Abstract

The fast and accurate propagation of general optical fields in free space is still a challenging task. Most of the standard algorithms are either fast or accurate. In the paper we introduce a new algorithm for the fast propagation of non-paraxial vectorial optical fields without further physical approximations. The method is based on decomposing highly divergent (non-paraxial) fields into subfields with small divergence. These subfields can then be propagated by a new semi-analytical spectrum of plane waves (SPW) operator using fast Fourier transformations. In the target plane, all propagated subfields are added coherently. Compared to the standard SPW operator, the numerical effort is reduced drastically due to the analytical handling of linear phase terms arising after the decomposition of the fields. Numerical results are presented for two examples demonstrating the efficiency and the accuracy of the new method.

© 2012 OSA

PDF Article

References

  • View by:
  • |
  • |
  • |

  1. F. Wyrowski and M. Kuhn, “Introduction to field tracing,” J. Mod. Opt.58(5–6), 449–466 (2011).
    [CrossRef]
  2. L. Mandel and E. Wolf, Optical Coherence and Quantum Optics (Cambridge University Press, 1995).
  3. A. Wuttig, M. Kanka, H. J. Kreuzer, and R. Riesenberg, “Packed domain Rayleigh-Sommerfeld wavefield propagation for large targets,” Opt. Express18(26), 27036–27047 (2010).
    [CrossRef]
  4. J. A. C. Veerman, J. J. Rusch, and H. P. Urbach, “Calculation of the Rayleigh–Sommerfeld diffraction integral by exact integration of the fast oscillating factor,” J. Opt. Soc. Am. A22(4), 636–646 (2005).
    [CrossRef]
  5. M. Mansuripur, “Certain computational aspects of vector diffraction problems,” J. Opt. Soc. Am. A6(5), 786–805 (1989).
    [CrossRef]
  6. J. Braat, P. Dirksen, and A. J. E. M. Janssen, “Assessment of an extended Nijboer–Zernike approach for the computation of optical point-spread functions,” J. Opt. Soc. Am. A19(5), 858–870 (2002).
    [CrossRef]
  7. P. Valtr and P. Pechac, “Domain decomposition algorithm for complex boundary modeling using the Fourier split-step parabolic equation,” IEEE Trans. Antennas Propag.6, 152–155 (2007).
  8. W. Goodman, Introduction to Fourier Optics (McGraw-Hill, 1968).
  9. LightTrans GmbH, LightTrans VirtualLab AdvancedTM, www.lighttrans.com (2012).
  10. E. O. Brigham, The Fast Fourier Transform and its Applications (Prentice Hall, 1988).

2011 (1)

F. Wyrowski and M. Kuhn, “Introduction to field tracing,” J. Mod. Opt.58(5–6), 449–466 (2011).
[CrossRef]

2010 (1)

2007 (1)

P. Valtr and P. Pechac, “Domain decomposition algorithm for complex boundary modeling using the Fourier split-step parabolic equation,” IEEE Trans. Antennas Propag.6, 152–155 (2007).

2005 (1)

2002 (1)

1989 (1)

Braat, J.

Brigham, E. O.

E. O. Brigham, The Fast Fourier Transform and its Applications (Prentice Hall, 1988).

Dirksen, P.

Goodman, W.

W. Goodman, Introduction to Fourier Optics (McGraw-Hill, 1968).

Janssen, A. J. E. M.

Kanka, M.

Kreuzer, H. J.

Kuhn, M.

F. Wyrowski and M. Kuhn, “Introduction to field tracing,” J. Mod. Opt.58(5–6), 449–466 (2011).
[CrossRef]

Mandel, L.

L. Mandel and E. Wolf, Optical Coherence and Quantum Optics (Cambridge University Press, 1995).

Mansuripur, M.

Pechac, P.

P. Valtr and P. Pechac, “Domain decomposition algorithm for complex boundary modeling using the Fourier split-step parabolic equation,” IEEE Trans. Antennas Propag.6, 152–155 (2007).

Riesenberg, R.

Rusch, J. J.

Urbach, H. P.

Valtr, P.

P. Valtr and P. Pechac, “Domain decomposition algorithm for complex boundary modeling using the Fourier split-step parabolic equation,” IEEE Trans. Antennas Propag.6, 152–155 (2007).

Veerman, J. A. C.

Wolf, E.

L. Mandel and E. Wolf, Optical Coherence and Quantum Optics (Cambridge University Press, 1995).

Wuttig, A.

Wyrowski, F.

F. Wyrowski and M. Kuhn, “Introduction to field tracing,” J. Mod. Opt.58(5–6), 449–466 (2011).
[CrossRef]

IEEE Trans. Antennas Propag. (1)

P. Valtr and P. Pechac, “Domain decomposition algorithm for complex boundary modeling using the Fourier split-step parabolic equation,” IEEE Trans. Antennas Propag.6, 152–155 (2007).

J. Mod. Opt. (1)

F. Wyrowski and M. Kuhn, “Introduction to field tracing,” J. Mod. Opt.58(5–6), 449–466 (2011).
[CrossRef]

J. Opt. Soc. Am. A (3)

Opt. Express (1)

Other (4)

W. Goodman, Introduction to Fourier Optics (McGraw-Hill, 1968).

LightTrans GmbH, LightTrans VirtualLab AdvancedTM, www.lighttrans.com (2012).

E. O. Brigham, The Fast Fourier Transform and its Applications (Prentice Hall, 1988).

L. Mandel and E. Wolf, Optical Coherence and Quantum Optics (Cambridge University Press, 1995).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Metrics