Abstract

We report an optical link of 540 km for ultrastable frequency distribution over the Internet fiber network. The stable frequency optical signal is processed enabling uninterrupted propagation on both directions. The robustness and the performance of the link are enhanced by a cost effective fully automated optoelectronic station. This device is able to coherently regenerate the return optical signal with a heterodyne optical phase locking of a low noise laser diode. Moreover the incoming signal polarization variation are tracked and processed in order to maintain beat note amplitudes within the operation range. Stable fibered optical interferometer enables optical detection of the link round trip phase signal. The phase-noise compensated link shows a fractional frequency instability in 10 Hz bandwidth of 5 × 10−15 at one second measurement time and 2 × 10−19 at 30 000 s. This work is a significant step towards a sustainable wide area ultrastable optical frequency distribution and comparison network.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. Li, K. Gibble, and K. Szymaniec, “Improved accuracy of the NPL-CsF2 primary frequency standard: evaluation of distributed cavity phase and microwave lensing frequency shifts,” Metrologia48(5), 283–289 (2011).
    [CrossRef]
  2. S. Weyers, V. Gerginov, N. Nemitz, R. Li, and K. Gibble, “Distributed cavity phase frequency shifts of the caesium fountain PTB-CSF2,” Metrologia49(1), 82–87 (2012).
    [CrossRef]
  3. J. Guena, M. Abgrall, D. Rovera, P. Laurent, B. Chupin, M. Lours, G. Santarelli, P. Rosenbusch, M. E. Tobar, K. Ruoxin Li, A. Gibble, Clairon, and S. Bize, “Progress in atomic fountains at LNE-SYRTE,” IEEE Trans. on Ultras. Ferro. Frequ. Contr.59(3), 391–409 (2012).
    [CrossRef]
  4. N. Ashby, T. P. Heavner, S. R. Jefferts, T. E. Parker, A. G. Radnaev, and Y. O. Dudin, “Testing local position invariance with four cesium-fountain primary frequency standards and four NIST hydrogen masers,” Phys. Rev. Lett.98(7), 070802 (2007).
    [CrossRef] [PubMed]
  5. C. W. Chou, D. B. Hume, T. Rosenband, and D. J. Wineland, “Optical clocks and relativity,” Science329(5999), 1630–1633 (2010).
    [CrossRef] [PubMed]
  6. M. D. Swallows, M. Bishof, Y. Lin, S. Blatt, M. J. Martin, A. M. Rey, and J. Ye, “Suppression of collisional shifts in a strongly interacting lattice clock,” Science331(6020), 1043–1046 (2011).
    [CrossRef] [PubMed]
  7. H. Katori, “Optical lattice clocks and quantum metrology,” Nat. Photonics5(4), 203–210 (2011) (and references therein).
    [CrossRef]
  8. N. Huntemann, M. Okhapkin, B. Lipphardt, S. Weyers, C. Tamm, and E. Peik, “High-accuracy optical clock based on the octupole transition in 171Yb+,” Phys. Rev. Lett.108(9), 090801 (2012).
    [CrossRef] [PubMed]
  9. J. A. Sherman, N. D. Lemke, N. Hinkley, M. Pizzocaro, R. W. Fox, A. D. Ludlow, and C. W. Oates, “High-accuracy measurement of atomic polarizability in an optical lattice clock,” Phys. Rev. Lett.108(15), 153002 (2012).
    [CrossRef] [PubMed]
  10. O. Lopez, A. Amy-Klein, C. Daussy, Ch. Chardonnet, F. Narbonneau, M. Lours, and G. Santarelli, “86-km optical link with a resolution of 2×10−18 for RF frequency transfer,” Eur. Phys. J. D48(1), 35–41 (2008).
    [CrossRef]
  11. M. Fujieda, M. Kumagai, and S. Nagano, “Coherent microwave transfer over a 204-km telecom fiber link by a cascaded system,” IEEE Trans. on Ultra. Ferro. Freq. Control.57(1), 168–174 (2010).
    [CrossRef]
  12. O. Lopez, A. Amy-Klein, M. Lours, Ch. Chardonnet, and G. Santarelli, “High-resolution microwave frequency dissemination on an 86-km urban optical link,” Appl. Phys. B98(4), 723–727 (2010).
    [CrossRef]
  13. Ł. Śliwczyński, P. Krehlik, Ł. Buczek, and M. Lipiński, “Frequency transfer in electronically stabilized fiber optic link exploiting bidirectional optical amplifiers,” IEEE Trans. Instrum. Meas.61(9), 2573–2580 (2012).
    [CrossRef]
  14. N. R. Newbury, P. A. Williams, and W. C. Swann, “Coherent transfer of an optical carrier over 251 km,” Opt. Lett.32(21), 3056–3058 (2007).
    [CrossRef] [PubMed]
  15. H. Jiang, F. Kéfélian, S. Crane, O. Lopez, M. Lours, J. Millo, D. Holleville, P. Lemonde, Ch. Chardonnet, A. Amy-Klein, and G. Santarelli, “Long-distance frequency transfer over an urban fiber link using optical phase stabilization,” J. Opt. Soc. Am. B25(12), 2029–2035 (2008).
    [CrossRef]
  16. G. Grosche, O. Terra, K. Predehl, R. Holzwarth, B. Lipphardt, F. Vogt, U. Sterr, and H. Schnatz, “Optical frequency transfer via 146 km fiber link with 10 -19 relative accuracy,” Opt. Lett.34(15), 2270–2272 (2009).
    [CrossRef] [PubMed]
  17. M. Fujieda, M. Kumagai, S. Nagano, A. Yamaguchi, H. Hachisu, and T. Ido, “All-optical link for direct comparison of distant optical clocks,” Opt. Express19(17), 16498–16507 (2011).
    [CrossRef] [PubMed]
  18. K. Predehl, G. Grosche, S. M. F. Raupach, S. Droste, O. Terra, J. Alnis, Th. Legero, T. W. Hänsch, Th. Udem, R. Holzwarth, and H. Schnatz, “A 920-kilometer optical fiber link for frequency metrology at the 19th decimal place,” Science336(6080), 441–444 (2012).
    [CrossRef] [PubMed]
  19. A. Amy-Klein, A. Goncharov, C. Daussy, C. Grain, O. Lopez, G. Santarelli, and C. Chardonnet, “Absolute frequency measurement in the 28 THz spectral region with a femtoseconde laser comb and a long-distance optical link to a primary standard,” Appl. Phys. B78(1), 25–30 (2004).
    [CrossRef]
  20. F. L. Hong, M. Musha, M. Takamoto, H. Inaba, S. Yanagimachi, A. Takamizawa, K. Watabe, T. Ikegami, M. Imae, Y. Fujii, M. Amemiya, K. Nakagawa, K. Ueda, and H. Katori, “Measuring the frequency of a Sr optical lattice clock using a 120 km coherent optical transfer,” Opt. Lett.34(5), 692–694 (2009).
    [CrossRef] [PubMed]
  21. A. Yamaguchi, M. Fujieda, M. Kumagai, H. Hachisu, S. Nagano, Y. Li, T. Ido, T. Takano, M. Takamoto, and H. Katori, “Comparison of distant optical lattice clocks at the 10−16 uncertainty,” Appl. Phys. Express4(8), 082203 (2011).
    [CrossRef]
  22. J. Friebe, M. Riedmann, T. Wübbena, A. Pape, H. Kelkar, W. Ertmer, O. Terra, U. Sterr, S. Weyers, G. Grosche, H. Schnatz, and E. M. Rasel, “Remote frequency measurement of the 1S0 → 3P1 transition in laser-cooled 24Mg,” New J. Phys.13(12), 125010 (2011).
    [CrossRef]
  23. F. Kéfélian, O. Lopez, H. Jiang, Ch. Chardonnet, A. Amy-Klein, and G. Santarelli, “High-resolution optical frequency dissemination on a telecommunications network with data traffic,” Opt. Lett.34(10), 1573–1575 (2009).
    [CrossRef] [PubMed]
  24. O. Lopez, A. Haboucha, F. Kéfélian, H. Jiang, B. Chanteau, V. Roncin, C. Chardonnet, A. Amy-Klein, and G. Santarelli, “Cascaded multiplexed optical link on a telecommunication network for frequency dissemination,” Opt. Express18(16), 16849–16857 (2010).
    [CrossRef] [PubMed]
  25. O. Terra, G. Grosche, and H. Schnatz, “Brillouin amplification in phase coherent transfer of optical frequencies over 480 km fiber,” Opt. Express18(15), 16102–16111 (2010).
    [CrossRef] [PubMed]
  26. A. Blanchard, Phase-Lock Loops (John Wiley and Sons, 1976), Chap. 12.
  27. G. Grosche, Physikalisch-Technische Bundesanstalt, Braunschweig, Germany; patent application DE 10.2008.062.139, “Method for making available a reference frequency” (personal communication, 2010).

2012 (6)

S. Weyers, V. Gerginov, N. Nemitz, R. Li, and K. Gibble, “Distributed cavity phase frequency shifts of the caesium fountain PTB-CSF2,” Metrologia49(1), 82–87 (2012).
[CrossRef]

J. Guena, M. Abgrall, D. Rovera, P. Laurent, B. Chupin, M. Lours, G. Santarelli, P. Rosenbusch, M. E. Tobar, K. Ruoxin Li, A. Gibble, Clairon, and S. Bize, “Progress in atomic fountains at LNE-SYRTE,” IEEE Trans. on Ultras. Ferro. Frequ. Contr.59(3), 391–409 (2012).
[CrossRef]

N. Huntemann, M. Okhapkin, B. Lipphardt, S. Weyers, C. Tamm, and E. Peik, “High-accuracy optical clock based on the octupole transition in 171Yb+,” Phys. Rev. Lett.108(9), 090801 (2012).
[CrossRef] [PubMed]

J. A. Sherman, N. D. Lemke, N. Hinkley, M. Pizzocaro, R. W. Fox, A. D. Ludlow, and C. W. Oates, “High-accuracy measurement of atomic polarizability in an optical lattice clock,” Phys. Rev. Lett.108(15), 153002 (2012).
[CrossRef] [PubMed]

Ł. Śliwczyński, P. Krehlik, Ł. Buczek, and M. Lipiński, “Frequency transfer in electronically stabilized fiber optic link exploiting bidirectional optical amplifiers,” IEEE Trans. Instrum. Meas.61(9), 2573–2580 (2012).
[CrossRef]

K. Predehl, G. Grosche, S. M. F. Raupach, S. Droste, O. Terra, J. Alnis, Th. Legero, T. W. Hänsch, Th. Udem, R. Holzwarth, and H. Schnatz, “A 920-kilometer optical fiber link for frequency metrology at the 19th decimal place,” Science336(6080), 441–444 (2012).
[CrossRef] [PubMed]

2011 (6)

M. D. Swallows, M. Bishof, Y. Lin, S. Blatt, M. J. Martin, A. M. Rey, and J. Ye, “Suppression of collisional shifts in a strongly interacting lattice clock,” Science331(6020), 1043–1046 (2011).
[CrossRef] [PubMed]

H. Katori, “Optical lattice clocks and quantum metrology,” Nat. Photonics5(4), 203–210 (2011) (and references therein).
[CrossRef]

R. Li, K. Gibble, and K. Szymaniec, “Improved accuracy of the NPL-CsF2 primary frequency standard: evaluation of distributed cavity phase and microwave lensing frequency shifts,” Metrologia48(5), 283–289 (2011).
[CrossRef]

M. Fujieda, M. Kumagai, S. Nagano, A. Yamaguchi, H. Hachisu, and T. Ido, “All-optical link for direct comparison of distant optical clocks,” Opt. Express19(17), 16498–16507 (2011).
[CrossRef] [PubMed]

A. Yamaguchi, M. Fujieda, M. Kumagai, H. Hachisu, S. Nagano, Y. Li, T. Ido, T. Takano, M. Takamoto, and H. Katori, “Comparison of distant optical lattice clocks at the 10−16 uncertainty,” Appl. Phys. Express4(8), 082203 (2011).
[CrossRef]

J. Friebe, M. Riedmann, T. Wübbena, A. Pape, H. Kelkar, W. Ertmer, O. Terra, U. Sterr, S. Weyers, G. Grosche, H. Schnatz, and E. M. Rasel, “Remote frequency measurement of the 1S0 → 3P1 transition in laser-cooled 24Mg,” New J. Phys.13(12), 125010 (2011).
[CrossRef]

2010 (5)

O. Lopez, A. Haboucha, F. Kéfélian, H. Jiang, B. Chanteau, V. Roncin, C. Chardonnet, A. Amy-Klein, and G. Santarelli, “Cascaded multiplexed optical link on a telecommunication network for frequency dissemination,” Opt. Express18(16), 16849–16857 (2010).
[CrossRef] [PubMed]

O. Terra, G. Grosche, and H. Schnatz, “Brillouin amplification in phase coherent transfer of optical frequencies over 480 km fiber,” Opt. Express18(15), 16102–16111 (2010).
[CrossRef] [PubMed]

C. W. Chou, D. B. Hume, T. Rosenband, and D. J. Wineland, “Optical clocks and relativity,” Science329(5999), 1630–1633 (2010).
[CrossRef] [PubMed]

M. Fujieda, M. Kumagai, and S. Nagano, “Coherent microwave transfer over a 204-km telecom fiber link by a cascaded system,” IEEE Trans. on Ultra. Ferro. Freq. Control.57(1), 168–174 (2010).
[CrossRef]

O. Lopez, A. Amy-Klein, M. Lours, Ch. Chardonnet, and G. Santarelli, “High-resolution microwave frequency dissemination on an 86-km urban optical link,” Appl. Phys. B98(4), 723–727 (2010).
[CrossRef]

2009 (3)

2008 (2)

H. Jiang, F. Kéfélian, S. Crane, O. Lopez, M. Lours, J. Millo, D. Holleville, P. Lemonde, Ch. Chardonnet, A. Amy-Klein, and G. Santarelli, “Long-distance frequency transfer over an urban fiber link using optical phase stabilization,” J. Opt. Soc. Am. B25(12), 2029–2035 (2008).
[CrossRef]

O. Lopez, A. Amy-Klein, C. Daussy, Ch. Chardonnet, F. Narbonneau, M. Lours, and G. Santarelli, “86-km optical link with a resolution of 2×10−18 for RF frequency transfer,” Eur. Phys. J. D48(1), 35–41 (2008).
[CrossRef]

2007 (2)

N. Ashby, T. P. Heavner, S. R. Jefferts, T. E. Parker, A. G. Radnaev, and Y. O. Dudin, “Testing local position invariance with four cesium-fountain primary frequency standards and four NIST hydrogen masers,” Phys. Rev. Lett.98(7), 070802 (2007).
[CrossRef] [PubMed]

N. R. Newbury, P. A. Williams, and W. C. Swann, “Coherent transfer of an optical carrier over 251 km,” Opt. Lett.32(21), 3056–3058 (2007).
[CrossRef] [PubMed]

2004 (1)

A. Amy-Klein, A. Goncharov, C. Daussy, C. Grain, O. Lopez, G. Santarelli, and C. Chardonnet, “Absolute frequency measurement in the 28 THz spectral region with a femtoseconde laser comb and a long-distance optical link to a primary standard,” Appl. Phys. B78(1), 25–30 (2004).
[CrossRef]

Abgrall, M.

J. Guena, M. Abgrall, D. Rovera, P. Laurent, B. Chupin, M. Lours, G. Santarelli, P. Rosenbusch, M. E. Tobar, K. Ruoxin Li, A. Gibble, Clairon, and S. Bize, “Progress in atomic fountains at LNE-SYRTE,” IEEE Trans. on Ultras. Ferro. Frequ. Contr.59(3), 391–409 (2012).
[CrossRef]

Alnis, J.

K. Predehl, G. Grosche, S. M. F. Raupach, S. Droste, O. Terra, J. Alnis, Th. Legero, T. W. Hänsch, Th. Udem, R. Holzwarth, and H. Schnatz, “A 920-kilometer optical fiber link for frequency metrology at the 19th decimal place,” Science336(6080), 441–444 (2012).
[CrossRef] [PubMed]

Amemiya, M.

Amy-Klein, A.

O. Lopez, A. Amy-Klein, M. Lours, Ch. Chardonnet, and G. Santarelli, “High-resolution microwave frequency dissemination on an 86-km urban optical link,” Appl. Phys. B98(4), 723–727 (2010).
[CrossRef]

O. Lopez, A. Haboucha, F. Kéfélian, H. Jiang, B. Chanteau, V. Roncin, C. Chardonnet, A. Amy-Klein, and G. Santarelli, “Cascaded multiplexed optical link on a telecommunication network for frequency dissemination,” Opt. Express18(16), 16849–16857 (2010).
[CrossRef] [PubMed]

F. Kéfélian, O. Lopez, H. Jiang, Ch. Chardonnet, A. Amy-Klein, and G. Santarelli, “High-resolution optical frequency dissemination on a telecommunications network with data traffic,” Opt. Lett.34(10), 1573–1575 (2009).
[CrossRef] [PubMed]

O. Lopez, A. Amy-Klein, C. Daussy, Ch. Chardonnet, F. Narbonneau, M. Lours, and G. Santarelli, “86-km optical link with a resolution of 2×10−18 for RF frequency transfer,” Eur. Phys. J. D48(1), 35–41 (2008).
[CrossRef]

H. Jiang, F. Kéfélian, S. Crane, O. Lopez, M. Lours, J. Millo, D. Holleville, P. Lemonde, Ch. Chardonnet, A. Amy-Klein, and G. Santarelli, “Long-distance frequency transfer over an urban fiber link using optical phase stabilization,” J. Opt. Soc. Am. B25(12), 2029–2035 (2008).
[CrossRef]

A. Amy-Klein, A. Goncharov, C. Daussy, C. Grain, O. Lopez, G. Santarelli, and C. Chardonnet, “Absolute frequency measurement in the 28 THz spectral region with a femtoseconde laser comb and a long-distance optical link to a primary standard,” Appl. Phys. B78(1), 25–30 (2004).
[CrossRef]

Ashby, N.

N. Ashby, T. P. Heavner, S. R. Jefferts, T. E. Parker, A. G. Radnaev, and Y. O. Dudin, “Testing local position invariance with four cesium-fountain primary frequency standards and four NIST hydrogen masers,” Phys. Rev. Lett.98(7), 070802 (2007).
[CrossRef] [PubMed]

Bishof, M.

M. D. Swallows, M. Bishof, Y. Lin, S. Blatt, M. J. Martin, A. M. Rey, and J. Ye, “Suppression of collisional shifts in a strongly interacting lattice clock,” Science331(6020), 1043–1046 (2011).
[CrossRef] [PubMed]

Bize, S.

J. Guena, M. Abgrall, D. Rovera, P. Laurent, B. Chupin, M. Lours, G. Santarelli, P. Rosenbusch, M. E. Tobar, K. Ruoxin Li, A. Gibble, Clairon, and S. Bize, “Progress in atomic fountains at LNE-SYRTE,” IEEE Trans. on Ultras. Ferro. Frequ. Contr.59(3), 391–409 (2012).
[CrossRef]

Blatt, S.

M. D. Swallows, M. Bishof, Y. Lin, S. Blatt, M. J. Martin, A. M. Rey, and J. Ye, “Suppression of collisional shifts in a strongly interacting lattice clock,” Science331(6020), 1043–1046 (2011).
[CrossRef] [PubMed]

Buczek, L.

Ł. Śliwczyński, P. Krehlik, Ł. Buczek, and M. Lipiński, “Frequency transfer in electronically stabilized fiber optic link exploiting bidirectional optical amplifiers,” IEEE Trans. Instrum. Meas.61(9), 2573–2580 (2012).
[CrossRef]

Chanteau, B.

Chardonnet, C.

O. Lopez, A. Haboucha, F. Kéfélian, H. Jiang, B. Chanteau, V. Roncin, C. Chardonnet, A. Amy-Klein, and G. Santarelli, “Cascaded multiplexed optical link on a telecommunication network for frequency dissemination,” Opt. Express18(16), 16849–16857 (2010).
[CrossRef] [PubMed]

A. Amy-Klein, A. Goncharov, C. Daussy, C. Grain, O. Lopez, G. Santarelli, and C. Chardonnet, “Absolute frequency measurement in the 28 THz spectral region with a femtoseconde laser comb and a long-distance optical link to a primary standard,” Appl. Phys. B78(1), 25–30 (2004).
[CrossRef]

Chardonnet, Ch.

O. Lopez, A. Amy-Klein, M. Lours, Ch. Chardonnet, and G. Santarelli, “High-resolution microwave frequency dissemination on an 86-km urban optical link,” Appl. Phys. B98(4), 723–727 (2010).
[CrossRef]

F. Kéfélian, O. Lopez, H. Jiang, Ch. Chardonnet, A. Amy-Klein, and G. Santarelli, “High-resolution optical frequency dissemination on a telecommunications network with data traffic,” Opt. Lett.34(10), 1573–1575 (2009).
[CrossRef] [PubMed]

H. Jiang, F. Kéfélian, S. Crane, O. Lopez, M. Lours, J. Millo, D. Holleville, P. Lemonde, Ch. Chardonnet, A. Amy-Klein, and G. Santarelli, “Long-distance frequency transfer over an urban fiber link using optical phase stabilization,” J. Opt. Soc. Am. B25(12), 2029–2035 (2008).
[CrossRef]

O. Lopez, A. Amy-Klein, C. Daussy, Ch. Chardonnet, F. Narbonneau, M. Lours, and G. Santarelli, “86-km optical link with a resolution of 2×10−18 for RF frequency transfer,” Eur. Phys. J. D48(1), 35–41 (2008).
[CrossRef]

Chou, C. W.

C. W. Chou, D. B. Hume, T. Rosenband, and D. J. Wineland, “Optical clocks and relativity,” Science329(5999), 1630–1633 (2010).
[CrossRef] [PubMed]

Chupin, B.

J. Guena, M. Abgrall, D. Rovera, P. Laurent, B. Chupin, M. Lours, G. Santarelli, P. Rosenbusch, M. E. Tobar, K. Ruoxin Li, A. Gibble, Clairon, and S. Bize, “Progress in atomic fountains at LNE-SYRTE,” IEEE Trans. on Ultras. Ferro. Frequ. Contr.59(3), 391–409 (2012).
[CrossRef]

Clairon,

J. Guena, M. Abgrall, D. Rovera, P. Laurent, B. Chupin, M. Lours, G. Santarelli, P. Rosenbusch, M. E. Tobar, K. Ruoxin Li, A. Gibble, Clairon, and S. Bize, “Progress in atomic fountains at LNE-SYRTE,” IEEE Trans. on Ultras. Ferro. Frequ. Contr.59(3), 391–409 (2012).
[CrossRef]

Crane, S.

Daussy, C.

O. Lopez, A. Amy-Klein, C. Daussy, Ch. Chardonnet, F. Narbonneau, M. Lours, and G. Santarelli, “86-km optical link with a resolution of 2×10−18 for RF frequency transfer,” Eur. Phys. J. D48(1), 35–41 (2008).
[CrossRef]

A. Amy-Klein, A. Goncharov, C. Daussy, C. Grain, O. Lopez, G. Santarelli, and C. Chardonnet, “Absolute frequency measurement in the 28 THz spectral region with a femtoseconde laser comb and a long-distance optical link to a primary standard,” Appl. Phys. B78(1), 25–30 (2004).
[CrossRef]

Droste, S.

K. Predehl, G. Grosche, S. M. F. Raupach, S. Droste, O. Terra, J. Alnis, Th. Legero, T. W. Hänsch, Th. Udem, R. Holzwarth, and H. Schnatz, “A 920-kilometer optical fiber link for frequency metrology at the 19th decimal place,” Science336(6080), 441–444 (2012).
[CrossRef] [PubMed]

Dudin, Y. O.

N. Ashby, T. P. Heavner, S. R. Jefferts, T. E. Parker, A. G. Radnaev, and Y. O. Dudin, “Testing local position invariance with four cesium-fountain primary frequency standards and four NIST hydrogen masers,” Phys. Rev. Lett.98(7), 070802 (2007).
[CrossRef] [PubMed]

Ertmer, W.

J. Friebe, M. Riedmann, T. Wübbena, A. Pape, H. Kelkar, W. Ertmer, O. Terra, U. Sterr, S. Weyers, G. Grosche, H. Schnatz, and E. M. Rasel, “Remote frequency measurement of the 1S0 → 3P1 transition in laser-cooled 24Mg,” New J. Phys.13(12), 125010 (2011).
[CrossRef]

Fox, R. W.

J. A. Sherman, N. D. Lemke, N. Hinkley, M. Pizzocaro, R. W. Fox, A. D. Ludlow, and C. W. Oates, “High-accuracy measurement of atomic polarizability in an optical lattice clock,” Phys. Rev. Lett.108(15), 153002 (2012).
[CrossRef] [PubMed]

Friebe, J.

J. Friebe, M. Riedmann, T. Wübbena, A. Pape, H. Kelkar, W. Ertmer, O. Terra, U. Sterr, S. Weyers, G. Grosche, H. Schnatz, and E. M. Rasel, “Remote frequency measurement of the 1S0 → 3P1 transition in laser-cooled 24Mg,” New J. Phys.13(12), 125010 (2011).
[CrossRef]

Fujieda, M.

M. Fujieda, M. Kumagai, S. Nagano, A. Yamaguchi, H. Hachisu, and T. Ido, “All-optical link for direct comparison of distant optical clocks,” Opt. Express19(17), 16498–16507 (2011).
[CrossRef] [PubMed]

A. Yamaguchi, M. Fujieda, M. Kumagai, H. Hachisu, S. Nagano, Y. Li, T. Ido, T. Takano, M. Takamoto, and H. Katori, “Comparison of distant optical lattice clocks at the 10−16 uncertainty,” Appl. Phys. Express4(8), 082203 (2011).
[CrossRef]

M. Fujieda, M. Kumagai, and S. Nagano, “Coherent microwave transfer over a 204-km telecom fiber link by a cascaded system,” IEEE Trans. on Ultra. Ferro. Freq. Control.57(1), 168–174 (2010).
[CrossRef]

Fujii, Y.

Gerginov, V.

S. Weyers, V. Gerginov, N. Nemitz, R. Li, and K. Gibble, “Distributed cavity phase frequency shifts of the caesium fountain PTB-CSF2,” Metrologia49(1), 82–87 (2012).
[CrossRef]

Gibble, A.

J. Guena, M. Abgrall, D. Rovera, P. Laurent, B. Chupin, M. Lours, G. Santarelli, P. Rosenbusch, M. E. Tobar, K. Ruoxin Li, A. Gibble, Clairon, and S. Bize, “Progress in atomic fountains at LNE-SYRTE,” IEEE Trans. on Ultras. Ferro. Frequ. Contr.59(3), 391–409 (2012).
[CrossRef]

Gibble, K.

S. Weyers, V. Gerginov, N. Nemitz, R. Li, and K. Gibble, “Distributed cavity phase frequency shifts of the caesium fountain PTB-CSF2,” Metrologia49(1), 82–87 (2012).
[CrossRef]

R. Li, K. Gibble, and K. Szymaniec, “Improved accuracy of the NPL-CsF2 primary frequency standard: evaluation of distributed cavity phase and microwave lensing frequency shifts,” Metrologia48(5), 283–289 (2011).
[CrossRef]

Goncharov, A.

A. Amy-Klein, A. Goncharov, C. Daussy, C. Grain, O. Lopez, G. Santarelli, and C. Chardonnet, “Absolute frequency measurement in the 28 THz spectral region with a femtoseconde laser comb and a long-distance optical link to a primary standard,” Appl. Phys. B78(1), 25–30 (2004).
[CrossRef]

Grain, C.

A. Amy-Klein, A. Goncharov, C. Daussy, C. Grain, O. Lopez, G. Santarelli, and C. Chardonnet, “Absolute frequency measurement in the 28 THz spectral region with a femtoseconde laser comb and a long-distance optical link to a primary standard,” Appl. Phys. B78(1), 25–30 (2004).
[CrossRef]

Grosche, G.

K. Predehl, G. Grosche, S. M. F. Raupach, S. Droste, O. Terra, J. Alnis, Th. Legero, T. W. Hänsch, Th. Udem, R. Holzwarth, and H. Schnatz, “A 920-kilometer optical fiber link for frequency metrology at the 19th decimal place,” Science336(6080), 441–444 (2012).
[CrossRef] [PubMed]

J. Friebe, M. Riedmann, T. Wübbena, A. Pape, H. Kelkar, W. Ertmer, O. Terra, U. Sterr, S. Weyers, G. Grosche, H. Schnatz, and E. M. Rasel, “Remote frequency measurement of the 1S0 → 3P1 transition in laser-cooled 24Mg,” New J. Phys.13(12), 125010 (2011).
[CrossRef]

O. Terra, G. Grosche, and H. Schnatz, “Brillouin amplification in phase coherent transfer of optical frequencies over 480 km fiber,” Opt. Express18(15), 16102–16111 (2010).
[CrossRef] [PubMed]

G. Grosche, O. Terra, K. Predehl, R. Holzwarth, B. Lipphardt, F. Vogt, U. Sterr, and H. Schnatz, “Optical frequency transfer via 146 km fiber link with 10 -19 relative accuracy,” Opt. Lett.34(15), 2270–2272 (2009).
[CrossRef] [PubMed]

Guena, J.

J. Guena, M. Abgrall, D. Rovera, P. Laurent, B. Chupin, M. Lours, G. Santarelli, P. Rosenbusch, M. E. Tobar, K. Ruoxin Li, A. Gibble, Clairon, and S. Bize, “Progress in atomic fountains at LNE-SYRTE,” IEEE Trans. on Ultras. Ferro. Frequ. Contr.59(3), 391–409 (2012).
[CrossRef]

Haboucha, A.

Hachisu, H.

M. Fujieda, M. Kumagai, S. Nagano, A. Yamaguchi, H. Hachisu, and T. Ido, “All-optical link for direct comparison of distant optical clocks,” Opt. Express19(17), 16498–16507 (2011).
[CrossRef] [PubMed]

A. Yamaguchi, M. Fujieda, M. Kumagai, H. Hachisu, S. Nagano, Y. Li, T. Ido, T. Takano, M. Takamoto, and H. Katori, “Comparison of distant optical lattice clocks at the 10−16 uncertainty,” Appl. Phys. Express4(8), 082203 (2011).
[CrossRef]

Hänsch, T. W.

K. Predehl, G. Grosche, S. M. F. Raupach, S. Droste, O. Terra, J. Alnis, Th. Legero, T. W. Hänsch, Th. Udem, R. Holzwarth, and H. Schnatz, “A 920-kilometer optical fiber link for frequency metrology at the 19th decimal place,” Science336(6080), 441–444 (2012).
[CrossRef] [PubMed]

Heavner, T. P.

N. Ashby, T. P. Heavner, S. R. Jefferts, T. E. Parker, A. G. Radnaev, and Y. O. Dudin, “Testing local position invariance with four cesium-fountain primary frequency standards and four NIST hydrogen masers,” Phys. Rev. Lett.98(7), 070802 (2007).
[CrossRef] [PubMed]

Hinkley, N.

J. A. Sherman, N. D. Lemke, N. Hinkley, M. Pizzocaro, R. W. Fox, A. D. Ludlow, and C. W. Oates, “High-accuracy measurement of atomic polarizability in an optical lattice clock,” Phys. Rev. Lett.108(15), 153002 (2012).
[CrossRef] [PubMed]

Holleville, D.

Holzwarth, R.

K. Predehl, G. Grosche, S. M. F. Raupach, S. Droste, O. Terra, J. Alnis, Th. Legero, T. W. Hänsch, Th. Udem, R. Holzwarth, and H. Schnatz, “A 920-kilometer optical fiber link for frequency metrology at the 19th decimal place,” Science336(6080), 441–444 (2012).
[CrossRef] [PubMed]

G. Grosche, O. Terra, K. Predehl, R. Holzwarth, B. Lipphardt, F. Vogt, U. Sterr, and H. Schnatz, “Optical frequency transfer via 146 km fiber link with 10 -19 relative accuracy,” Opt. Lett.34(15), 2270–2272 (2009).
[CrossRef] [PubMed]

Hong, F. L.

Hume, D. B.

C. W. Chou, D. B. Hume, T. Rosenband, and D. J. Wineland, “Optical clocks and relativity,” Science329(5999), 1630–1633 (2010).
[CrossRef] [PubMed]

Huntemann, N.

N. Huntemann, M. Okhapkin, B. Lipphardt, S. Weyers, C. Tamm, and E. Peik, “High-accuracy optical clock based on the octupole transition in 171Yb+,” Phys. Rev. Lett.108(9), 090801 (2012).
[CrossRef] [PubMed]

Ido, T.

M. Fujieda, M. Kumagai, S. Nagano, A. Yamaguchi, H. Hachisu, and T. Ido, “All-optical link for direct comparison of distant optical clocks,” Opt. Express19(17), 16498–16507 (2011).
[CrossRef] [PubMed]

A. Yamaguchi, M. Fujieda, M. Kumagai, H. Hachisu, S. Nagano, Y. Li, T. Ido, T. Takano, M. Takamoto, and H. Katori, “Comparison of distant optical lattice clocks at the 10−16 uncertainty,” Appl. Phys. Express4(8), 082203 (2011).
[CrossRef]

Ikegami, T.

Imae, M.

Inaba, H.

Jefferts, S. R.

N. Ashby, T. P. Heavner, S. R. Jefferts, T. E. Parker, A. G. Radnaev, and Y. O. Dudin, “Testing local position invariance with four cesium-fountain primary frequency standards and four NIST hydrogen masers,” Phys. Rev. Lett.98(7), 070802 (2007).
[CrossRef] [PubMed]

Jiang, H.

Katori, H.

H. Katori, “Optical lattice clocks and quantum metrology,” Nat. Photonics5(4), 203–210 (2011) (and references therein).
[CrossRef]

A. Yamaguchi, M. Fujieda, M. Kumagai, H. Hachisu, S. Nagano, Y. Li, T. Ido, T. Takano, M. Takamoto, and H. Katori, “Comparison of distant optical lattice clocks at the 10−16 uncertainty,” Appl. Phys. Express4(8), 082203 (2011).
[CrossRef]

F. L. Hong, M. Musha, M. Takamoto, H. Inaba, S. Yanagimachi, A. Takamizawa, K. Watabe, T. Ikegami, M. Imae, Y. Fujii, M. Amemiya, K. Nakagawa, K. Ueda, and H. Katori, “Measuring the frequency of a Sr optical lattice clock using a 120 km coherent optical transfer,” Opt. Lett.34(5), 692–694 (2009).
[CrossRef] [PubMed]

Kéfélian, F.

Kelkar, H.

J. Friebe, M. Riedmann, T. Wübbena, A. Pape, H. Kelkar, W. Ertmer, O. Terra, U. Sterr, S. Weyers, G. Grosche, H. Schnatz, and E. M. Rasel, “Remote frequency measurement of the 1S0 → 3P1 transition in laser-cooled 24Mg,” New J. Phys.13(12), 125010 (2011).
[CrossRef]

Krehlik, P.

Ł. Śliwczyński, P. Krehlik, Ł. Buczek, and M. Lipiński, “Frequency transfer in electronically stabilized fiber optic link exploiting bidirectional optical amplifiers,” IEEE Trans. Instrum. Meas.61(9), 2573–2580 (2012).
[CrossRef]

Kumagai, M.

M. Fujieda, M. Kumagai, S. Nagano, A. Yamaguchi, H. Hachisu, and T. Ido, “All-optical link for direct comparison of distant optical clocks,” Opt. Express19(17), 16498–16507 (2011).
[CrossRef] [PubMed]

A. Yamaguchi, M. Fujieda, M. Kumagai, H. Hachisu, S. Nagano, Y. Li, T. Ido, T. Takano, M. Takamoto, and H. Katori, “Comparison of distant optical lattice clocks at the 10−16 uncertainty,” Appl. Phys. Express4(8), 082203 (2011).
[CrossRef]

M. Fujieda, M. Kumagai, and S. Nagano, “Coherent microwave transfer over a 204-km telecom fiber link by a cascaded system,” IEEE Trans. on Ultra. Ferro. Freq. Control.57(1), 168–174 (2010).
[CrossRef]

Laurent, P.

J. Guena, M. Abgrall, D. Rovera, P. Laurent, B. Chupin, M. Lours, G. Santarelli, P. Rosenbusch, M. E. Tobar, K. Ruoxin Li, A. Gibble, Clairon, and S. Bize, “Progress in atomic fountains at LNE-SYRTE,” IEEE Trans. on Ultras. Ferro. Frequ. Contr.59(3), 391–409 (2012).
[CrossRef]

Legero, Th.

K. Predehl, G. Grosche, S. M. F. Raupach, S. Droste, O. Terra, J. Alnis, Th. Legero, T. W. Hänsch, Th. Udem, R. Holzwarth, and H. Schnatz, “A 920-kilometer optical fiber link for frequency metrology at the 19th decimal place,” Science336(6080), 441–444 (2012).
[CrossRef] [PubMed]

Lemke, N. D.

J. A. Sherman, N. D. Lemke, N. Hinkley, M. Pizzocaro, R. W. Fox, A. D. Ludlow, and C. W. Oates, “High-accuracy measurement of atomic polarizability in an optical lattice clock,” Phys. Rev. Lett.108(15), 153002 (2012).
[CrossRef] [PubMed]

Lemonde, P.

Li, R.

S. Weyers, V. Gerginov, N. Nemitz, R. Li, and K. Gibble, “Distributed cavity phase frequency shifts of the caesium fountain PTB-CSF2,” Metrologia49(1), 82–87 (2012).
[CrossRef]

R. Li, K. Gibble, and K. Szymaniec, “Improved accuracy of the NPL-CsF2 primary frequency standard: evaluation of distributed cavity phase and microwave lensing frequency shifts,” Metrologia48(5), 283–289 (2011).
[CrossRef]

Li, Y.

A. Yamaguchi, M. Fujieda, M. Kumagai, H. Hachisu, S. Nagano, Y. Li, T. Ido, T. Takano, M. Takamoto, and H. Katori, “Comparison of distant optical lattice clocks at the 10−16 uncertainty,” Appl. Phys. Express4(8), 082203 (2011).
[CrossRef]

Lin, Y.

M. D. Swallows, M. Bishof, Y. Lin, S. Blatt, M. J. Martin, A. M. Rey, and J. Ye, “Suppression of collisional shifts in a strongly interacting lattice clock,” Science331(6020), 1043–1046 (2011).
[CrossRef] [PubMed]

Lipinski, M.

Ł. Śliwczyński, P. Krehlik, Ł. Buczek, and M. Lipiński, “Frequency transfer in electronically stabilized fiber optic link exploiting bidirectional optical amplifiers,” IEEE Trans. Instrum. Meas.61(9), 2573–2580 (2012).
[CrossRef]

Lipphardt, B.

N. Huntemann, M. Okhapkin, B. Lipphardt, S. Weyers, C. Tamm, and E. Peik, “High-accuracy optical clock based on the octupole transition in 171Yb+,” Phys. Rev. Lett.108(9), 090801 (2012).
[CrossRef] [PubMed]

G. Grosche, O. Terra, K. Predehl, R. Holzwarth, B. Lipphardt, F. Vogt, U. Sterr, and H. Schnatz, “Optical frequency transfer via 146 km fiber link with 10 -19 relative accuracy,” Opt. Lett.34(15), 2270–2272 (2009).
[CrossRef] [PubMed]

Lopez, O.

O. Lopez, A. Amy-Klein, M. Lours, Ch. Chardonnet, and G. Santarelli, “High-resolution microwave frequency dissemination on an 86-km urban optical link,” Appl. Phys. B98(4), 723–727 (2010).
[CrossRef]

O. Lopez, A. Haboucha, F. Kéfélian, H. Jiang, B. Chanteau, V. Roncin, C. Chardonnet, A. Amy-Klein, and G. Santarelli, “Cascaded multiplexed optical link on a telecommunication network for frequency dissemination,” Opt. Express18(16), 16849–16857 (2010).
[CrossRef] [PubMed]

F. Kéfélian, O. Lopez, H. Jiang, Ch. Chardonnet, A. Amy-Klein, and G. Santarelli, “High-resolution optical frequency dissemination on a telecommunications network with data traffic,” Opt. Lett.34(10), 1573–1575 (2009).
[CrossRef] [PubMed]

O. Lopez, A. Amy-Klein, C. Daussy, Ch. Chardonnet, F. Narbonneau, M. Lours, and G. Santarelli, “86-km optical link with a resolution of 2×10−18 for RF frequency transfer,” Eur. Phys. J. D48(1), 35–41 (2008).
[CrossRef]

H. Jiang, F. Kéfélian, S. Crane, O. Lopez, M. Lours, J. Millo, D. Holleville, P. Lemonde, Ch. Chardonnet, A. Amy-Klein, and G. Santarelli, “Long-distance frequency transfer over an urban fiber link using optical phase stabilization,” J. Opt. Soc. Am. B25(12), 2029–2035 (2008).
[CrossRef]

A. Amy-Klein, A. Goncharov, C. Daussy, C. Grain, O. Lopez, G. Santarelli, and C. Chardonnet, “Absolute frequency measurement in the 28 THz spectral region with a femtoseconde laser comb and a long-distance optical link to a primary standard,” Appl. Phys. B78(1), 25–30 (2004).
[CrossRef]

Lours, M.

J. Guena, M. Abgrall, D. Rovera, P. Laurent, B. Chupin, M. Lours, G. Santarelli, P. Rosenbusch, M. E. Tobar, K. Ruoxin Li, A. Gibble, Clairon, and S. Bize, “Progress in atomic fountains at LNE-SYRTE,” IEEE Trans. on Ultras. Ferro. Frequ. Contr.59(3), 391–409 (2012).
[CrossRef]

O. Lopez, A. Amy-Klein, M. Lours, Ch. Chardonnet, and G. Santarelli, “High-resolution microwave frequency dissemination on an 86-km urban optical link,” Appl. Phys. B98(4), 723–727 (2010).
[CrossRef]

O. Lopez, A. Amy-Klein, C. Daussy, Ch. Chardonnet, F. Narbonneau, M. Lours, and G. Santarelli, “86-km optical link with a resolution of 2×10−18 for RF frequency transfer,” Eur. Phys. J. D48(1), 35–41 (2008).
[CrossRef]

H. Jiang, F. Kéfélian, S. Crane, O. Lopez, M. Lours, J. Millo, D. Holleville, P. Lemonde, Ch. Chardonnet, A. Amy-Klein, and G. Santarelli, “Long-distance frequency transfer over an urban fiber link using optical phase stabilization,” J. Opt. Soc. Am. B25(12), 2029–2035 (2008).
[CrossRef]

Ludlow, A. D.

J. A. Sherman, N. D. Lemke, N. Hinkley, M. Pizzocaro, R. W. Fox, A. D. Ludlow, and C. W. Oates, “High-accuracy measurement of atomic polarizability in an optical lattice clock,” Phys. Rev. Lett.108(15), 153002 (2012).
[CrossRef] [PubMed]

Martin, M. J.

M. D. Swallows, M. Bishof, Y. Lin, S. Blatt, M. J. Martin, A. M. Rey, and J. Ye, “Suppression of collisional shifts in a strongly interacting lattice clock,” Science331(6020), 1043–1046 (2011).
[CrossRef] [PubMed]

Millo, J.

Musha, M.

Nagano, S.

A. Yamaguchi, M. Fujieda, M. Kumagai, H. Hachisu, S. Nagano, Y. Li, T. Ido, T. Takano, M. Takamoto, and H. Katori, “Comparison of distant optical lattice clocks at the 10−16 uncertainty,” Appl. Phys. Express4(8), 082203 (2011).
[CrossRef]

M. Fujieda, M. Kumagai, S. Nagano, A. Yamaguchi, H. Hachisu, and T. Ido, “All-optical link for direct comparison of distant optical clocks,” Opt. Express19(17), 16498–16507 (2011).
[CrossRef] [PubMed]

M. Fujieda, M. Kumagai, and S. Nagano, “Coherent microwave transfer over a 204-km telecom fiber link by a cascaded system,” IEEE Trans. on Ultra. Ferro. Freq. Control.57(1), 168–174 (2010).
[CrossRef]

Nakagawa, K.

Narbonneau, F.

O. Lopez, A. Amy-Klein, C. Daussy, Ch. Chardonnet, F. Narbonneau, M. Lours, and G. Santarelli, “86-km optical link with a resolution of 2×10−18 for RF frequency transfer,” Eur. Phys. J. D48(1), 35–41 (2008).
[CrossRef]

Nemitz, N.

S. Weyers, V. Gerginov, N. Nemitz, R. Li, and K. Gibble, “Distributed cavity phase frequency shifts of the caesium fountain PTB-CSF2,” Metrologia49(1), 82–87 (2012).
[CrossRef]

Newbury, N. R.

Oates, C. W.

J. A. Sherman, N. D. Lemke, N. Hinkley, M. Pizzocaro, R. W. Fox, A. D. Ludlow, and C. W. Oates, “High-accuracy measurement of atomic polarizability in an optical lattice clock,” Phys. Rev. Lett.108(15), 153002 (2012).
[CrossRef] [PubMed]

Okhapkin, M.

N. Huntemann, M. Okhapkin, B. Lipphardt, S. Weyers, C. Tamm, and E. Peik, “High-accuracy optical clock based on the octupole transition in 171Yb+,” Phys. Rev. Lett.108(9), 090801 (2012).
[CrossRef] [PubMed]

Pape, A.

J. Friebe, M. Riedmann, T. Wübbena, A. Pape, H. Kelkar, W. Ertmer, O. Terra, U. Sterr, S. Weyers, G. Grosche, H. Schnatz, and E. M. Rasel, “Remote frequency measurement of the 1S0 → 3P1 transition in laser-cooled 24Mg,” New J. Phys.13(12), 125010 (2011).
[CrossRef]

Parker, T. E.

N. Ashby, T. P. Heavner, S. R. Jefferts, T. E. Parker, A. G. Radnaev, and Y. O. Dudin, “Testing local position invariance with four cesium-fountain primary frequency standards and four NIST hydrogen masers,” Phys. Rev. Lett.98(7), 070802 (2007).
[CrossRef] [PubMed]

Peik, E.

N. Huntemann, M. Okhapkin, B. Lipphardt, S. Weyers, C. Tamm, and E. Peik, “High-accuracy optical clock based on the octupole transition in 171Yb+,” Phys. Rev. Lett.108(9), 090801 (2012).
[CrossRef] [PubMed]

Pizzocaro, M.

J. A. Sherman, N. D. Lemke, N. Hinkley, M. Pizzocaro, R. W. Fox, A. D. Ludlow, and C. W. Oates, “High-accuracy measurement of atomic polarizability in an optical lattice clock,” Phys. Rev. Lett.108(15), 153002 (2012).
[CrossRef] [PubMed]

Predehl, K.

K. Predehl, G. Grosche, S. M. F. Raupach, S. Droste, O. Terra, J. Alnis, Th. Legero, T. W. Hänsch, Th. Udem, R. Holzwarth, and H. Schnatz, “A 920-kilometer optical fiber link for frequency metrology at the 19th decimal place,” Science336(6080), 441–444 (2012).
[CrossRef] [PubMed]

G. Grosche, O. Terra, K. Predehl, R. Holzwarth, B. Lipphardt, F. Vogt, U. Sterr, and H. Schnatz, “Optical frequency transfer via 146 km fiber link with 10 -19 relative accuracy,” Opt. Lett.34(15), 2270–2272 (2009).
[CrossRef] [PubMed]

Radnaev, A. G.

N. Ashby, T. P. Heavner, S. R. Jefferts, T. E. Parker, A. G. Radnaev, and Y. O. Dudin, “Testing local position invariance with four cesium-fountain primary frequency standards and four NIST hydrogen masers,” Phys. Rev. Lett.98(7), 070802 (2007).
[CrossRef] [PubMed]

Rasel, E. M.

J. Friebe, M. Riedmann, T. Wübbena, A. Pape, H. Kelkar, W. Ertmer, O. Terra, U. Sterr, S. Weyers, G. Grosche, H. Schnatz, and E. M. Rasel, “Remote frequency measurement of the 1S0 → 3P1 transition in laser-cooled 24Mg,” New J. Phys.13(12), 125010 (2011).
[CrossRef]

Raupach, S. M. F.

K. Predehl, G. Grosche, S. M. F. Raupach, S. Droste, O. Terra, J. Alnis, Th. Legero, T. W. Hänsch, Th. Udem, R. Holzwarth, and H. Schnatz, “A 920-kilometer optical fiber link for frequency metrology at the 19th decimal place,” Science336(6080), 441–444 (2012).
[CrossRef] [PubMed]

Rey, A. M.

M. D. Swallows, M. Bishof, Y. Lin, S. Blatt, M. J. Martin, A. M. Rey, and J. Ye, “Suppression of collisional shifts in a strongly interacting lattice clock,” Science331(6020), 1043–1046 (2011).
[CrossRef] [PubMed]

Riedmann, M.

J. Friebe, M. Riedmann, T. Wübbena, A. Pape, H. Kelkar, W. Ertmer, O. Terra, U. Sterr, S. Weyers, G. Grosche, H. Schnatz, and E. M. Rasel, “Remote frequency measurement of the 1S0 → 3P1 transition in laser-cooled 24Mg,” New J. Phys.13(12), 125010 (2011).
[CrossRef]

Roncin, V.

Rosenband, T.

C. W. Chou, D. B. Hume, T. Rosenband, and D. J. Wineland, “Optical clocks and relativity,” Science329(5999), 1630–1633 (2010).
[CrossRef] [PubMed]

Rosenbusch, P.

J. Guena, M. Abgrall, D. Rovera, P. Laurent, B. Chupin, M. Lours, G. Santarelli, P. Rosenbusch, M. E. Tobar, K. Ruoxin Li, A. Gibble, Clairon, and S. Bize, “Progress in atomic fountains at LNE-SYRTE,” IEEE Trans. on Ultras. Ferro. Frequ. Contr.59(3), 391–409 (2012).
[CrossRef]

Rovera, D.

J. Guena, M. Abgrall, D. Rovera, P. Laurent, B. Chupin, M. Lours, G. Santarelli, P. Rosenbusch, M. E. Tobar, K. Ruoxin Li, A. Gibble, Clairon, and S. Bize, “Progress in atomic fountains at LNE-SYRTE,” IEEE Trans. on Ultras. Ferro. Frequ. Contr.59(3), 391–409 (2012).
[CrossRef]

Ruoxin Li, K.

J. Guena, M. Abgrall, D. Rovera, P. Laurent, B. Chupin, M. Lours, G. Santarelli, P. Rosenbusch, M. E. Tobar, K. Ruoxin Li, A. Gibble, Clairon, and S. Bize, “Progress in atomic fountains at LNE-SYRTE,” IEEE Trans. on Ultras. Ferro. Frequ. Contr.59(3), 391–409 (2012).
[CrossRef]

Santarelli, G.

J. Guena, M. Abgrall, D. Rovera, P. Laurent, B. Chupin, M. Lours, G. Santarelli, P. Rosenbusch, M. E. Tobar, K. Ruoxin Li, A. Gibble, Clairon, and S. Bize, “Progress in atomic fountains at LNE-SYRTE,” IEEE Trans. on Ultras. Ferro. Frequ. Contr.59(3), 391–409 (2012).
[CrossRef]

O. Lopez, A. Amy-Klein, M. Lours, Ch. Chardonnet, and G. Santarelli, “High-resolution microwave frequency dissemination on an 86-km urban optical link,” Appl. Phys. B98(4), 723–727 (2010).
[CrossRef]

O. Lopez, A. Haboucha, F. Kéfélian, H. Jiang, B. Chanteau, V. Roncin, C. Chardonnet, A. Amy-Klein, and G. Santarelli, “Cascaded multiplexed optical link on a telecommunication network for frequency dissemination,” Opt. Express18(16), 16849–16857 (2010).
[CrossRef] [PubMed]

F. Kéfélian, O. Lopez, H. Jiang, Ch. Chardonnet, A. Amy-Klein, and G. Santarelli, “High-resolution optical frequency dissemination on a telecommunications network with data traffic,” Opt. Lett.34(10), 1573–1575 (2009).
[CrossRef] [PubMed]

H. Jiang, F. Kéfélian, S. Crane, O. Lopez, M. Lours, J. Millo, D. Holleville, P. Lemonde, Ch. Chardonnet, A. Amy-Klein, and G. Santarelli, “Long-distance frequency transfer over an urban fiber link using optical phase stabilization,” J. Opt. Soc. Am. B25(12), 2029–2035 (2008).
[CrossRef]

O. Lopez, A. Amy-Klein, C. Daussy, Ch. Chardonnet, F. Narbonneau, M. Lours, and G. Santarelli, “86-km optical link with a resolution of 2×10−18 for RF frequency transfer,” Eur. Phys. J. D48(1), 35–41 (2008).
[CrossRef]

A. Amy-Klein, A. Goncharov, C. Daussy, C. Grain, O. Lopez, G. Santarelli, and C. Chardonnet, “Absolute frequency measurement in the 28 THz spectral region with a femtoseconde laser comb and a long-distance optical link to a primary standard,” Appl. Phys. B78(1), 25–30 (2004).
[CrossRef]

Schnatz, H.

K. Predehl, G. Grosche, S. M. F. Raupach, S. Droste, O. Terra, J. Alnis, Th. Legero, T. W. Hänsch, Th. Udem, R. Holzwarth, and H. Schnatz, “A 920-kilometer optical fiber link for frequency metrology at the 19th decimal place,” Science336(6080), 441–444 (2012).
[CrossRef] [PubMed]

J. Friebe, M. Riedmann, T. Wübbena, A. Pape, H. Kelkar, W. Ertmer, O. Terra, U. Sterr, S. Weyers, G. Grosche, H. Schnatz, and E. M. Rasel, “Remote frequency measurement of the 1S0 → 3P1 transition in laser-cooled 24Mg,” New J. Phys.13(12), 125010 (2011).
[CrossRef]

O. Terra, G. Grosche, and H. Schnatz, “Brillouin amplification in phase coherent transfer of optical frequencies over 480 km fiber,” Opt. Express18(15), 16102–16111 (2010).
[CrossRef] [PubMed]

G. Grosche, O. Terra, K. Predehl, R. Holzwarth, B. Lipphardt, F. Vogt, U. Sterr, and H. Schnatz, “Optical frequency transfer via 146 km fiber link with 10 -19 relative accuracy,” Opt. Lett.34(15), 2270–2272 (2009).
[CrossRef] [PubMed]

Sherman, J. A.

J. A. Sherman, N. D. Lemke, N. Hinkley, M. Pizzocaro, R. W. Fox, A. D. Ludlow, and C. W. Oates, “High-accuracy measurement of atomic polarizability in an optical lattice clock,” Phys. Rev. Lett.108(15), 153002 (2012).
[CrossRef] [PubMed]

Sliwczynski, L.

Ł. Śliwczyński, P. Krehlik, Ł. Buczek, and M. Lipiński, “Frequency transfer in electronically stabilized fiber optic link exploiting bidirectional optical amplifiers,” IEEE Trans. Instrum. Meas.61(9), 2573–2580 (2012).
[CrossRef]

Sterr, U.

J. Friebe, M. Riedmann, T. Wübbena, A. Pape, H. Kelkar, W. Ertmer, O. Terra, U. Sterr, S. Weyers, G. Grosche, H. Schnatz, and E. M. Rasel, “Remote frequency measurement of the 1S0 → 3P1 transition in laser-cooled 24Mg,” New J. Phys.13(12), 125010 (2011).
[CrossRef]

G. Grosche, O. Terra, K. Predehl, R. Holzwarth, B. Lipphardt, F. Vogt, U. Sterr, and H. Schnatz, “Optical frequency transfer via 146 km fiber link with 10 -19 relative accuracy,” Opt. Lett.34(15), 2270–2272 (2009).
[CrossRef] [PubMed]

Swallows, M. D.

M. D. Swallows, M. Bishof, Y. Lin, S. Blatt, M. J. Martin, A. M. Rey, and J. Ye, “Suppression of collisional shifts in a strongly interacting lattice clock,” Science331(6020), 1043–1046 (2011).
[CrossRef] [PubMed]

Swann, W. C.

Szymaniec, K.

R. Li, K. Gibble, and K. Szymaniec, “Improved accuracy of the NPL-CsF2 primary frequency standard: evaluation of distributed cavity phase and microwave lensing frequency shifts,” Metrologia48(5), 283–289 (2011).
[CrossRef]

Takamizawa, A.

Takamoto, M.

A. Yamaguchi, M. Fujieda, M. Kumagai, H. Hachisu, S. Nagano, Y. Li, T. Ido, T. Takano, M. Takamoto, and H. Katori, “Comparison of distant optical lattice clocks at the 10−16 uncertainty,” Appl. Phys. Express4(8), 082203 (2011).
[CrossRef]

F. L. Hong, M. Musha, M. Takamoto, H. Inaba, S. Yanagimachi, A. Takamizawa, K. Watabe, T. Ikegami, M. Imae, Y. Fujii, M. Amemiya, K. Nakagawa, K. Ueda, and H. Katori, “Measuring the frequency of a Sr optical lattice clock using a 120 km coherent optical transfer,” Opt. Lett.34(5), 692–694 (2009).
[CrossRef] [PubMed]

Takano, T.

A. Yamaguchi, M. Fujieda, M. Kumagai, H. Hachisu, S. Nagano, Y. Li, T. Ido, T. Takano, M. Takamoto, and H. Katori, “Comparison of distant optical lattice clocks at the 10−16 uncertainty,” Appl. Phys. Express4(8), 082203 (2011).
[CrossRef]

Tamm, C.

N. Huntemann, M. Okhapkin, B. Lipphardt, S. Weyers, C. Tamm, and E. Peik, “High-accuracy optical clock based on the octupole transition in 171Yb+,” Phys. Rev. Lett.108(9), 090801 (2012).
[CrossRef] [PubMed]

Terra, O.

K. Predehl, G. Grosche, S. M. F. Raupach, S. Droste, O. Terra, J. Alnis, Th. Legero, T. W. Hänsch, Th. Udem, R. Holzwarth, and H. Schnatz, “A 920-kilometer optical fiber link for frequency metrology at the 19th decimal place,” Science336(6080), 441–444 (2012).
[CrossRef] [PubMed]

J. Friebe, M. Riedmann, T. Wübbena, A. Pape, H. Kelkar, W. Ertmer, O. Terra, U. Sterr, S. Weyers, G. Grosche, H. Schnatz, and E. M. Rasel, “Remote frequency measurement of the 1S0 → 3P1 transition in laser-cooled 24Mg,” New J. Phys.13(12), 125010 (2011).
[CrossRef]

O. Terra, G. Grosche, and H. Schnatz, “Brillouin amplification in phase coherent transfer of optical frequencies over 480 km fiber,” Opt. Express18(15), 16102–16111 (2010).
[CrossRef] [PubMed]

G. Grosche, O. Terra, K. Predehl, R. Holzwarth, B. Lipphardt, F. Vogt, U. Sterr, and H. Schnatz, “Optical frequency transfer via 146 km fiber link with 10 -19 relative accuracy,” Opt. Lett.34(15), 2270–2272 (2009).
[CrossRef] [PubMed]

Tobar, M. E.

J. Guena, M. Abgrall, D. Rovera, P. Laurent, B. Chupin, M. Lours, G. Santarelli, P. Rosenbusch, M. E. Tobar, K. Ruoxin Li, A. Gibble, Clairon, and S. Bize, “Progress in atomic fountains at LNE-SYRTE,” IEEE Trans. on Ultras. Ferro. Frequ. Contr.59(3), 391–409 (2012).
[CrossRef]

Udem, Th.

K. Predehl, G. Grosche, S. M. F. Raupach, S. Droste, O. Terra, J. Alnis, Th. Legero, T. W. Hänsch, Th. Udem, R. Holzwarth, and H. Schnatz, “A 920-kilometer optical fiber link for frequency metrology at the 19th decimal place,” Science336(6080), 441–444 (2012).
[CrossRef] [PubMed]

Ueda, K.

Vogt, F.

Watabe, K.

Weyers, S.

S. Weyers, V. Gerginov, N. Nemitz, R. Li, and K. Gibble, “Distributed cavity phase frequency shifts of the caesium fountain PTB-CSF2,” Metrologia49(1), 82–87 (2012).
[CrossRef]

N. Huntemann, M. Okhapkin, B. Lipphardt, S. Weyers, C. Tamm, and E. Peik, “High-accuracy optical clock based on the octupole transition in 171Yb+,” Phys. Rev. Lett.108(9), 090801 (2012).
[CrossRef] [PubMed]

J. Friebe, M. Riedmann, T. Wübbena, A. Pape, H. Kelkar, W. Ertmer, O. Terra, U. Sterr, S. Weyers, G. Grosche, H. Schnatz, and E. M. Rasel, “Remote frequency measurement of the 1S0 → 3P1 transition in laser-cooled 24Mg,” New J. Phys.13(12), 125010 (2011).
[CrossRef]

Williams, P. A.

Wineland, D. J.

C. W. Chou, D. B. Hume, T. Rosenband, and D. J. Wineland, “Optical clocks and relativity,” Science329(5999), 1630–1633 (2010).
[CrossRef] [PubMed]

Wübbena, T.

J. Friebe, M. Riedmann, T. Wübbena, A. Pape, H. Kelkar, W. Ertmer, O. Terra, U. Sterr, S. Weyers, G. Grosche, H. Schnatz, and E. M. Rasel, “Remote frequency measurement of the 1S0 → 3P1 transition in laser-cooled 24Mg,” New J. Phys.13(12), 125010 (2011).
[CrossRef]

Yamaguchi, A.

A. Yamaguchi, M. Fujieda, M. Kumagai, H. Hachisu, S. Nagano, Y. Li, T. Ido, T. Takano, M. Takamoto, and H. Katori, “Comparison of distant optical lattice clocks at the 10−16 uncertainty,” Appl. Phys. Express4(8), 082203 (2011).
[CrossRef]

M. Fujieda, M. Kumagai, S. Nagano, A. Yamaguchi, H. Hachisu, and T. Ido, “All-optical link for direct comparison of distant optical clocks,” Opt. Express19(17), 16498–16507 (2011).
[CrossRef] [PubMed]

Yanagimachi, S.

Ye, J.

M. D. Swallows, M. Bishof, Y. Lin, S. Blatt, M. J. Martin, A. M. Rey, and J. Ye, “Suppression of collisional shifts in a strongly interacting lattice clock,” Science331(6020), 1043–1046 (2011).
[CrossRef] [PubMed]

Appl. Phys. B (2)

O. Lopez, A. Amy-Klein, M. Lours, Ch. Chardonnet, and G. Santarelli, “High-resolution microwave frequency dissemination on an 86-km urban optical link,” Appl. Phys. B98(4), 723–727 (2010).
[CrossRef]

A. Amy-Klein, A. Goncharov, C. Daussy, C. Grain, O. Lopez, G. Santarelli, and C. Chardonnet, “Absolute frequency measurement in the 28 THz spectral region with a femtoseconde laser comb and a long-distance optical link to a primary standard,” Appl. Phys. B78(1), 25–30 (2004).
[CrossRef]

Appl. Phys. Express (1)

A. Yamaguchi, M. Fujieda, M. Kumagai, H. Hachisu, S. Nagano, Y. Li, T. Ido, T. Takano, M. Takamoto, and H. Katori, “Comparison of distant optical lattice clocks at the 10−16 uncertainty,” Appl. Phys. Express4(8), 082203 (2011).
[CrossRef]

Eur. Phys. J. D (1)

O. Lopez, A. Amy-Klein, C. Daussy, Ch. Chardonnet, F. Narbonneau, M. Lours, and G. Santarelli, “86-km optical link with a resolution of 2×10−18 for RF frequency transfer,” Eur. Phys. J. D48(1), 35–41 (2008).
[CrossRef]

IEEE Trans. Instrum. Meas. (1)

Ł. Śliwczyński, P. Krehlik, Ł. Buczek, and M. Lipiński, “Frequency transfer in electronically stabilized fiber optic link exploiting bidirectional optical amplifiers,” IEEE Trans. Instrum. Meas.61(9), 2573–2580 (2012).
[CrossRef]

IEEE Trans. on Ultra. Ferro. Freq. Control. (1)

M. Fujieda, M. Kumagai, and S. Nagano, “Coherent microwave transfer over a 204-km telecom fiber link by a cascaded system,” IEEE Trans. on Ultra. Ferro. Freq. Control.57(1), 168–174 (2010).
[CrossRef]

IEEE Trans. on Ultras. Ferro. Frequ. Contr. (1)

J. Guena, M. Abgrall, D. Rovera, P. Laurent, B. Chupin, M. Lours, G. Santarelli, P. Rosenbusch, M. E. Tobar, K. Ruoxin Li, A. Gibble, Clairon, and S. Bize, “Progress in atomic fountains at LNE-SYRTE,” IEEE Trans. on Ultras. Ferro. Frequ. Contr.59(3), 391–409 (2012).
[CrossRef]

J. Opt. Soc. Am. B (1)

Metrologia (2)

R. Li, K. Gibble, and K. Szymaniec, “Improved accuracy of the NPL-CsF2 primary frequency standard: evaluation of distributed cavity phase and microwave lensing frequency shifts,” Metrologia48(5), 283–289 (2011).
[CrossRef]

S. Weyers, V. Gerginov, N. Nemitz, R. Li, and K. Gibble, “Distributed cavity phase frequency shifts of the caesium fountain PTB-CSF2,” Metrologia49(1), 82–87 (2012).
[CrossRef]

Nat. Photonics (1)

H. Katori, “Optical lattice clocks and quantum metrology,” Nat. Photonics5(4), 203–210 (2011) (and references therein).
[CrossRef]

New J. Phys. (1)

J. Friebe, M. Riedmann, T. Wübbena, A. Pape, H. Kelkar, W. Ertmer, O. Terra, U. Sterr, S. Weyers, G. Grosche, H. Schnatz, and E. M. Rasel, “Remote frequency measurement of the 1S0 → 3P1 transition in laser-cooled 24Mg,” New J. Phys.13(12), 125010 (2011).
[CrossRef]

Opt. Express (3)

Opt. Lett. (4)

Phys. Rev. Lett. (3)

N. Huntemann, M. Okhapkin, B. Lipphardt, S. Weyers, C. Tamm, and E. Peik, “High-accuracy optical clock based on the octupole transition in 171Yb+,” Phys. Rev. Lett.108(9), 090801 (2012).
[CrossRef] [PubMed]

J. A. Sherman, N. D. Lemke, N. Hinkley, M. Pizzocaro, R. W. Fox, A. D. Ludlow, and C. W. Oates, “High-accuracy measurement of atomic polarizability in an optical lattice clock,” Phys. Rev. Lett.108(15), 153002 (2012).
[CrossRef] [PubMed]

N. Ashby, T. P. Heavner, S. R. Jefferts, T. E. Parker, A. G. Radnaev, and Y. O. Dudin, “Testing local position invariance with four cesium-fountain primary frequency standards and four NIST hydrogen masers,” Phys. Rev. Lett.98(7), 070802 (2007).
[CrossRef] [PubMed]

Science (3)

C. W. Chou, D. B. Hume, T. Rosenband, and D. J. Wineland, “Optical clocks and relativity,” Science329(5999), 1630–1633 (2010).
[CrossRef] [PubMed]

M. D. Swallows, M. Bishof, Y. Lin, S. Blatt, M. J. Martin, A. M. Rey, and J. Ye, “Suppression of collisional shifts in a strongly interacting lattice clock,” Science331(6020), 1043–1046 (2011).
[CrossRef] [PubMed]

K. Predehl, G. Grosche, S. M. F. Raupach, S. Droste, O. Terra, J. Alnis, Th. Legero, T. W. Hänsch, Th. Udem, R. Holzwarth, and H. Schnatz, “A 920-kilometer optical fiber link for frequency metrology at the 19th decimal place,” Science336(6080), 441–444 (2012).
[CrossRef] [PubMed]

Other (2)

A. Blanchard, Phase-Lock Loops (John Wiley and Sons, 1976), Chap. 12.

G. Grosche, Physikalisch-Technische Bundesanstalt, Braunschweig, Germany; patent application DE 10.2008.062.139, “Method for making available a reference frequency” (personal communication, 2010).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Scheme of the principle of the “dark channel” distribution, RN: regeneration node

Fig. 2
Fig. 2

Scheme of the 540 km cascaded optical link using the RENATER network.

Fig. 3
Fig. 3

Schematic of the optical link, FM: Faraday mirror, PD: photodiode, PC: polarization controller, AOM: acousto-optic modulator, PLL: phase-lock loop.

Fig. 4
Fig. 4

On the left: drawing of the compact optical module with embedded diode laser local oscillator. On the right a picture of the top layer of the optical module with spliced optical components.

Fig. 5
Fig. 5

Phase noise power spectral density of the free running 540 km (black line) and compensated 540 km link (red line).

Fig. 6
Fig. 6

Temporal behavior (10Hz bandwidth, 1 point/s) of the end-to-end phase fluctuations of the 540-km phase stabilized link.

Fig. 7
Fig. 7

End-to-end fractional frequency instability of the 540 km free running up-link (red circles), and 540 km compensated link measured without filter (blue up-triangles) and with a 10 Hz filter (black squares)

Metrics