Abstract

We demonstrate a three-section, electrically pulsed quantum cascade laser which consists of a Fabry-Pérot section placed between two sampled grating distributed Bragg reflectors. The device is current-tuned between ten single modes spanning a range of 0.46 μm (63 cm−1), from 8.32 to 8.78 μm. The peak optical output power exceeds 280 mW for nine of the modes.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. F. Curl, F. Capasso, C. Gmachl, A. A. Kosterev, B. McManus, R. Lewicki, M. Pusharsky, G. Wysocki, and F. K. Tittel, “Quantum cascade lasers in chemical physics,” Chem. Phys. Lett.487(1-3), 1–18 (2010).
    [CrossRef]
  2. J. Faist, C. Gmachl, F. Capasso, C. Sirtori, D. L. Sivco, J. N. Baillargeon, and A. Y. Cho, “Distributed feedback quantum cascade lasers,” Appl. Phys. Lett.70(20), 2670–2672 (1997).
    [CrossRef]
  3. P. Fuchs, J. Friedl, S. Höfling, J. Koeth, A. Forchel, L. Worschech, and M. Kamp, “Single mode quantum cascade lasers with shallow-etched distributed Bragg reflector,” Opt. Express20(4), 3890–3897 (2012).
    [CrossRef] [PubMed]
  4. C. Gmachl, A. Straub, R. Colombelli, F. Capasso, D. Sivco, A. M. Sergent, and A. Y. Cho, “Single-mode, tunable distributed feedback and multiple-wavelength quantum cascade lasers,” IEEE J. Quant. Elec.38(6), 569–581 (2002).
    [CrossRef]
  5. R. Maulini, M. Beck, J. Faist, and E. Gini, “Broadband tuning of external cavity bound-to-continuum quantum-cascade lasers,” Appl. Phys. Lett.84(10), 1659–1661 (2004).
    [CrossRef]
  6. Y. Yao, X. J. Wang, J. Y. Fan, and C. F. Gmachl, “High performance ‘continuum-to-continuum’ quantum cascade lasers with a broad gain bandwidth of over 400 cm(−1),” Appl. Phys. Lett.97(8), 081115 (2010).
    [CrossRef]
  7. K. Fujita, T. Edamura, S. Furuta, and M. Yamanishi, “High-performance, homogeneous broad-gain quantum cascade lasers based on dual-upper-state design,” Appl. Phys. Lett.96(24), 241107 (2010).
    [CrossRef]
  8. B. G. Lee, H. F. A. Zhang, C. Pflügl, L. Diehl, M. A. Belkin, M. Fischer, A. Wittmann, J. Faist, and F. Capasso, “Broadband distributed-feedback quantum cascade laser array operating from 8.0 to 9.8 µm,” IEEE Photon. Technol. Lett.21(13), 914–916 (2009).
    [CrossRef]
  9. B. G. Lee, J. Kansky, A. K. Goyal, C. Pflügl, L. Diehl, M. A. Belkin, A. Sanchez, and F. A. Capasso, “Beam combining of quantum cascade laser arrays,” Opt. Express17(18), 16216–16224 (2009).
    [CrossRef] [PubMed]
  10. A. K. Goyal, M. Spencer, O. Shatrovoy, B. G. Lee, L. Diehl, C. Pfluegl, A. Sanchez, and F. Capasso, “Dispersion-compensated wavelength beam combining of quantum-cascade-laser arrays,” Opt. Express19(27), 26725–26732 (2011).
    [CrossRef] [PubMed]
  11. A. Hugi, R. Terazzi, Y. Bonetti, A. Wittmann, M. Fischer, M. Beck, J. Faist, and E. Gini, “External cavity quantum cascade laser tunable from 7.6 to 11.4 µm,” Appl. Phys. Lett.95(6), 061103 (2009).
    [CrossRef]
  12. V. Jayaraman, Z. M. Chuang, and L. A. Coldren, “Theory, design, and performance of extended tuning range semiconductor lasers with sampled gratings,” IEEE Jour. Quant. Elec.29(6), 1824–1834 (1993).
    [CrossRef]
  13. R. Blanchard, S. Menzel, C. Pflügl, L. Diehl, C. Wang, Y. Huang, J. H. Ryou, R. D. Dupuis, L. Dal Negro, and F. Capasso, “Gratings with an aperiodic basis: single-mode emission in multi-wavelength lasers,” New J. Phys.13(11), 113023 (2011).
    [CrossRef]
  14. L. A. Coldren, US Patent # 4896325.
  15. S. Slivken, N. Bandyopadhyay, S. Tsao, S. Nida, Y. Bai, Q. Y. Lu, and M. Razeghi, “Sampled grating, distributed feedback quantum cascade lasers with broad tunability and continuous operation at room temperature,” Appl. Phys. Lett.100(26), 261112 (2012).
    [CrossRef]
  16. K. Boylan, V. Weldon, D. McDonald, J. O’Gorman, and J. Hegarty, “Sampled grating DBR laser as a spectroscopic source in multigas detection at 1.52-1.57 µm,” IEEE Proc. Optoelect.148(1), 19–24 (2001).
    [CrossRef]
  17. Y. Huang, J.-H. Ryou, R. D. Dupuis, C. Pflügl, F. Capasso, K. Sun, A. M. Fischer, and F. A. Ponce, “Optimization of growth conditions for InGaAs/InAl/InP quantum cascade lasers by metalorganic chemical vapor deposition,” J. Cryst. Growth316(1), 75–80 (2011).
    [CrossRef]
  18. A. Wittmann, T. Gresch, E. Gini, L. Hvozdara, N. Hoyler, M. Giovannini, and J. Faist, “High-performance bound-to-continuum quantum-cascade lasers for broad-gain applications,” IEEE Jour. Quant. Elec.44(1), 36–40 (2008).
    [CrossRef]

2012

S. Slivken, N. Bandyopadhyay, S. Tsao, S. Nida, Y. Bai, Q. Y. Lu, and M. Razeghi, “Sampled grating, distributed feedback quantum cascade lasers with broad tunability and continuous operation at room temperature,” Appl. Phys. Lett.100(26), 261112 (2012).
[CrossRef]

P. Fuchs, J. Friedl, S. Höfling, J. Koeth, A. Forchel, L. Worschech, and M. Kamp, “Single mode quantum cascade lasers with shallow-etched distributed Bragg reflector,” Opt. Express20(4), 3890–3897 (2012).
[CrossRef] [PubMed]

2011

A. K. Goyal, M. Spencer, O. Shatrovoy, B. G. Lee, L. Diehl, C. Pfluegl, A. Sanchez, and F. Capasso, “Dispersion-compensated wavelength beam combining of quantum-cascade-laser arrays,” Opt. Express19(27), 26725–26732 (2011).
[CrossRef] [PubMed]

R. Blanchard, S. Menzel, C. Pflügl, L. Diehl, C. Wang, Y. Huang, J. H. Ryou, R. D. Dupuis, L. Dal Negro, and F. Capasso, “Gratings with an aperiodic basis: single-mode emission in multi-wavelength lasers,” New J. Phys.13(11), 113023 (2011).
[CrossRef]

Y. Huang, J.-H. Ryou, R. D. Dupuis, C. Pflügl, F. Capasso, K. Sun, A. M. Fischer, and F. A. Ponce, “Optimization of growth conditions for InGaAs/InAl/InP quantum cascade lasers by metalorganic chemical vapor deposition,” J. Cryst. Growth316(1), 75–80 (2011).
[CrossRef]

2010

R. F. Curl, F. Capasso, C. Gmachl, A. A. Kosterev, B. McManus, R. Lewicki, M. Pusharsky, G. Wysocki, and F. K. Tittel, “Quantum cascade lasers in chemical physics,” Chem. Phys. Lett.487(1-3), 1–18 (2010).
[CrossRef]

Y. Yao, X. J. Wang, J. Y. Fan, and C. F. Gmachl, “High performance ‘continuum-to-continuum’ quantum cascade lasers with a broad gain bandwidth of over 400 cm(−1),” Appl. Phys. Lett.97(8), 081115 (2010).
[CrossRef]

K. Fujita, T. Edamura, S. Furuta, and M. Yamanishi, “High-performance, homogeneous broad-gain quantum cascade lasers based on dual-upper-state design,” Appl. Phys. Lett.96(24), 241107 (2010).
[CrossRef]

2009

B. G. Lee, H. F. A. Zhang, C. Pflügl, L. Diehl, M. A. Belkin, M. Fischer, A. Wittmann, J. Faist, and F. Capasso, “Broadband distributed-feedback quantum cascade laser array operating from 8.0 to 9.8 µm,” IEEE Photon. Technol. Lett.21(13), 914–916 (2009).
[CrossRef]

A. Hugi, R. Terazzi, Y. Bonetti, A. Wittmann, M. Fischer, M. Beck, J. Faist, and E. Gini, “External cavity quantum cascade laser tunable from 7.6 to 11.4 µm,” Appl. Phys. Lett.95(6), 061103 (2009).
[CrossRef]

B. G. Lee, J. Kansky, A. K. Goyal, C. Pflügl, L. Diehl, M. A. Belkin, A. Sanchez, and F. A. Capasso, “Beam combining of quantum cascade laser arrays,” Opt. Express17(18), 16216–16224 (2009).
[CrossRef] [PubMed]

2008

A. Wittmann, T. Gresch, E. Gini, L. Hvozdara, N. Hoyler, M. Giovannini, and J. Faist, “High-performance bound-to-continuum quantum-cascade lasers for broad-gain applications,” IEEE Jour. Quant. Elec.44(1), 36–40 (2008).
[CrossRef]

2004

R. Maulini, M. Beck, J. Faist, and E. Gini, “Broadband tuning of external cavity bound-to-continuum quantum-cascade lasers,” Appl. Phys. Lett.84(10), 1659–1661 (2004).
[CrossRef]

2002

C. Gmachl, A. Straub, R. Colombelli, F. Capasso, D. Sivco, A. M. Sergent, and A. Y. Cho, “Single-mode, tunable distributed feedback and multiple-wavelength quantum cascade lasers,” IEEE J. Quant. Elec.38(6), 569–581 (2002).
[CrossRef]

2001

K. Boylan, V. Weldon, D. McDonald, J. O’Gorman, and J. Hegarty, “Sampled grating DBR laser as a spectroscopic source in multigas detection at 1.52-1.57 µm,” IEEE Proc. Optoelect.148(1), 19–24 (2001).
[CrossRef]

1997

J. Faist, C. Gmachl, F. Capasso, C. Sirtori, D. L. Sivco, J. N. Baillargeon, and A. Y. Cho, “Distributed feedback quantum cascade lasers,” Appl. Phys. Lett.70(20), 2670–2672 (1997).
[CrossRef]

1993

V. Jayaraman, Z. M. Chuang, and L. A. Coldren, “Theory, design, and performance of extended tuning range semiconductor lasers with sampled gratings,” IEEE Jour. Quant. Elec.29(6), 1824–1834 (1993).
[CrossRef]

Bai, Y.

S. Slivken, N. Bandyopadhyay, S. Tsao, S. Nida, Y. Bai, Q. Y. Lu, and M. Razeghi, “Sampled grating, distributed feedback quantum cascade lasers with broad tunability and continuous operation at room temperature,” Appl. Phys. Lett.100(26), 261112 (2012).
[CrossRef]

Baillargeon, J. N.

J. Faist, C. Gmachl, F. Capasso, C. Sirtori, D. L. Sivco, J. N. Baillargeon, and A. Y. Cho, “Distributed feedback quantum cascade lasers,” Appl. Phys. Lett.70(20), 2670–2672 (1997).
[CrossRef]

Bandyopadhyay, N.

S. Slivken, N. Bandyopadhyay, S. Tsao, S. Nida, Y. Bai, Q. Y. Lu, and M. Razeghi, “Sampled grating, distributed feedback quantum cascade lasers with broad tunability and continuous operation at room temperature,” Appl. Phys. Lett.100(26), 261112 (2012).
[CrossRef]

Beck, M.

A. Hugi, R. Terazzi, Y. Bonetti, A. Wittmann, M. Fischer, M. Beck, J. Faist, and E. Gini, “External cavity quantum cascade laser tunable from 7.6 to 11.4 µm,” Appl. Phys. Lett.95(6), 061103 (2009).
[CrossRef]

R. Maulini, M. Beck, J. Faist, and E. Gini, “Broadband tuning of external cavity bound-to-continuum quantum-cascade lasers,” Appl. Phys. Lett.84(10), 1659–1661 (2004).
[CrossRef]

Belkin, M. A.

B. G. Lee, J. Kansky, A. K. Goyal, C. Pflügl, L. Diehl, M. A. Belkin, A. Sanchez, and F. A. Capasso, “Beam combining of quantum cascade laser arrays,” Opt. Express17(18), 16216–16224 (2009).
[CrossRef] [PubMed]

B. G. Lee, H. F. A. Zhang, C. Pflügl, L. Diehl, M. A. Belkin, M. Fischer, A. Wittmann, J. Faist, and F. Capasso, “Broadband distributed-feedback quantum cascade laser array operating from 8.0 to 9.8 µm,” IEEE Photon. Technol. Lett.21(13), 914–916 (2009).
[CrossRef]

Blanchard, R.

R. Blanchard, S. Menzel, C. Pflügl, L. Diehl, C. Wang, Y. Huang, J. H. Ryou, R. D. Dupuis, L. Dal Negro, and F. Capasso, “Gratings with an aperiodic basis: single-mode emission in multi-wavelength lasers,” New J. Phys.13(11), 113023 (2011).
[CrossRef]

Bonetti, Y.

A. Hugi, R. Terazzi, Y. Bonetti, A. Wittmann, M. Fischer, M. Beck, J. Faist, and E. Gini, “External cavity quantum cascade laser tunable from 7.6 to 11.4 µm,” Appl. Phys. Lett.95(6), 061103 (2009).
[CrossRef]

Boylan, K.

K. Boylan, V. Weldon, D. McDonald, J. O’Gorman, and J. Hegarty, “Sampled grating DBR laser as a spectroscopic source in multigas detection at 1.52-1.57 µm,” IEEE Proc. Optoelect.148(1), 19–24 (2001).
[CrossRef]

Capasso, F.

A. K. Goyal, M. Spencer, O. Shatrovoy, B. G. Lee, L. Diehl, C. Pfluegl, A. Sanchez, and F. Capasso, “Dispersion-compensated wavelength beam combining of quantum-cascade-laser arrays,” Opt. Express19(27), 26725–26732 (2011).
[CrossRef] [PubMed]

R. Blanchard, S. Menzel, C. Pflügl, L. Diehl, C. Wang, Y. Huang, J. H. Ryou, R. D. Dupuis, L. Dal Negro, and F. Capasso, “Gratings with an aperiodic basis: single-mode emission in multi-wavelength lasers,” New J. Phys.13(11), 113023 (2011).
[CrossRef]

Y. Huang, J.-H. Ryou, R. D. Dupuis, C. Pflügl, F. Capasso, K. Sun, A. M. Fischer, and F. A. Ponce, “Optimization of growth conditions for InGaAs/InAl/InP quantum cascade lasers by metalorganic chemical vapor deposition,” J. Cryst. Growth316(1), 75–80 (2011).
[CrossRef]

R. F. Curl, F. Capasso, C. Gmachl, A. A. Kosterev, B. McManus, R. Lewicki, M. Pusharsky, G. Wysocki, and F. K. Tittel, “Quantum cascade lasers in chemical physics,” Chem. Phys. Lett.487(1-3), 1–18 (2010).
[CrossRef]

B. G. Lee, H. F. A. Zhang, C. Pflügl, L. Diehl, M. A. Belkin, M. Fischer, A. Wittmann, J. Faist, and F. Capasso, “Broadband distributed-feedback quantum cascade laser array operating from 8.0 to 9.8 µm,” IEEE Photon. Technol. Lett.21(13), 914–916 (2009).
[CrossRef]

C. Gmachl, A. Straub, R. Colombelli, F. Capasso, D. Sivco, A. M. Sergent, and A. Y. Cho, “Single-mode, tunable distributed feedback and multiple-wavelength quantum cascade lasers,” IEEE J. Quant. Elec.38(6), 569–581 (2002).
[CrossRef]

J. Faist, C. Gmachl, F. Capasso, C. Sirtori, D. L. Sivco, J. N. Baillargeon, and A. Y. Cho, “Distributed feedback quantum cascade lasers,” Appl. Phys. Lett.70(20), 2670–2672 (1997).
[CrossRef]

Capasso, F. A.

Cho, A. Y.

C. Gmachl, A. Straub, R. Colombelli, F. Capasso, D. Sivco, A. M. Sergent, and A. Y. Cho, “Single-mode, tunable distributed feedback and multiple-wavelength quantum cascade lasers,” IEEE J. Quant. Elec.38(6), 569–581 (2002).
[CrossRef]

J. Faist, C. Gmachl, F. Capasso, C. Sirtori, D. L. Sivco, J. N. Baillargeon, and A. Y. Cho, “Distributed feedback quantum cascade lasers,” Appl. Phys. Lett.70(20), 2670–2672 (1997).
[CrossRef]

Chuang, Z. M.

V. Jayaraman, Z. M. Chuang, and L. A. Coldren, “Theory, design, and performance of extended tuning range semiconductor lasers with sampled gratings,” IEEE Jour. Quant. Elec.29(6), 1824–1834 (1993).
[CrossRef]

Coldren, L. A.

V. Jayaraman, Z. M. Chuang, and L. A. Coldren, “Theory, design, and performance of extended tuning range semiconductor lasers with sampled gratings,” IEEE Jour. Quant. Elec.29(6), 1824–1834 (1993).
[CrossRef]

Colombelli, R.

C. Gmachl, A. Straub, R. Colombelli, F. Capasso, D. Sivco, A. M. Sergent, and A. Y. Cho, “Single-mode, tunable distributed feedback and multiple-wavelength quantum cascade lasers,” IEEE J. Quant. Elec.38(6), 569–581 (2002).
[CrossRef]

Curl, R. F.

R. F. Curl, F. Capasso, C. Gmachl, A. A. Kosterev, B. McManus, R. Lewicki, M. Pusharsky, G. Wysocki, and F. K. Tittel, “Quantum cascade lasers in chemical physics,” Chem. Phys. Lett.487(1-3), 1–18 (2010).
[CrossRef]

Dal Negro, L.

R. Blanchard, S. Menzel, C. Pflügl, L. Diehl, C. Wang, Y. Huang, J. H. Ryou, R. D. Dupuis, L. Dal Negro, and F. Capasso, “Gratings with an aperiodic basis: single-mode emission in multi-wavelength lasers,” New J. Phys.13(11), 113023 (2011).
[CrossRef]

Diehl, L.

R. Blanchard, S. Menzel, C. Pflügl, L. Diehl, C. Wang, Y. Huang, J. H. Ryou, R. D. Dupuis, L. Dal Negro, and F. Capasso, “Gratings with an aperiodic basis: single-mode emission in multi-wavelength lasers,” New J. Phys.13(11), 113023 (2011).
[CrossRef]

A. K. Goyal, M. Spencer, O. Shatrovoy, B. G. Lee, L. Diehl, C. Pfluegl, A. Sanchez, and F. Capasso, “Dispersion-compensated wavelength beam combining of quantum-cascade-laser arrays,” Opt. Express19(27), 26725–26732 (2011).
[CrossRef] [PubMed]

B. G. Lee, H. F. A. Zhang, C. Pflügl, L. Diehl, M. A. Belkin, M. Fischer, A. Wittmann, J. Faist, and F. Capasso, “Broadband distributed-feedback quantum cascade laser array operating from 8.0 to 9.8 µm,” IEEE Photon. Technol. Lett.21(13), 914–916 (2009).
[CrossRef]

B. G. Lee, J. Kansky, A. K. Goyal, C. Pflügl, L. Diehl, M. A. Belkin, A. Sanchez, and F. A. Capasso, “Beam combining of quantum cascade laser arrays,” Opt. Express17(18), 16216–16224 (2009).
[CrossRef] [PubMed]

Dupuis, R. D.

R. Blanchard, S. Menzel, C. Pflügl, L. Diehl, C. Wang, Y. Huang, J. H. Ryou, R. D. Dupuis, L. Dal Negro, and F. Capasso, “Gratings with an aperiodic basis: single-mode emission in multi-wavelength lasers,” New J. Phys.13(11), 113023 (2011).
[CrossRef]

Y. Huang, J.-H. Ryou, R. D. Dupuis, C. Pflügl, F. Capasso, K. Sun, A. M. Fischer, and F. A. Ponce, “Optimization of growth conditions for InGaAs/InAl/InP quantum cascade lasers by metalorganic chemical vapor deposition,” J. Cryst. Growth316(1), 75–80 (2011).
[CrossRef]

Edamura, T.

K. Fujita, T. Edamura, S. Furuta, and M. Yamanishi, “High-performance, homogeneous broad-gain quantum cascade lasers based on dual-upper-state design,” Appl. Phys. Lett.96(24), 241107 (2010).
[CrossRef]

Faist, J.

A. Hugi, R. Terazzi, Y. Bonetti, A. Wittmann, M. Fischer, M. Beck, J. Faist, and E. Gini, “External cavity quantum cascade laser tunable from 7.6 to 11.4 µm,” Appl. Phys. Lett.95(6), 061103 (2009).
[CrossRef]

B. G. Lee, H. F. A. Zhang, C. Pflügl, L. Diehl, M. A. Belkin, M. Fischer, A. Wittmann, J. Faist, and F. Capasso, “Broadband distributed-feedback quantum cascade laser array operating from 8.0 to 9.8 µm,” IEEE Photon. Technol. Lett.21(13), 914–916 (2009).
[CrossRef]

A. Wittmann, T. Gresch, E. Gini, L. Hvozdara, N. Hoyler, M. Giovannini, and J. Faist, “High-performance bound-to-continuum quantum-cascade lasers for broad-gain applications,” IEEE Jour. Quant. Elec.44(1), 36–40 (2008).
[CrossRef]

R. Maulini, M. Beck, J. Faist, and E. Gini, “Broadband tuning of external cavity bound-to-continuum quantum-cascade lasers,” Appl. Phys. Lett.84(10), 1659–1661 (2004).
[CrossRef]

J. Faist, C. Gmachl, F. Capasso, C. Sirtori, D. L. Sivco, J. N. Baillargeon, and A. Y. Cho, “Distributed feedback quantum cascade lasers,” Appl. Phys. Lett.70(20), 2670–2672 (1997).
[CrossRef]

Fan, J. Y.

Y. Yao, X. J. Wang, J. Y. Fan, and C. F. Gmachl, “High performance ‘continuum-to-continuum’ quantum cascade lasers with a broad gain bandwidth of over 400 cm(−1),” Appl. Phys. Lett.97(8), 081115 (2010).
[CrossRef]

Fischer, A. M.

Y. Huang, J.-H. Ryou, R. D. Dupuis, C. Pflügl, F. Capasso, K. Sun, A. M. Fischer, and F. A. Ponce, “Optimization of growth conditions for InGaAs/InAl/InP quantum cascade lasers by metalorganic chemical vapor deposition,” J. Cryst. Growth316(1), 75–80 (2011).
[CrossRef]

Fischer, M.

A. Hugi, R. Terazzi, Y. Bonetti, A. Wittmann, M. Fischer, M. Beck, J. Faist, and E. Gini, “External cavity quantum cascade laser tunable from 7.6 to 11.4 µm,” Appl. Phys. Lett.95(6), 061103 (2009).
[CrossRef]

B. G. Lee, H. F. A. Zhang, C. Pflügl, L. Diehl, M. A. Belkin, M. Fischer, A. Wittmann, J. Faist, and F. Capasso, “Broadband distributed-feedback quantum cascade laser array operating from 8.0 to 9.8 µm,” IEEE Photon. Technol. Lett.21(13), 914–916 (2009).
[CrossRef]

Forchel, A.

Friedl, J.

Fuchs, P.

Fujita, K.

K. Fujita, T. Edamura, S. Furuta, and M. Yamanishi, “High-performance, homogeneous broad-gain quantum cascade lasers based on dual-upper-state design,” Appl. Phys. Lett.96(24), 241107 (2010).
[CrossRef]

Furuta, S.

K. Fujita, T. Edamura, S. Furuta, and M. Yamanishi, “High-performance, homogeneous broad-gain quantum cascade lasers based on dual-upper-state design,” Appl. Phys. Lett.96(24), 241107 (2010).
[CrossRef]

Gini, E.

A. Hugi, R. Terazzi, Y. Bonetti, A. Wittmann, M. Fischer, M. Beck, J. Faist, and E. Gini, “External cavity quantum cascade laser tunable from 7.6 to 11.4 µm,” Appl. Phys. Lett.95(6), 061103 (2009).
[CrossRef]

A. Wittmann, T. Gresch, E. Gini, L. Hvozdara, N. Hoyler, M. Giovannini, and J. Faist, “High-performance bound-to-continuum quantum-cascade lasers for broad-gain applications,” IEEE Jour. Quant. Elec.44(1), 36–40 (2008).
[CrossRef]

R. Maulini, M. Beck, J. Faist, and E. Gini, “Broadband tuning of external cavity bound-to-continuum quantum-cascade lasers,” Appl. Phys. Lett.84(10), 1659–1661 (2004).
[CrossRef]

Giovannini, M.

A. Wittmann, T. Gresch, E. Gini, L. Hvozdara, N. Hoyler, M. Giovannini, and J. Faist, “High-performance bound-to-continuum quantum-cascade lasers for broad-gain applications,” IEEE Jour. Quant. Elec.44(1), 36–40 (2008).
[CrossRef]

Gmachl, C.

R. F. Curl, F. Capasso, C. Gmachl, A. A. Kosterev, B. McManus, R. Lewicki, M. Pusharsky, G. Wysocki, and F. K. Tittel, “Quantum cascade lasers in chemical physics,” Chem. Phys. Lett.487(1-3), 1–18 (2010).
[CrossRef]

C. Gmachl, A. Straub, R. Colombelli, F. Capasso, D. Sivco, A. M. Sergent, and A. Y. Cho, “Single-mode, tunable distributed feedback and multiple-wavelength quantum cascade lasers,” IEEE J. Quant. Elec.38(6), 569–581 (2002).
[CrossRef]

J. Faist, C. Gmachl, F. Capasso, C. Sirtori, D. L. Sivco, J. N. Baillargeon, and A. Y. Cho, “Distributed feedback quantum cascade lasers,” Appl. Phys. Lett.70(20), 2670–2672 (1997).
[CrossRef]

Gmachl, C. F.

Y. Yao, X. J. Wang, J. Y. Fan, and C. F. Gmachl, “High performance ‘continuum-to-continuum’ quantum cascade lasers with a broad gain bandwidth of over 400 cm(−1),” Appl. Phys. Lett.97(8), 081115 (2010).
[CrossRef]

Goyal, A. K.

Gresch, T.

A. Wittmann, T. Gresch, E. Gini, L. Hvozdara, N. Hoyler, M. Giovannini, and J. Faist, “High-performance bound-to-continuum quantum-cascade lasers for broad-gain applications,” IEEE Jour. Quant. Elec.44(1), 36–40 (2008).
[CrossRef]

Hegarty, J.

K. Boylan, V. Weldon, D. McDonald, J. O’Gorman, and J. Hegarty, “Sampled grating DBR laser as a spectroscopic source in multigas detection at 1.52-1.57 µm,” IEEE Proc. Optoelect.148(1), 19–24 (2001).
[CrossRef]

Höfling, S.

Hoyler, N.

A. Wittmann, T. Gresch, E. Gini, L. Hvozdara, N. Hoyler, M. Giovannini, and J. Faist, “High-performance bound-to-continuum quantum-cascade lasers for broad-gain applications,” IEEE Jour. Quant. Elec.44(1), 36–40 (2008).
[CrossRef]

Huang, Y.

R. Blanchard, S. Menzel, C. Pflügl, L. Diehl, C. Wang, Y. Huang, J. H. Ryou, R. D. Dupuis, L. Dal Negro, and F. Capasso, “Gratings with an aperiodic basis: single-mode emission in multi-wavelength lasers,” New J. Phys.13(11), 113023 (2011).
[CrossRef]

Y. Huang, J.-H. Ryou, R. D. Dupuis, C. Pflügl, F. Capasso, K. Sun, A. M. Fischer, and F. A. Ponce, “Optimization of growth conditions for InGaAs/InAl/InP quantum cascade lasers by metalorganic chemical vapor deposition,” J. Cryst. Growth316(1), 75–80 (2011).
[CrossRef]

Hugi, A.

A. Hugi, R. Terazzi, Y. Bonetti, A. Wittmann, M. Fischer, M. Beck, J. Faist, and E. Gini, “External cavity quantum cascade laser tunable from 7.6 to 11.4 µm,” Appl. Phys. Lett.95(6), 061103 (2009).
[CrossRef]

Hvozdara, L.

A. Wittmann, T. Gresch, E. Gini, L. Hvozdara, N. Hoyler, M. Giovannini, and J. Faist, “High-performance bound-to-continuum quantum-cascade lasers for broad-gain applications,” IEEE Jour. Quant. Elec.44(1), 36–40 (2008).
[CrossRef]

Jayaraman, V.

V. Jayaraman, Z. M. Chuang, and L. A. Coldren, “Theory, design, and performance of extended tuning range semiconductor lasers with sampled gratings,” IEEE Jour. Quant. Elec.29(6), 1824–1834 (1993).
[CrossRef]

Kamp, M.

Kansky, J.

Koeth, J.

Kosterev, A. A.

R. F. Curl, F. Capasso, C. Gmachl, A. A. Kosterev, B. McManus, R. Lewicki, M. Pusharsky, G. Wysocki, and F. K. Tittel, “Quantum cascade lasers in chemical physics,” Chem. Phys. Lett.487(1-3), 1–18 (2010).
[CrossRef]

Lee, B. G.

Lewicki, R.

R. F. Curl, F. Capasso, C. Gmachl, A. A. Kosterev, B. McManus, R. Lewicki, M. Pusharsky, G. Wysocki, and F. K. Tittel, “Quantum cascade lasers in chemical physics,” Chem. Phys. Lett.487(1-3), 1–18 (2010).
[CrossRef]

Lu, Q. Y.

S. Slivken, N. Bandyopadhyay, S. Tsao, S. Nida, Y. Bai, Q. Y. Lu, and M. Razeghi, “Sampled grating, distributed feedback quantum cascade lasers with broad tunability and continuous operation at room temperature,” Appl. Phys. Lett.100(26), 261112 (2012).
[CrossRef]

Maulini, R.

R. Maulini, M. Beck, J. Faist, and E. Gini, “Broadband tuning of external cavity bound-to-continuum quantum-cascade lasers,” Appl. Phys. Lett.84(10), 1659–1661 (2004).
[CrossRef]

McDonald, D.

K. Boylan, V. Weldon, D. McDonald, J. O’Gorman, and J. Hegarty, “Sampled grating DBR laser as a spectroscopic source in multigas detection at 1.52-1.57 µm,” IEEE Proc. Optoelect.148(1), 19–24 (2001).
[CrossRef]

McManus, B.

R. F. Curl, F. Capasso, C. Gmachl, A. A. Kosterev, B. McManus, R. Lewicki, M. Pusharsky, G. Wysocki, and F. K. Tittel, “Quantum cascade lasers in chemical physics,” Chem. Phys. Lett.487(1-3), 1–18 (2010).
[CrossRef]

Menzel, S.

R. Blanchard, S. Menzel, C. Pflügl, L. Diehl, C. Wang, Y. Huang, J. H. Ryou, R. D. Dupuis, L. Dal Negro, and F. Capasso, “Gratings with an aperiodic basis: single-mode emission in multi-wavelength lasers,” New J. Phys.13(11), 113023 (2011).
[CrossRef]

Nida, S.

S. Slivken, N. Bandyopadhyay, S. Tsao, S. Nida, Y. Bai, Q. Y. Lu, and M. Razeghi, “Sampled grating, distributed feedback quantum cascade lasers with broad tunability and continuous operation at room temperature,” Appl. Phys. Lett.100(26), 261112 (2012).
[CrossRef]

O’Gorman, J.

K. Boylan, V. Weldon, D. McDonald, J. O’Gorman, and J. Hegarty, “Sampled grating DBR laser as a spectroscopic source in multigas detection at 1.52-1.57 µm,” IEEE Proc. Optoelect.148(1), 19–24 (2001).
[CrossRef]

Pfluegl, C.

Pflügl, C.

Y. Huang, J.-H. Ryou, R. D. Dupuis, C. Pflügl, F. Capasso, K. Sun, A. M. Fischer, and F. A. Ponce, “Optimization of growth conditions for InGaAs/InAl/InP quantum cascade lasers by metalorganic chemical vapor deposition,” J. Cryst. Growth316(1), 75–80 (2011).
[CrossRef]

R. Blanchard, S. Menzel, C. Pflügl, L. Diehl, C. Wang, Y. Huang, J. H. Ryou, R. D. Dupuis, L. Dal Negro, and F. Capasso, “Gratings with an aperiodic basis: single-mode emission in multi-wavelength lasers,” New J. Phys.13(11), 113023 (2011).
[CrossRef]

B. G. Lee, H. F. A. Zhang, C. Pflügl, L. Diehl, M. A. Belkin, M. Fischer, A. Wittmann, J. Faist, and F. Capasso, “Broadband distributed-feedback quantum cascade laser array operating from 8.0 to 9.8 µm,” IEEE Photon. Technol. Lett.21(13), 914–916 (2009).
[CrossRef]

B. G. Lee, J. Kansky, A. K. Goyal, C. Pflügl, L. Diehl, M. A. Belkin, A. Sanchez, and F. A. Capasso, “Beam combining of quantum cascade laser arrays,” Opt. Express17(18), 16216–16224 (2009).
[CrossRef] [PubMed]

Ponce, F. A.

Y. Huang, J.-H. Ryou, R. D. Dupuis, C. Pflügl, F. Capasso, K. Sun, A. M. Fischer, and F. A. Ponce, “Optimization of growth conditions for InGaAs/InAl/InP quantum cascade lasers by metalorganic chemical vapor deposition,” J. Cryst. Growth316(1), 75–80 (2011).
[CrossRef]

Pusharsky, M.

R. F. Curl, F. Capasso, C. Gmachl, A. A. Kosterev, B. McManus, R. Lewicki, M. Pusharsky, G. Wysocki, and F. K. Tittel, “Quantum cascade lasers in chemical physics,” Chem. Phys. Lett.487(1-3), 1–18 (2010).
[CrossRef]

Razeghi, M.

S. Slivken, N. Bandyopadhyay, S. Tsao, S. Nida, Y. Bai, Q. Y. Lu, and M. Razeghi, “Sampled grating, distributed feedback quantum cascade lasers with broad tunability and continuous operation at room temperature,” Appl. Phys. Lett.100(26), 261112 (2012).
[CrossRef]

Ryou, J. H.

R. Blanchard, S. Menzel, C. Pflügl, L. Diehl, C. Wang, Y. Huang, J. H. Ryou, R. D. Dupuis, L. Dal Negro, and F. Capasso, “Gratings with an aperiodic basis: single-mode emission in multi-wavelength lasers,” New J. Phys.13(11), 113023 (2011).
[CrossRef]

Ryou, J.-H.

Y. Huang, J.-H. Ryou, R. D. Dupuis, C. Pflügl, F. Capasso, K. Sun, A. M. Fischer, and F. A. Ponce, “Optimization of growth conditions for InGaAs/InAl/InP quantum cascade lasers by metalorganic chemical vapor deposition,” J. Cryst. Growth316(1), 75–80 (2011).
[CrossRef]

Sanchez, A.

Sergent, A. M.

C. Gmachl, A. Straub, R. Colombelli, F. Capasso, D. Sivco, A. M. Sergent, and A. Y. Cho, “Single-mode, tunable distributed feedback and multiple-wavelength quantum cascade lasers,” IEEE J. Quant. Elec.38(6), 569–581 (2002).
[CrossRef]

Shatrovoy, O.

Sirtori, C.

J. Faist, C. Gmachl, F. Capasso, C. Sirtori, D. L. Sivco, J. N. Baillargeon, and A. Y. Cho, “Distributed feedback quantum cascade lasers,” Appl. Phys. Lett.70(20), 2670–2672 (1997).
[CrossRef]

Sivco, D.

C. Gmachl, A. Straub, R. Colombelli, F. Capasso, D. Sivco, A. M. Sergent, and A. Y. Cho, “Single-mode, tunable distributed feedback and multiple-wavelength quantum cascade lasers,” IEEE J. Quant. Elec.38(6), 569–581 (2002).
[CrossRef]

Sivco, D. L.

J. Faist, C. Gmachl, F. Capasso, C. Sirtori, D. L. Sivco, J. N. Baillargeon, and A. Y. Cho, “Distributed feedback quantum cascade lasers,” Appl. Phys. Lett.70(20), 2670–2672 (1997).
[CrossRef]

Slivken, S.

S. Slivken, N. Bandyopadhyay, S. Tsao, S. Nida, Y. Bai, Q. Y. Lu, and M. Razeghi, “Sampled grating, distributed feedback quantum cascade lasers with broad tunability and continuous operation at room temperature,” Appl. Phys. Lett.100(26), 261112 (2012).
[CrossRef]

Spencer, M.

Straub, A.

C. Gmachl, A. Straub, R. Colombelli, F. Capasso, D. Sivco, A. M. Sergent, and A. Y. Cho, “Single-mode, tunable distributed feedback and multiple-wavelength quantum cascade lasers,” IEEE J. Quant. Elec.38(6), 569–581 (2002).
[CrossRef]

Sun, K.

Y. Huang, J.-H. Ryou, R. D. Dupuis, C. Pflügl, F. Capasso, K. Sun, A. M. Fischer, and F. A. Ponce, “Optimization of growth conditions for InGaAs/InAl/InP quantum cascade lasers by metalorganic chemical vapor deposition,” J. Cryst. Growth316(1), 75–80 (2011).
[CrossRef]

Terazzi, R.

A. Hugi, R. Terazzi, Y. Bonetti, A. Wittmann, M. Fischer, M. Beck, J. Faist, and E. Gini, “External cavity quantum cascade laser tunable from 7.6 to 11.4 µm,” Appl. Phys. Lett.95(6), 061103 (2009).
[CrossRef]

Tittel, F. K.

R. F. Curl, F. Capasso, C. Gmachl, A. A. Kosterev, B. McManus, R. Lewicki, M. Pusharsky, G. Wysocki, and F. K. Tittel, “Quantum cascade lasers in chemical physics,” Chem. Phys. Lett.487(1-3), 1–18 (2010).
[CrossRef]

Tsao, S.

S. Slivken, N. Bandyopadhyay, S. Tsao, S. Nida, Y. Bai, Q. Y. Lu, and M. Razeghi, “Sampled grating, distributed feedback quantum cascade lasers with broad tunability and continuous operation at room temperature,” Appl. Phys. Lett.100(26), 261112 (2012).
[CrossRef]

Wang, C.

R. Blanchard, S. Menzel, C. Pflügl, L. Diehl, C. Wang, Y. Huang, J. H. Ryou, R. D. Dupuis, L. Dal Negro, and F. Capasso, “Gratings with an aperiodic basis: single-mode emission in multi-wavelength lasers,” New J. Phys.13(11), 113023 (2011).
[CrossRef]

Wang, X. J.

Y. Yao, X. J. Wang, J. Y. Fan, and C. F. Gmachl, “High performance ‘continuum-to-continuum’ quantum cascade lasers with a broad gain bandwidth of over 400 cm(−1),” Appl. Phys. Lett.97(8), 081115 (2010).
[CrossRef]

Weldon, V.

K. Boylan, V. Weldon, D. McDonald, J. O’Gorman, and J. Hegarty, “Sampled grating DBR laser as a spectroscopic source in multigas detection at 1.52-1.57 µm,” IEEE Proc. Optoelect.148(1), 19–24 (2001).
[CrossRef]

Wittmann, A.

B. G. Lee, H. F. A. Zhang, C. Pflügl, L. Diehl, M. A. Belkin, M. Fischer, A. Wittmann, J. Faist, and F. Capasso, “Broadband distributed-feedback quantum cascade laser array operating from 8.0 to 9.8 µm,” IEEE Photon. Technol. Lett.21(13), 914–916 (2009).
[CrossRef]

A. Hugi, R. Terazzi, Y. Bonetti, A. Wittmann, M. Fischer, M. Beck, J. Faist, and E. Gini, “External cavity quantum cascade laser tunable from 7.6 to 11.4 µm,” Appl. Phys. Lett.95(6), 061103 (2009).
[CrossRef]

A. Wittmann, T. Gresch, E. Gini, L. Hvozdara, N. Hoyler, M. Giovannini, and J. Faist, “High-performance bound-to-continuum quantum-cascade lasers for broad-gain applications,” IEEE Jour. Quant. Elec.44(1), 36–40 (2008).
[CrossRef]

Worschech, L.

Wysocki, G.

R. F. Curl, F. Capasso, C. Gmachl, A. A. Kosterev, B. McManus, R. Lewicki, M. Pusharsky, G. Wysocki, and F. K. Tittel, “Quantum cascade lasers in chemical physics,” Chem. Phys. Lett.487(1-3), 1–18 (2010).
[CrossRef]

Yamanishi, M.

K. Fujita, T. Edamura, S. Furuta, and M. Yamanishi, “High-performance, homogeneous broad-gain quantum cascade lasers based on dual-upper-state design,” Appl. Phys. Lett.96(24), 241107 (2010).
[CrossRef]

Yao, Y.

Y. Yao, X. J. Wang, J. Y. Fan, and C. F. Gmachl, “High performance ‘continuum-to-continuum’ quantum cascade lasers with a broad gain bandwidth of over 400 cm(−1),” Appl. Phys. Lett.97(8), 081115 (2010).
[CrossRef]

Zhang, H. F. A.

B. G. Lee, H. F. A. Zhang, C. Pflügl, L. Diehl, M. A. Belkin, M. Fischer, A. Wittmann, J. Faist, and F. Capasso, “Broadband distributed-feedback quantum cascade laser array operating from 8.0 to 9.8 µm,” IEEE Photon. Technol. Lett.21(13), 914–916 (2009).
[CrossRef]

Appl. Phys. Lett.

A. Hugi, R. Terazzi, Y. Bonetti, A. Wittmann, M. Fischer, M. Beck, J. Faist, and E. Gini, “External cavity quantum cascade laser tunable from 7.6 to 11.4 µm,” Appl. Phys. Lett.95(6), 061103 (2009).
[CrossRef]

S. Slivken, N. Bandyopadhyay, S. Tsao, S. Nida, Y. Bai, Q. Y. Lu, and M. Razeghi, “Sampled grating, distributed feedback quantum cascade lasers with broad tunability and continuous operation at room temperature,” Appl. Phys. Lett.100(26), 261112 (2012).
[CrossRef]

R. Maulini, M. Beck, J. Faist, and E. Gini, “Broadband tuning of external cavity bound-to-continuum quantum-cascade lasers,” Appl. Phys. Lett.84(10), 1659–1661 (2004).
[CrossRef]

Y. Yao, X. J. Wang, J. Y. Fan, and C. F. Gmachl, “High performance ‘continuum-to-continuum’ quantum cascade lasers with a broad gain bandwidth of over 400 cm(−1),” Appl. Phys. Lett.97(8), 081115 (2010).
[CrossRef]

K. Fujita, T. Edamura, S. Furuta, and M. Yamanishi, “High-performance, homogeneous broad-gain quantum cascade lasers based on dual-upper-state design,” Appl. Phys. Lett.96(24), 241107 (2010).
[CrossRef]

J. Faist, C. Gmachl, F. Capasso, C. Sirtori, D. L. Sivco, J. N. Baillargeon, and A. Y. Cho, “Distributed feedback quantum cascade lasers,” Appl. Phys. Lett.70(20), 2670–2672 (1997).
[CrossRef]

Chem. Phys. Lett.

R. F. Curl, F. Capasso, C. Gmachl, A. A. Kosterev, B. McManus, R. Lewicki, M. Pusharsky, G. Wysocki, and F. K. Tittel, “Quantum cascade lasers in chemical physics,” Chem. Phys. Lett.487(1-3), 1–18 (2010).
[CrossRef]

IEEE J. Quant. Elec.

C. Gmachl, A. Straub, R. Colombelli, F. Capasso, D. Sivco, A. M. Sergent, and A. Y. Cho, “Single-mode, tunable distributed feedback and multiple-wavelength quantum cascade lasers,” IEEE J. Quant. Elec.38(6), 569–581 (2002).
[CrossRef]

IEEE Jour. Quant. Elec.

A. Wittmann, T. Gresch, E. Gini, L. Hvozdara, N. Hoyler, M. Giovannini, and J. Faist, “High-performance bound-to-continuum quantum-cascade lasers for broad-gain applications,” IEEE Jour. Quant. Elec.44(1), 36–40 (2008).
[CrossRef]

V. Jayaraman, Z. M. Chuang, and L. A. Coldren, “Theory, design, and performance of extended tuning range semiconductor lasers with sampled gratings,” IEEE Jour. Quant. Elec.29(6), 1824–1834 (1993).
[CrossRef]

IEEE Photon. Technol. Lett.

B. G. Lee, H. F. A. Zhang, C. Pflügl, L. Diehl, M. A. Belkin, M. Fischer, A. Wittmann, J. Faist, and F. Capasso, “Broadband distributed-feedback quantum cascade laser array operating from 8.0 to 9.8 µm,” IEEE Photon. Technol. Lett.21(13), 914–916 (2009).
[CrossRef]

IEEE Proc. Optoelect.

K. Boylan, V. Weldon, D. McDonald, J. O’Gorman, and J. Hegarty, “Sampled grating DBR laser as a spectroscopic source in multigas detection at 1.52-1.57 µm,” IEEE Proc. Optoelect.148(1), 19–24 (2001).
[CrossRef]

J. Cryst. Growth

Y. Huang, J.-H. Ryou, R. D. Dupuis, C. Pflügl, F. Capasso, K. Sun, A. M. Fischer, and F. A. Ponce, “Optimization of growth conditions for InGaAs/InAl/InP quantum cascade lasers by metalorganic chemical vapor deposition,” J. Cryst. Growth316(1), 75–80 (2011).
[CrossRef]

New J. Phys.

R. Blanchard, S. Menzel, C. Pflügl, L. Diehl, C. Wang, Y. Huang, J. H. Ryou, R. D. Dupuis, L. Dal Negro, and F. Capasso, “Gratings with an aperiodic basis: single-mode emission in multi-wavelength lasers,” New J. Phys.13(11), 113023 (2011).
[CrossRef]

Opt. Express

Other

L. A. Coldren, US Patent # 4896325.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

(a) Schematic of a typical sampled grating DBR laser, consisting of two sampled grating reflectors (SGR) with slightly different superperiods on each side of a Fabry-Pérot (FP) cavity. The phase section controls the round-trip phase accumulation, which is critical for continuous tuning, but is not included in our device. Traditionally, the gain medium (orange) is restricted to the gain section and the facets are AR-coated, but in our device the SGRs also have gain and the facets are left uncoated. (b) Reflectivities of the SGRs and basic tuning mechanism. Light traveling in the FP cavity experiences a reflection at both SGRs whose magnitude depends on the frequency of the light. The reflectivities of the two SGRs are depicted as frequency combs (SGR1 = red, SGR2 = blue) with slightly different spacings due to the difference in the superperiods. When peaks from the two SGRs overlap at a particular frequency, the neighboring peaks do not. Therefore, light at the overlap frequency will experience a large reflection at both SGRs and have a lower lasing threshold compared to other modes. To tune the laser frequency, SGR1 is heated so that its refractive index increases and the reflectivity spectrum correspondingly shifts towards smaller wavenumbers, while SGR2 is not index tuned. The resulting alignment of the two combs is seen to cause a discrete mode hop to a mode with smaller wavenumber. (Not shown: heating SGR2 will instead cause the mode to hop to a larger wavenumber.)

Fig. 2
Fig. 2

The construction of a SGR and its associated Fourier components can be understood in (a) real space and (b) Fourier space. Beginning with an infinitely long DBR, a SGR is formed by multiplication with a top-hat function and convolution with a comb function. In Fourier space, the fundamental frequency of the DBR is convolved with a sinc function and multiplied by a comb function. The two periodicities Λg of the grating and Λs of the sampling manifest themselves as a comb in frequency space of spacing 1/(2Λs) modulated by an envelope centered at wavenumber 1/(2Λg) whose width between the first two zeros is 1/(NgΛg), where Ng is the number of grating periods.

Fig. 3
Fig. 3

(a) Simulated reflectivity spectra of the two SGRs using the experimental device parameters (with AR coatings assumed on the device facets), showing the two different comb spacing values k1 = 3.75 cm−1 and k2 = 4.40 cm−1. (b) Zoomed-out view which shows the repeat spacing at krep = 26 cm−1 as well as the envelope modulation of the spectra. (c) Product of the two reflectivities which shows the modes with the largest feedback.

Fig. 4
Fig. 4

Experimental approach to achieving discrete tuning. A long tuning pulse of width ttune = 3 µs is applied to one of the SGR sections (SGR1 in the figure), during which time the section heats up. A short pulse of width tlase = 50 ns applied to the FP section and SGR2 stimulates lasing, and the delay between the start of the two pulses is controlled by tdel to achieve different temperatures of SGR1 during lasing and therefore enable tuning.

Fig. 5
Fig. 5

(a) Spectra recorded at various values of tdel, indicated in the figure, for I1 = 1.27 A and IFP,2 = 1.62 A, demonstrating the expected mode hops to the left in steps of Δk2 = 4.40 cm−1 as SGR1 is heated. The asymmetric line shape seen in some of the side modes is an artifact from the FTIR spectrometer. (b) Simulation of the normalized reflectivity product of the two mirrors at various values of the fractional index tuning Δn/n, indicated in the figure, of SGR1. The black arrow for a particular Δn/n indicates the wavenumber which sees the highest reflectivity, and gives an approximate indication of the mode most likely to lase if one ignores the small variation in the gain spectrum.

Fig. 6
Fig. 6

Experimentally measured single modes, taken at different values of the applied currents and delay, not indicated, and individually normalized. (a) SGR1 is temperature tuned as discussed in the text. The black arrows denote the six peaks at the same locations as seen in Fig. 5(a), which span the full predicted tuning range of the device based on the simplest sampled grating theory. (b) SGR2 is tuned. The ten single modes span a range of 63 cm−1.

Metrics