Abstract

Abstract: Microsurgeons require dexterity to make precise and stable maneuvers to achieve surgical objectives and to minimize surgical risks during freehand procedures. This work presents a novel, common path, swept source optical coherence tomography-based “smart” micromanipulation aided robotic-surgical tool (SMART) that actively suppresses surgeon hand tremor. The tool allows enhanced tool tip stabilization, more accurate targeting and the potential to lower surgical risk. Freehand performance is compared to smart tool-assisted performance and includes assessment of the one-dimensional motion tremor in an active microsurgeon’s hand. Surgeon hand tremor—the ability to accurately locate a surgical target and maintain tool tip offset distances—were all improved by smart tool assistance.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. N. Riviere, J. Gangloff, and M. Mathelin, “Robotic Compensation of Biological Motion to Enhance Surgical Accuracy,” Proc. IEEE94(9), 1705–1716 (2006).
    [CrossRef]
  2. N. Horio, M. Horiguchi, and N. Yamamoto, “Triamcinolone-Assisted Internal Limiting Membrane Peeling During Idiopathic Macular Hole Surgery,” Arch. Ophthalmol.123(1), 96–99 (2005).
    [CrossRef] [PubMed]
  3. R. K. Murthy and K. V. Chalam, “Assistant-Independent OptiFlex System for Contact and Noncontact Wide-Angle Viewing in Vitreoretinal Surgery,” Arch. Ophthalmol.128(4), 490–492 (2010).
    [CrossRef] [PubMed]
  4. R. Taylor, P. Jensen, L. Whitcomb, A. Barnes, R. Kumar, D. Stoianovici, P. Gupta, Z. Wang, E. de Juan, and L. Kavoussi, “A steady-hand robotic system for microsurgical augmentation,” Int. J. Robot. Res.18(12), 1201–1210 (1999).
    [CrossRef]
  5. M. Balicki, A. Uneri, I. Iordachita, J. Handa, P. Gehlbach, and R. Taylor, “Micro-force Sensing in Robot Assisted Membrane Peeling for Vitreoretinal Surgery,” Med Image Comput Comput Assist Interv13(Pt 3), 303–310 (2010).
    [PubMed]
  6. B. C. Becker, R. A. MacLachlan, L. A. Lobes, and C. N. Riviere, “Semiautomated intraocular laser surgery using handheld instruments,” Lasers Surg. Med.42(3), 264–273 (2010).
    [CrossRef] [PubMed]
  7. R. A. MacLachlan, B. C. Becker, J. Cuevas Tabarés, G. W. Podnar, L. A. Lobes, and C. N. Riviere, “Micron: an actively stabilized handheld tool for microsurgery,” IEEE Trans. Robot.28(1), 195–212 (2012).
    [CrossRef]
  8. B. Bose, A. K. Kalra, S. Thukral, A. Sood, S. K. Guha, and S. Anand, “Tremor compensation for robotics assisted microsurgery,” Proc. 13th Annu. Int. Conf. IEEE Biomedical Engineering Society 3, 1067–1068 (1992)
  9. T. Ueta, Y. Yamaguchi, Y. Shirakawa, T. Nakano, R. Ideta, Y. Noda, A. Morita, R. Mochizuki, N. Sugita, M. Mitsuishi, and Y. Tamaki, “Robot-Assisted Vitreoretinal Surgery: Development of a Prototype and Feasibility Studies in an Animal Model,” Ophthalmology116(8), 1538–1543 (2009).
    [CrossRef] [PubMed]
  10. D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science254(5035), 1178–1181 (1991).
    [CrossRef] [PubMed]
  11. Y. K. Tao, J. P. Ehlers, C. A. Toth, and J. A. Izatt, “Intraoperative spectral domain optical coherence tomography for vitreoretinal surgery,” Opt. Lett.35(20), 3315–3317 (2010).
    [CrossRef] [PubMed]
  12. C. Song, M. Ahn, and D. Gweon, “Polarization-sensitive spectral-domain optical coherence tomography using a multi-line single camera spectrometer,” Opt. Express18(23), 23805–23817 (2010).
    [CrossRef] [PubMed]
  13. X. Liu, I. I. Iordachita, X. He, R. H. Taylor, and J. U. Kang, “Miniature fiber-optic force sensor based on low-coherence Fabry-Pérot interferometry for vitreoretinal microsurgery,” Biomed. Opt. Express3(5), 1062–1076 (2012).
    [CrossRef] [PubMed]
  14. J. Kang, J. Han, X. Liu, K. Zhang, C. G. Song, and P. Gehlbach, “Endoscopic Functional Fourier Domain Common Path Optical Voherence Tomography for Microsurgery,” IEEE J. Sel. Top. Quantum Electron.16(4), 781–792 (2010).
    [CrossRef]
  15. K. Zhang, W. Wang, J. Han, and J. U. Kang, “A Surface Topology and Motion Compensation System for Microsurgery Guidance and Intervention Based on Common-Path Optical Coherence Tomography,” IEEE Trans. Biomed. Eng.56(9), 2318–2321 (2009).
    [CrossRef] [PubMed]
  16. K. Zhang and J. U. Kang, “Common-path low-coherence interferometry fiber-optic sensor guided microincision,” J. Biomed. Opt.16(9), 095003 (2011).
    [CrossRef] [PubMed]

2012 (2)

R. A. MacLachlan, B. C. Becker, J. Cuevas Tabarés, G. W. Podnar, L. A. Lobes, and C. N. Riviere, “Micron: an actively stabilized handheld tool for microsurgery,” IEEE Trans. Robot.28(1), 195–212 (2012).
[CrossRef]

X. Liu, I. I. Iordachita, X. He, R. H. Taylor, and J. U. Kang, “Miniature fiber-optic force sensor based on low-coherence Fabry-Pérot interferometry for vitreoretinal microsurgery,” Biomed. Opt. Express3(5), 1062–1076 (2012).
[CrossRef] [PubMed]

2011 (1)

K. Zhang and J. U. Kang, “Common-path low-coherence interferometry fiber-optic sensor guided microincision,” J. Biomed. Opt.16(9), 095003 (2011).
[CrossRef] [PubMed]

2010 (6)

J. Kang, J. Han, X. Liu, K. Zhang, C. G. Song, and P. Gehlbach, “Endoscopic Functional Fourier Domain Common Path Optical Voherence Tomography for Microsurgery,” IEEE J. Sel. Top. Quantum Electron.16(4), 781–792 (2010).
[CrossRef]

Y. K. Tao, J. P. Ehlers, C. A. Toth, and J. A. Izatt, “Intraoperative spectral domain optical coherence tomography for vitreoretinal surgery,” Opt. Lett.35(20), 3315–3317 (2010).
[CrossRef] [PubMed]

C. Song, M. Ahn, and D. Gweon, “Polarization-sensitive spectral-domain optical coherence tomography using a multi-line single camera spectrometer,” Opt. Express18(23), 23805–23817 (2010).
[CrossRef] [PubMed]

M. Balicki, A. Uneri, I. Iordachita, J. Handa, P. Gehlbach, and R. Taylor, “Micro-force Sensing in Robot Assisted Membrane Peeling for Vitreoretinal Surgery,” Med Image Comput Comput Assist Interv13(Pt 3), 303–310 (2010).
[PubMed]

B. C. Becker, R. A. MacLachlan, L. A. Lobes, and C. N. Riviere, “Semiautomated intraocular laser surgery using handheld instruments,” Lasers Surg. Med.42(3), 264–273 (2010).
[CrossRef] [PubMed]

R. K. Murthy and K. V. Chalam, “Assistant-Independent OptiFlex System for Contact and Noncontact Wide-Angle Viewing in Vitreoretinal Surgery,” Arch. Ophthalmol.128(4), 490–492 (2010).
[CrossRef] [PubMed]

2009 (2)

T. Ueta, Y. Yamaguchi, Y. Shirakawa, T. Nakano, R. Ideta, Y. Noda, A. Morita, R. Mochizuki, N. Sugita, M. Mitsuishi, and Y. Tamaki, “Robot-Assisted Vitreoretinal Surgery: Development of a Prototype and Feasibility Studies in an Animal Model,” Ophthalmology116(8), 1538–1543 (2009).
[CrossRef] [PubMed]

K. Zhang, W. Wang, J. Han, and J. U. Kang, “A Surface Topology and Motion Compensation System for Microsurgery Guidance and Intervention Based on Common-Path Optical Coherence Tomography,” IEEE Trans. Biomed. Eng.56(9), 2318–2321 (2009).
[CrossRef] [PubMed]

2006 (1)

C. N. Riviere, J. Gangloff, and M. Mathelin, “Robotic Compensation of Biological Motion to Enhance Surgical Accuracy,” Proc. IEEE94(9), 1705–1716 (2006).
[CrossRef]

2005 (1)

N. Horio, M. Horiguchi, and N. Yamamoto, “Triamcinolone-Assisted Internal Limiting Membrane Peeling During Idiopathic Macular Hole Surgery,” Arch. Ophthalmol.123(1), 96–99 (2005).
[CrossRef] [PubMed]

1999 (1)

R. Taylor, P. Jensen, L. Whitcomb, A. Barnes, R. Kumar, D. Stoianovici, P. Gupta, Z. Wang, E. de Juan, and L. Kavoussi, “A steady-hand robotic system for microsurgical augmentation,” Int. J. Robot. Res.18(12), 1201–1210 (1999).
[CrossRef]

1991 (1)

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Ahn, M.

Balicki, M.

M. Balicki, A. Uneri, I. Iordachita, J. Handa, P. Gehlbach, and R. Taylor, “Micro-force Sensing in Robot Assisted Membrane Peeling for Vitreoretinal Surgery,” Med Image Comput Comput Assist Interv13(Pt 3), 303–310 (2010).
[PubMed]

Barnes, A.

R. Taylor, P. Jensen, L. Whitcomb, A. Barnes, R. Kumar, D. Stoianovici, P. Gupta, Z. Wang, E. de Juan, and L. Kavoussi, “A steady-hand robotic system for microsurgical augmentation,” Int. J. Robot. Res.18(12), 1201–1210 (1999).
[CrossRef]

Becker, B. C.

R. A. MacLachlan, B. C. Becker, J. Cuevas Tabarés, G. W. Podnar, L. A. Lobes, and C. N. Riviere, “Micron: an actively stabilized handheld tool for microsurgery,” IEEE Trans. Robot.28(1), 195–212 (2012).
[CrossRef]

B. C. Becker, R. A. MacLachlan, L. A. Lobes, and C. N. Riviere, “Semiautomated intraocular laser surgery using handheld instruments,” Lasers Surg. Med.42(3), 264–273 (2010).
[CrossRef] [PubMed]

Chalam, K. V.

R. K. Murthy and K. V. Chalam, “Assistant-Independent OptiFlex System for Contact and Noncontact Wide-Angle Viewing in Vitreoretinal Surgery,” Arch. Ophthalmol.128(4), 490–492 (2010).
[CrossRef] [PubMed]

Chang, W.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Cuevas Tabarés, J.

R. A. MacLachlan, B. C. Becker, J. Cuevas Tabarés, G. W. Podnar, L. A. Lobes, and C. N. Riviere, “Micron: an actively stabilized handheld tool for microsurgery,” IEEE Trans. Robot.28(1), 195–212 (2012).
[CrossRef]

de Juan, E.

R. Taylor, P. Jensen, L. Whitcomb, A. Barnes, R. Kumar, D. Stoianovici, P. Gupta, Z. Wang, E. de Juan, and L. Kavoussi, “A steady-hand robotic system for microsurgical augmentation,” Int. J. Robot. Res.18(12), 1201–1210 (1999).
[CrossRef]

Ehlers, J. P.

Flotte, T.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Fujimoto, J. G.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Gangloff, J.

C. N. Riviere, J. Gangloff, and M. Mathelin, “Robotic Compensation of Biological Motion to Enhance Surgical Accuracy,” Proc. IEEE94(9), 1705–1716 (2006).
[CrossRef]

Gehlbach, P.

M. Balicki, A. Uneri, I. Iordachita, J. Handa, P. Gehlbach, and R. Taylor, “Micro-force Sensing in Robot Assisted Membrane Peeling for Vitreoretinal Surgery,” Med Image Comput Comput Assist Interv13(Pt 3), 303–310 (2010).
[PubMed]

J. Kang, J. Han, X. Liu, K. Zhang, C. G. Song, and P. Gehlbach, “Endoscopic Functional Fourier Domain Common Path Optical Voherence Tomography for Microsurgery,” IEEE J. Sel. Top. Quantum Electron.16(4), 781–792 (2010).
[CrossRef]

Gregory, K.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Gupta, P.

R. Taylor, P. Jensen, L. Whitcomb, A. Barnes, R. Kumar, D. Stoianovici, P. Gupta, Z. Wang, E. de Juan, and L. Kavoussi, “A steady-hand robotic system for microsurgical augmentation,” Int. J. Robot. Res.18(12), 1201–1210 (1999).
[CrossRef]

Gweon, D.

Han, J.

J. Kang, J. Han, X. Liu, K. Zhang, C. G. Song, and P. Gehlbach, “Endoscopic Functional Fourier Domain Common Path Optical Voherence Tomography for Microsurgery,” IEEE J. Sel. Top. Quantum Electron.16(4), 781–792 (2010).
[CrossRef]

K. Zhang, W. Wang, J. Han, and J. U. Kang, “A Surface Topology and Motion Compensation System for Microsurgery Guidance and Intervention Based on Common-Path Optical Coherence Tomography,” IEEE Trans. Biomed. Eng.56(9), 2318–2321 (2009).
[CrossRef] [PubMed]

Handa, J.

M. Balicki, A. Uneri, I. Iordachita, J. Handa, P. Gehlbach, and R. Taylor, “Micro-force Sensing in Robot Assisted Membrane Peeling for Vitreoretinal Surgery,” Med Image Comput Comput Assist Interv13(Pt 3), 303–310 (2010).
[PubMed]

He, X.

Hee, M. R.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Horiguchi, M.

N. Horio, M. Horiguchi, and N. Yamamoto, “Triamcinolone-Assisted Internal Limiting Membrane Peeling During Idiopathic Macular Hole Surgery,” Arch. Ophthalmol.123(1), 96–99 (2005).
[CrossRef] [PubMed]

Horio, N.

N. Horio, M. Horiguchi, and N. Yamamoto, “Triamcinolone-Assisted Internal Limiting Membrane Peeling During Idiopathic Macular Hole Surgery,” Arch. Ophthalmol.123(1), 96–99 (2005).
[CrossRef] [PubMed]

Huang, D.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Ideta, R.

T. Ueta, Y. Yamaguchi, Y. Shirakawa, T. Nakano, R. Ideta, Y. Noda, A. Morita, R. Mochizuki, N. Sugita, M. Mitsuishi, and Y. Tamaki, “Robot-Assisted Vitreoretinal Surgery: Development of a Prototype and Feasibility Studies in an Animal Model,” Ophthalmology116(8), 1538–1543 (2009).
[CrossRef] [PubMed]

Iordachita, I.

M. Balicki, A. Uneri, I. Iordachita, J. Handa, P. Gehlbach, and R. Taylor, “Micro-force Sensing in Robot Assisted Membrane Peeling for Vitreoretinal Surgery,” Med Image Comput Comput Assist Interv13(Pt 3), 303–310 (2010).
[PubMed]

Iordachita, I. I.

Izatt, J. A.

Jensen, P.

R. Taylor, P. Jensen, L. Whitcomb, A. Barnes, R. Kumar, D. Stoianovici, P. Gupta, Z. Wang, E. de Juan, and L. Kavoussi, “A steady-hand robotic system for microsurgical augmentation,” Int. J. Robot. Res.18(12), 1201–1210 (1999).
[CrossRef]

Kang, J.

J. Kang, J. Han, X. Liu, K. Zhang, C. G. Song, and P. Gehlbach, “Endoscopic Functional Fourier Domain Common Path Optical Voherence Tomography for Microsurgery,” IEEE J. Sel. Top. Quantum Electron.16(4), 781–792 (2010).
[CrossRef]

Kang, J. U.

X. Liu, I. I. Iordachita, X. He, R. H. Taylor, and J. U. Kang, “Miniature fiber-optic force sensor based on low-coherence Fabry-Pérot interferometry for vitreoretinal microsurgery,” Biomed. Opt. Express3(5), 1062–1076 (2012).
[CrossRef] [PubMed]

K. Zhang and J. U. Kang, “Common-path low-coherence interferometry fiber-optic sensor guided microincision,” J. Biomed. Opt.16(9), 095003 (2011).
[CrossRef] [PubMed]

K. Zhang, W. Wang, J. Han, and J. U. Kang, “A Surface Topology and Motion Compensation System for Microsurgery Guidance and Intervention Based on Common-Path Optical Coherence Tomography,” IEEE Trans. Biomed. Eng.56(9), 2318–2321 (2009).
[CrossRef] [PubMed]

Kavoussi, L.

R. Taylor, P. Jensen, L. Whitcomb, A. Barnes, R. Kumar, D. Stoianovici, P. Gupta, Z. Wang, E. de Juan, and L. Kavoussi, “A steady-hand robotic system for microsurgical augmentation,” Int. J. Robot. Res.18(12), 1201–1210 (1999).
[CrossRef]

Kumar, R.

R. Taylor, P. Jensen, L. Whitcomb, A. Barnes, R. Kumar, D. Stoianovici, P. Gupta, Z. Wang, E. de Juan, and L. Kavoussi, “A steady-hand robotic system for microsurgical augmentation,” Int. J. Robot. Res.18(12), 1201–1210 (1999).
[CrossRef]

Lin, C. P.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Liu, X.

X. Liu, I. I. Iordachita, X. He, R. H. Taylor, and J. U. Kang, “Miniature fiber-optic force sensor based on low-coherence Fabry-Pérot interferometry for vitreoretinal microsurgery,” Biomed. Opt. Express3(5), 1062–1076 (2012).
[CrossRef] [PubMed]

J. Kang, J. Han, X. Liu, K. Zhang, C. G. Song, and P. Gehlbach, “Endoscopic Functional Fourier Domain Common Path Optical Voherence Tomography for Microsurgery,” IEEE J. Sel. Top. Quantum Electron.16(4), 781–792 (2010).
[CrossRef]

Lobes, L. A.

R. A. MacLachlan, B. C. Becker, J. Cuevas Tabarés, G. W. Podnar, L. A. Lobes, and C. N. Riviere, “Micron: an actively stabilized handheld tool for microsurgery,” IEEE Trans. Robot.28(1), 195–212 (2012).
[CrossRef]

B. C. Becker, R. A. MacLachlan, L. A. Lobes, and C. N. Riviere, “Semiautomated intraocular laser surgery using handheld instruments,” Lasers Surg. Med.42(3), 264–273 (2010).
[CrossRef] [PubMed]

MacLachlan, R. A.

R. A. MacLachlan, B. C. Becker, J. Cuevas Tabarés, G. W. Podnar, L. A. Lobes, and C. N. Riviere, “Micron: an actively stabilized handheld tool for microsurgery,” IEEE Trans. Robot.28(1), 195–212 (2012).
[CrossRef]

B. C. Becker, R. A. MacLachlan, L. A. Lobes, and C. N. Riviere, “Semiautomated intraocular laser surgery using handheld instruments,” Lasers Surg. Med.42(3), 264–273 (2010).
[CrossRef] [PubMed]

Mathelin, M.

C. N. Riviere, J. Gangloff, and M. Mathelin, “Robotic Compensation of Biological Motion to Enhance Surgical Accuracy,” Proc. IEEE94(9), 1705–1716 (2006).
[CrossRef]

Mitsuishi, M.

T. Ueta, Y. Yamaguchi, Y. Shirakawa, T. Nakano, R. Ideta, Y. Noda, A. Morita, R. Mochizuki, N. Sugita, M. Mitsuishi, and Y. Tamaki, “Robot-Assisted Vitreoretinal Surgery: Development of a Prototype and Feasibility Studies in an Animal Model,” Ophthalmology116(8), 1538–1543 (2009).
[CrossRef] [PubMed]

Mochizuki, R.

T. Ueta, Y. Yamaguchi, Y. Shirakawa, T. Nakano, R. Ideta, Y. Noda, A. Morita, R. Mochizuki, N. Sugita, M. Mitsuishi, and Y. Tamaki, “Robot-Assisted Vitreoretinal Surgery: Development of a Prototype and Feasibility Studies in an Animal Model,” Ophthalmology116(8), 1538–1543 (2009).
[CrossRef] [PubMed]

Morita, A.

T. Ueta, Y. Yamaguchi, Y. Shirakawa, T. Nakano, R. Ideta, Y. Noda, A. Morita, R. Mochizuki, N. Sugita, M. Mitsuishi, and Y. Tamaki, “Robot-Assisted Vitreoretinal Surgery: Development of a Prototype and Feasibility Studies in an Animal Model,” Ophthalmology116(8), 1538–1543 (2009).
[CrossRef] [PubMed]

Murthy, R. K.

R. K. Murthy and K. V. Chalam, “Assistant-Independent OptiFlex System for Contact and Noncontact Wide-Angle Viewing in Vitreoretinal Surgery,” Arch. Ophthalmol.128(4), 490–492 (2010).
[CrossRef] [PubMed]

Nakano, T.

T. Ueta, Y. Yamaguchi, Y. Shirakawa, T. Nakano, R. Ideta, Y. Noda, A. Morita, R. Mochizuki, N. Sugita, M. Mitsuishi, and Y. Tamaki, “Robot-Assisted Vitreoretinal Surgery: Development of a Prototype and Feasibility Studies in an Animal Model,” Ophthalmology116(8), 1538–1543 (2009).
[CrossRef] [PubMed]

Noda, Y.

T. Ueta, Y. Yamaguchi, Y. Shirakawa, T. Nakano, R. Ideta, Y. Noda, A. Morita, R. Mochizuki, N. Sugita, M. Mitsuishi, and Y. Tamaki, “Robot-Assisted Vitreoretinal Surgery: Development of a Prototype and Feasibility Studies in an Animal Model,” Ophthalmology116(8), 1538–1543 (2009).
[CrossRef] [PubMed]

Podnar, G. W.

R. A. MacLachlan, B. C. Becker, J. Cuevas Tabarés, G. W. Podnar, L. A. Lobes, and C. N. Riviere, “Micron: an actively stabilized handheld tool for microsurgery,” IEEE Trans. Robot.28(1), 195–212 (2012).
[CrossRef]

Puliafito, C. A.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Riviere, C. N.

R. A. MacLachlan, B. C. Becker, J. Cuevas Tabarés, G. W. Podnar, L. A. Lobes, and C. N. Riviere, “Micron: an actively stabilized handheld tool for microsurgery,” IEEE Trans. Robot.28(1), 195–212 (2012).
[CrossRef]

B. C. Becker, R. A. MacLachlan, L. A. Lobes, and C. N. Riviere, “Semiautomated intraocular laser surgery using handheld instruments,” Lasers Surg. Med.42(3), 264–273 (2010).
[CrossRef] [PubMed]

C. N. Riviere, J. Gangloff, and M. Mathelin, “Robotic Compensation of Biological Motion to Enhance Surgical Accuracy,” Proc. IEEE94(9), 1705–1716 (2006).
[CrossRef]

Schuman, J. S.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Shirakawa, Y.

T. Ueta, Y. Yamaguchi, Y. Shirakawa, T. Nakano, R. Ideta, Y. Noda, A. Morita, R. Mochizuki, N. Sugita, M. Mitsuishi, and Y. Tamaki, “Robot-Assisted Vitreoretinal Surgery: Development of a Prototype and Feasibility Studies in an Animal Model,” Ophthalmology116(8), 1538–1543 (2009).
[CrossRef] [PubMed]

Song, C.

Song, C. G.

J. Kang, J. Han, X. Liu, K. Zhang, C. G. Song, and P. Gehlbach, “Endoscopic Functional Fourier Domain Common Path Optical Voherence Tomography for Microsurgery,” IEEE J. Sel. Top. Quantum Electron.16(4), 781–792 (2010).
[CrossRef]

Stinson, W. G.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Stoianovici, D.

R. Taylor, P. Jensen, L. Whitcomb, A. Barnes, R. Kumar, D. Stoianovici, P. Gupta, Z. Wang, E. de Juan, and L. Kavoussi, “A steady-hand robotic system for microsurgical augmentation,” Int. J. Robot. Res.18(12), 1201–1210 (1999).
[CrossRef]

Sugita, N.

T. Ueta, Y. Yamaguchi, Y. Shirakawa, T. Nakano, R. Ideta, Y. Noda, A. Morita, R. Mochizuki, N. Sugita, M. Mitsuishi, and Y. Tamaki, “Robot-Assisted Vitreoretinal Surgery: Development of a Prototype and Feasibility Studies in an Animal Model,” Ophthalmology116(8), 1538–1543 (2009).
[CrossRef] [PubMed]

Swanson, E. A.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Tamaki, Y.

T. Ueta, Y. Yamaguchi, Y. Shirakawa, T. Nakano, R. Ideta, Y. Noda, A. Morita, R. Mochizuki, N. Sugita, M. Mitsuishi, and Y. Tamaki, “Robot-Assisted Vitreoretinal Surgery: Development of a Prototype and Feasibility Studies in an Animal Model,” Ophthalmology116(8), 1538–1543 (2009).
[CrossRef] [PubMed]

Tao, Y. K.

Taylor, R.

M. Balicki, A. Uneri, I. Iordachita, J. Handa, P. Gehlbach, and R. Taylor, “Micro-force Sensing in Robot Assisted Membrane Peeling for Vitreoretinal Surgery,” Med Image Comput Comput Assist Interv13(Pt 3), 303–310 (2010).
[PubMed]

R. Taylor, P. Jensen, L. Whitcomb, A. Barnes, R. Kumar, D. Stoianovici, P. Gupta, Z. Wang, E. de Juan, and L. Kavoussi, “A steady-hand robotic system for microsurgical augmentation,” Int. J. Robot. Res.18(12), 1201–1210 (1999).
[CrossRef]

Taylor, R. H.

Toth, C. A.

Ueta, T.

T. Ueta, Y. Yamaguchi, Y. Shirakawa, T. Nakano, R. Ideta, Y. Noda, A. Morita, R. Mochizuki, N. Sugita, M. Mitsuishi, and Y. Tamaki, “Robot-Assisted Vitreoretinal Surgery: Development of a Prototype and Feasibility Studies in an Animal Model,” Ophthalmology116(8), 1538–1543 (2009).
[CrossRef] [PubMed]

Uneri, A.

M. Balicki, A. Uneri, I. Iordachita, J. Handa, P. Gehlbach, and R. Taylor, “Micro-force Sensing in Robot Assisted Membrane Peeling for Vitreoretinal Surgery,” Med Image Comput Comput Assist Interv13(Pt 3), 303–310 (2010).
[PubMed]

Wang, W.

K. Zhang, W. Wang, J. Han, and J. U. Kang, “A Surface Topology and Motion Compensation System for Microsurgery Guidance and Intervention Based on Common-Path Optical Coherence Tomography,” IEEE Trans. Biomed. Eng.56(9), 2318–2321 (2009).
[CrossRef] [PubMed]

Wang, Z.

R. Taylor, P. Jensen, L. Whitcomb, A. Barnes, R. Kumar, D. Stoianovici, P. Gupta, Z. Wang, E. de Juan, and L. Kavoussi, “A steady-hand robotic system for microsurgical augmentation,” Int. J. Robot. Res.18(12), 1201–1210 (1999).
[CrossRef]

Whitcomb, L.

R. Taylor, P. Jensen, L. Whitcomb, A. Barnes, R. Kumar, D. Stoianovici, P. Gupta, Z. Wang, E. de Juan, and L. Kavoussi, “A steady-hand robotic system for microsurgical augmentation,” Int. J. Robot. Res.18(12), 1201–1210 (1999).
[CrossRef]

Yamaguchi, Y.

T. Ueta, Y. Yamaguchi, Y. Shirakawa, T. Nakano, R. Ideta, Y. Noda, A. Morita, R. Mochizuki, N. Sugita, M. Mitsuishi, and Y. Tamaki, “Robot-Assisted Vitreoretinal Surgery: Development of a Prototype and Feasibility Studies in an Animal Model,” Ophthalmology116(8), 1538–1543 (2009).
[CrossRef] [PubMed]

Yamamoto, N.

N. Horio, M. Horiguchi, and N. Yamamoto, “Triamcinolone-Assisted Internal Limiting Membrane Peeling During Idiopathic Macular Hole Surgery,” Arch. Ophthalmol.123(1), 96–99 (2005).
[CrossRef] [PubMed]

Zhang, K.

K. Zhang and J. U. Kang, “Common-path low-coherence interferometry fiber-optic sensor guided microincision,” J. Biomed. Opt.16(9), 095003 (2011).
[CrossRef] [PubMed]

J. Kang, J. Han, X. Liu, K. Zhang, C. G. Song, and P. Gehlbach, “Endoscopic Functional Fourier Domain Common Path Optical Voherence Tomography for Microsurgery,” IEEE J. Sel. Top. Quantum Electron.16(4), 781–792 (2010).
[CrossRef]

K. Zhang, W. Wang, J. Han, and J. U. Kang, “A Surface Topology and Motion Compensation System for Microsurgery Guidance and Intervention Based on Common-Path Optical Coherence Tomography,” IEEE Trans. Biomed. Eng.56(9), 2318–2321 (2009).
[CrossRef] [PubMed]

Arch. Ophthalmol. (2)

N. Horio, M. Horiguchi, and N. Yamamoto, “Triamcinolone-Assisted Internal Limiting Membrane Peeling During Idiopathic Macular Hole Surgery,” Arch. Ophthalmol.123(1), 96–99 (2005).
[CrossRef] [PubMed]

R. K. Murthy and K. V. Chalam, “Assistant-Independent OptiFlex System for Contact and Noncontact Wide-Angle Viewing in Vitreoretinal Surgery,” Arch. Ophthalmol.128(4), 490–492 (2010).
[CrossRef] [PubMed]

Biomed. Opt. Express (1)

IEEE J. Sel. Top. Quantum Electron. (1)

J. Kang, J. Han, X. Liu, K. Zhang, C. G. Song, and P. Gehlbach, “Endoscopic Functional Fourier Domain Common Path Optical Voherence Tomography for Microsurgery,” IEEE J. Sel. Top. Quantum Electron.16(4), 781–792 (2010).
[CrossRef]

IEEE Trans. Biomed. Eng. (1)

K. Zhang, W. Wang, J. Han, and J. U. Kang, “A Surface Topology and Motion Compensation System for Microsurgery Guidance and Intervention Based on Common-Path Optical Coherence Tomography,” IEEE Trans. Biomed. Eng.56(9), 2318–2321 (2009).
[CrossRef] [PubMed]

IEEE Trans. Robot. (1)

R. A. MacLachlan, B. C. Becker, J. Cuevas Tabarés, G. W. Podnar, L. A. Lobes, and C. N. Riviere, “Micron: an actively stabilized handheld tool for microsurgery,” IEEE Trans. Robot.28(1), 195–212 (2012).
[CrossRef]

Int. J. Robot. Res. (1)

R. Taylor, P. Jensen, L. Whitcomb, A. Barnes, R. Kumar, D. Stoianovici, P. Gupta, Z. Wang, E. de Juan, and L. Kavoussi, “A steady-hand robotic system for microsurgical augmentation,” Int. J. Robot. Res.18(12), 1201–1210 (1999).
[CrossRef]

J. Biomed. Opt. (1)

K. Zhang and J. U. Kang, “Common-path low-coherence interferometry fiber-optic sensor guided microincision,” J. Biomed. Opt.16(9), 095003 (2011).
[CrossRef] [PubMed]

Lasers Surg. Med. (1)

B. C. Becker, R. A. MacLachlan, L. A. Lobes, and C. N. Riviere, “Semiautomated intraocular laser surgery using handheld instruments,” Lasers Surg. Med.42(3), 264–273 (2010).
[CrossRef] [PubMed]

Med Image Comput Comput Assist Interv (1)

M. Balicki, A. Uneri, I. Iordachita, J. Handa, P. Gehlbach, and R. Taylor, “Micro-force Sensing in Robot Assisted Membrane Peeling for Vitreoretinal Surgery,” Med Image Comput Comput Assist Interv13(Pt 3), 303–310 (2010).
[PubMed]

Ophthalmology (1)

T. Ueta, Y. Yamaguchi, Y. Shirakawa, T. Nakano, R. Ideta, Y. Noda, A. Morita, R. Mochizuki, N. Sugita, M. Mitsuishi, and Y. Tamaki, “Robot-Assisted Vitreoretinal Surgery: Development of a Prototype and Feasibility Studies in an Animal Model,” Ophthalmology116(8), 1538–1543 (2009).
[CrossRef] [PubMed]

Opt. Express (1)

Opt. Lett. (1)

Proc. IEEE (1)

C. N. Riviere, J. Gangloff, and M. Mathelin, “Robotic Compensation of Biological Motion to Enhance Surgical Accuracy,” Proc. IEEE94(9), 1705–1716 (2006).
[CrossRef]

Science (1)

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Other (1)

B. Bose, A. K. Kalra, S. Thukral, A. Sood, S. K. Guha, and S. Anand, “Tremor compensation for robotics assisted microsurgery,” Proc. 13th Annu. Int. Conf. IEEE Biomedical Engineering Society 3, 1067–1068 (1992)

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Smart handheld surgical tool. (a) CAD cross-sectional image. FH: front holder, BH: back holder, J: joint, T: tail, ON: outer needle, IN: inner needle, PM: piezoelectric motor, LL: luer-lock combination, OF: optical fiber. (b) Photo image of the tool with a quarter (USA coin) after assembly.

Fig. 2
Fig. 2

The feedback control scheme of the smart surgical tool. (a) Feedback control schematic of the common path SS-OCT-based surgical tool (b) Detailed PID based control scheme. The green boxes coordinate the OCT-based sensing and initialization; the blue diamonds provide the comparison and decision making step to activate the motor; the red boxes initiate the motion compensation steps.

Fig. 3
Fig. 3

OCT-determined characteristics of surgeon tremor with freehand use. (a) Three attempting to hold steady at a defined offset height of 1000 µm: freehand use (5 seconds, 30 seconds), motion compensation on a dry phantom. Each shows the simple representative of the other nine data sets. (b) Fourier analyses and histograms of three signals.

Fig. 4
Fig. 4

Moving the tool repetitively at a specified offset of 2000 µm from 1000 µm: two freehand swings with different speeds and a compensation mode.

Fig. 5
Fig. 5

Motion compensation on chicken embryo (a) Photo image of live chicken embryo model. (b) Outer membrane of chick embryo with surgical needle. (c) Tremor suppression results: freehand tremor (blue), compensation (red).

Metrics