossRef]

Leuchs, G.

Li, G.

Li, Y.

Lipson, M.

Liu, X.

S. Chandrasekhar and X. Liu, “40 Gb/s DBPSK and DQPSK formats for transparent 50 GHz DWDM transmission,” Bell Labs Tech. J.14(4), 11–25 (2010).
[CrossRef]

Ludwig, R.

Manipatruni, S.

Minford, W. J.

A. H. Gnauck, S. K. Korotky, J. J. Veselka, J. Nagel, C. T. Kemmerer, W. J. Minford, and D. T. Moser, “Dispersion penalty reduction using an optical modulator with adjustable chirp,” IEEE Photon. Technol. Lett.3(10), 916–918 (1991).
[CrossRef]

Moser, D. T.

A. H. Gnauck, S. K. Korotky, J. J. Veselka, J. Nagel, C. T. Kemmerer, W. J. Minford, and D. T. Moser, “Dispersion penalty reduction using an optical modulator with adjustable chirp,” IEEE Photon. Technol. Lett.3(10), 916–918 (1991).
[CrossRef]

Nagel, J.

A. H. Gnauck, S. K. Korotky, J. J. Veselka, J. Nagel, C. T. Kemmerer, W. J. Minford, and D. T. Moser, “Dispersion penalty reduction using an optical modulator with adjustable chirp,” IEEE Photon. Technol. Lett.3(10), 916–918 (1991).
[CrossRef]

Nirmalathas, A.

Y. J. Wen, A. Nirmalathas, and D. S. Lee, “RZ/CSRZ-DPSK and chirped NRZ signal generation using a single-stage dual-electrode Mach-Zehnder modulator,” IEEE Photon. Technol. Lett.16(11), 2466–2468 (2004).
[CrossRef]

Onishchukov, G.

Ophir, N.

Padmaraju, K.

Reed, G. T.

G. T. Reed, “Device physics: the optical age of silicon,” Nature427(6975), 595–596 (2004).
[CrossRef] [PubMed]

Schmauss, B.

Schmidt, B.

Schubert, C.

Shakya, J.

Song, M.

Soref, R.

R. Soref and B. Bennett, “Electro optical effects in silicon,” Quantum Electron.23(1), 123–129 (1987).
[CrossRef]

Sponsel, K.

Stephan, C.

Veselka, J. J.

A. H. Gnauck, S. K. Korotky, J. J. Veselka, J. Nagel, C. T. Kemmerer, W. J. Minford, and D. T. Moser, “Dispersion penalty reduction using an optical modulator with adjustable chirp,” IEEE Photon. Technol. Lett.3(10), 916–918 (1991).
[CrossRef]

Wang, M.

Wei, Y.

Wen, Y. J.

Y. J. Wen, A. Nirmalathas, and D. S. Lee, “RZ/CSRZ-DPSK and chirped NRZ signal generation using a single-stage dual-electrode Mach-Zehnder modulator,” IEEE Photon. Technol. Lett.16(11), 2466–2468 (2004).
[CrossRef]

Willner, A. E.

Winzer, P. J.

Xu, Q.

Yang, J.

Yang, J. Y.

Yoo, S. J. B.

S. J. B. Yoo, “Future prospects of silicon photonics in next generation communication and computing systems,” Electron. Lett.45(12), 584–588 (2009).
[CrossRef]

Yu, H.

H. Yu, W. Bogaerts, and A. D. Keersgieter, “Optimization of ion implantation condition for depletion-type silicon optical modulators,” Quantum Electron.46(12), 1763–1768 (2010).
[CrossRef]

Zhang, B.

Zhang, L.

Zhao, Y.

Bell Labs Tech. J.

S. Chandrasekhar and X. Liu, “40 Gb/s DBPSK and DQPSK formats for transparent 50 GHz DWDM transmission,” Bell Labs Tech. J.14(4), 11–25 (2010).
[CrossRef]

Electron. Lett.

S. J. B. Yoo, “Future prospects of silicon photonics in next generation communication and computing systems,” Electron. Lett.45(12), 584–588 (2009).
[CrossRef]

IEEE Photon. Technol. Lett.

Y. J. Wen, A. Nirmalathas, and D. S. Lee, “RZ/CSRZ-DPSK and chirped NRZ signal generation using a single-stage dual-electrode Mach-Zehnder modulator,” IEEE Photon. Technol. Lett.16(11), 2466–2468 (2004).
[CrossRef]

H. Kim and A. H. Gnauck, “Chirp characteristics of dual-drive Mach-Zehnder modulator with a finite DC extinction ratio,” IEEE Photon. Technol. Lett.14(3), 298–300 (2002).
[CrossRef]

A. H. Gnauck, S. K. Korotky, J. J. Veselka, J. Nagel, C. T. Kemmerer, W. J. Minford, and D. T. Moser, “Dispersion penalty reduction using an optical modulator with adjustable chirp,” IEEE Photon. Technol. Lett.3(10), 916–918 (1991).
[CrossRef]

J. Lightwave Technol.

Nature

G. T. Reed, “Device physics: the optical age of silicon,” Nature427(6975), 595–596 (2004).
[CrossRef] [PubMed]

Opt. Express

Proc. IEEE

P. J. Winzer and R. J. Essiambre, “Advanced optical modulation formats,” Proc. IEEE94(5), 952–985 (2006).
[CrossRef]

Quantum Electron.

H. Yu, W. Bogaerts, and A. D. Keersgieter, “Optimization of ion implantation condition for depletion-type silicon optical modulators,” Quantum Electron.46(12), 1763–1768 (2010).
[CrossRef]

R. Soref and B. Bennett, “Electro optical effects in silicon,” Quantum Electron.23(1), 123–129 (1987).
[CrossRef]

Other

Online Available: http://www.silvaco.com .

K. Ogawa, K. Goi, H. Kusaka, K. Oda, T. Y. Liow, X. Tu, G. Q. Lo, and D. L. Kwong, “20-Gbps silicon photonic waveguide nested Mach-Zehnder QPSK modulator,” in National Fiber Opt. Engin. Conf., (2012).

N. Kikuchi, H. Sanjoh, Y. Shibata, K. Tsuzuki, T. Sato, E. Yamada, T. Ishibashi and H. Yasaka, “80-Gbit/s InP DQPSK modulator with an n-p-i-n structure,” in ECOC, 1–2 (2007)

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

(a). Schematic of the generation of optical RZ-DPSK signal using silicon Mach-Zehnder modulator. (b). General principle of DPSK generation based on two kinds of material. P1 and P2 represent the optical power in Phase Shifter 1 (Arm 1) and Phase Shifter 2 (Arm 2) respectively. P is the output optical power of MZM after interference.

Fig. 2
Fig. 2

(a). Schematic cross section of an ideal p-n diode based optical phase shifter. (b). Effective refractive index change (ΔNeff) and the absorption coefficient variation (Δα) as a function of the reverse bias.

Fig. 3
Fig. 3

(a). Maximal output power, the corresponding phase deviation and (b). the swing Vpp of the driving signal as the function of the reverse bias

Fig. 4
Fig. 4

The property of the generated optical DPSK siganal. (a). The phase shift of two p-n diode based phase shifters drived by ideal electrical sinusoidal signal. (b), (c). The power and phase behavior of the generated optical signal for γ = 1 and (d), (e). for γ = 0.82. (f). The power difference (a.u.) between 0-bit and 1-bit for different extinction ratio.

Fig. 5
Fig. 5

Time-resolved transient chirp of the optical RZ-DPSK signal generated from silicon MZM. (a). γ = 1 (b). γ = 0.82

Fig. 6
Fig. 6

(a) Optical spectrum. (b) Dispersion penalties taken relative to 0-km propagation of the LiNbO3 MZM-modulated RZ-BPSK signal.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

T p ( V 1 , V 2 )= | T E ( V 1 , V 2 ) | 2 = 1 4 e α 0 L [ e α 1 L + γ 2 e α 2 L +2γ e ( α 1 + α 2 )L/2 cos( φ ( V 1 ) φ ( V 2 ) + φ bias ) ]
Φ= tan 1 [ e α 1 L/2 sin( φ ( V 1 ) + φ bias )+γ e α 2 L/2 sin( φ ( V 2 ) ) e α 1 L/2 cos( φ ( V 1 ) + φ bias )+γ e α 2 L/2 cos( φ ( V 2 ) ) ] φ bias 2
α chirp =2 dϕ/dt (1/I)(dI/dt)

Metrics