Abstract

Depth of field of the integral imaging microscope is studied. In the integral imaging microscope, 3-D information is encoded as a form of elemental images Distance between intermediate plane and object point decides the number of elemental image and depth of field of integral imaging microscope. From the analysis, it is found that depth of field of the reconstructed depth plane image by computational integral imaging reconstruction is longer than depth of field of optical microscope. From analyzed relationship, experiment using integral imaging microscopy and conventional microscopy is also performed to confirm enhanced depth of field of integral imaging microscopy.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. A. Agard, “Optical sectioning microscopy: cellular architecture in three dimensions,” Annu. Rev. Biophys. Bioeng.13(1), 191–219 (1984).
    [CrossRef] [PubMed]
  2. J. G. McNally, C. Preza, J. A. Conchello, and L. J. Thomas., “Artifacts in computational optical-sectioning microscopy,” J. Opt. Soc. Am. A11(3), 1056–1067 (1994).
    [CrossRef] [PubMed]
  3. S. Liu and H. Hua, “Extended depth-of-field microscopic imaging with a variable focus microscope objective,” Opt. Express19(1), 353–362 (2011).
    [CrossRef] [PubMed]
  4. J. A. Conchello and J. W. Lichtman, “Optical sectioning microscopy,” Nat. Methods2(12), 920–931 (2005).
    [CrossRef] [PubMed]
  5. C. J. R. Sheppard and X. Q. Mao, “Confocal microscopes with slit apertures,” J. Mod. Opt.35(7), 1169–1185 (1988).
    [CrossRef]
  6. S. Inoue and R. Oldenbourg, Handbook of Optics (McGrawHill, 1995), Chap. 17.
  7. Q. Wu, F. A. Merchant, and K. R. Castleman, Microscope Image Processing (Academic press, 2008), Chap. 2.
  8. J. Sheng, E. Malkiel, and J. Katz, “Digital holographic microscope for measuring three-dimensional particle distributions and motions,” Appl. Opt.45(16), 3893–3901 (2006).
    [CrossRef] [PubMed]
  9. Y.-T. Lim, J.-H. Park, N. Kim, and K.-C. Kwon, “Dense light field microscopy,” Proc. SPIE7237, 72371Q, 72371Q-12 (2009).
    [CrossRef]
  10. Y.-T. Lim, J.-H. Park, K.-C. Kwon, and N. Kim, “Resolution-enhanced integral imaging microscopy that uses lens array shifting,” Opt. Express17(21), 19253–19263 (2009).
    [CrossRef] [PubMed]
  11. D.-H. Shin and E.-S. Kim, “Computational integral imaging reconstruction of 3D Object using a depth conversion technique,” J. Opt. Soc. Kor.12(3), 131–135 (2008).
    [CrossRef]

2011

2009

2008

D.-H. Shin and E.-S. Kim, “Computational integral imaging reconstruction of 3D Object using a depth conversion technique,” J. Opt. Soc. Kor.12(3), 131–135 (2008).
[CrossRef]

2006

2005

J. A. Conchello and J. W. Lichtman, “Optical sectioning microscopy,” Nat. Methods2(12), 920–931 (2005).
[CrossRef] [PubMed]

1994

1988

C. J. R. Sheppard and X. Q. Mao, “Confocal microscopes with slit apertures,” J. Mod. Opt.35(7), 1169–1185 (1988).
[CrossRef]

1984

D. A. Agard, “Optical sectioning microscopy: cellular architecture in three dimensions,” Annu. Rev. Biophys. Bioeng.13(1), 191–219 (1984).
[CrossRef] [PubMed]

Agard, D. A.

D. A. Agard, “Optical sectioning microscopy: cellular architecture in three dimensions,” Annu. Rev. Biophys. Bioeng.13(1), 191–219 (1984).
[CrossRef] [PubMed]

Conchello, J. A.

Hua, H.

Katz, J.

Kim, E.-S.

D.-H. Shin and E.-S. Kim, “Computational integral imaging reconstruction of 3D Object using a depth conversion technique,” J. Opt. Soc. Kor.12(3), 131–135 (2008).
[CrossRef]

Kim, N.

Kwon, K.-C.

Lichtman, J. W.

J. A. Conchello and J. W. Lichtman, “Optical sectioning microscopy,” Nat. Methods2(12), 920–931 (2005).
[CrossRef] [PubMed]

Lim, Y.-T.

Liu, S.

Malkiel, E.

Mao, X. Q.

C. J. R. Sheppard and X. Q. Mao, “Confocal microscopes with slit apertures,” J. Mod. Opt.35(7), 1169–1185 (1988).
[CrossRef]

McNally, J. G.

Park, J.-H.

Preza, C.

Sheng, J.

Sheppard, C. J. R.

C. J. R. Sheppard and X. Q. Mao, “Confocal microscopes with slit apertures,” J. Mod. Opt.35(7), 1169–1185 (1988).
[CrossRef]

Shin, D.-H.

D.-H. Shin and E.-S. Kim, “Computational integral imaging reconstruction of 3D Object using a depth conversion technique,” J. Opt. Soc. Kor.12(3), 131–135 (2008).
[CrossRef]

Thomas, L. J.

Annu. Rev. Biophys. Bioeng.

D. A. Agard, “Optical sectioning microscopy: cellular architecture in three dimensions,” Annu. Rev. Biophys. Bioeng.13(1), 191–219 (1984).
[CrossRef] [PubMed]

Appl. Opt.

J. Mod. Opt.

C. J. R. Sheppard and X. Q. Mao, “Confocal microscopes with slit apertures,” J. Mod. Opt.35(7), 1169–1185 (1988).
[CrossRef]

J. Opt. Soc. Am. A

J. Opt. Soc. Kor.

D.-H. Shin and E.-S. Kim, “Computational integral imaging reconstruction of 3D Object using a depth conversion technique,” J. Opt. Soc. Kor.12(3), 131–135 (2008).
[CrossRef]

Nat. Methods

J. A. Conchello and J. W. Lichtman, “Optical sectioning microscopy,” Nat. Methods2(12), 920–931 (2005).
[CrossRef] [PubMed]

Opt. Express

Proc. SPIE

Y.-T. Lim, J.-H. Park, N. Kim, and K.-C. Kwon, “Dense light field microscopy,” Proc. SPIE7237, 72371Q, 72371Q-12 (2009).
[CrossRef]

Other

S. Inoue and R. Oldenbourg, Handbook of Optics (McGrawHill, 1995), Chap. 17.

Q. Wu, F. A. Merchant, and K. R. Castleman, Microscope Image Processing (Academic press, 2008), Chap. 2.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1

Structure of the integral imaging microscope.

Fig. 2
Fig. 2

Relationship between numerical aperture of the microscope lens array and intermediate plane when forming an elemental image.

Fig. 3
Fig. 3

Depth of field in an integral imaging microscope.

Fig. 4
Fig. 4

Simulation result: (a) comparison of DOF with a conventional optical microscope and integral imaging microscope; (b) calculated DOF after changing d and g.

Fig. 5
Fig. 5

DOF region comparison.

Fig. 6
Fig. 6

Experimental setup: (a) captured experimental setup; (b) diagram of the micro lens array module.

Fig. 7
Fig. 7

(a) 2-D micro scale object image and (b) elemental image.

Fig. 8
Fig. 8

Sequentially-captured 2D microscopic image of Fig. 7(a).

Fig. 9
Fig. 9

Depth plane image generated from Fig. 7(b) using CIIR.

Fig. 10
Fig. 10

PSNR of each depth plane image between 2-D and IIM.

Fig. 11
Fig. 11

Intensities of pixels: (a) z = 3 to 6mm by CIIR, (b) z = 16.6 to 66.4μm by 2-D, (c) z = −3 to −6mm by CIIR, (d) z = −16.6 to −66.4μm by 2-D.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

R= 0.47λ NA ,
R= 0.47λ MN A la ,
R int =MR= 0.47λ NA M.
R ele = 0.47λ N A la g d .
D o = D wave + D geom = λn N A 2 + n MNA e,
D la = λ N A la 2 + d gN A la e.
D= 1 M 2 D la = λ M 2 N A la 2 + d M 2 gN A la e.

Metrics