Abstract

We report on two orders of magnitude reduction in the fluorescence lifetime when a single molecule placed in a thin film is surrounded by two gold nanospheres across the film interface. By attaching one of the gold particles to the end of a glass fiber tip, we could control the modification of the molecular fluorescence at will. We find a good agreement between our experimental data and the outcome of numerical calculations.

© 2012 OSA

PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. Loudon, The Quantum Theory of Light (Oxford University Press, 2000).
  2. K. Drexhage, “Interaction of light with monomolecular dye layers,” Prog. Opt.120, 164–232 (1974).
  3. P. R. Berman, Cavity Quantum Electrodynamics (Academic Press, 1994).
  4. H. Yokoyama and K. Ujihara, eds., Spontaneous Emission and Laser Oscillation in Microcavities (CRC Press, 1995).
  5. R. K. Chang and A. J. Campillo, eds., Optical Processes in Microcavities (World Scientific, 1996).
  6. D. Press, S. Götzinger, S. Reitzenstein, C. Hofmann, A. Löffler, M. Kamp, A. Forchel, and Y. Yamamoto, “Photon antibunching from a single quantum-dot-microcavity system in the strong coupling regime,” Phys. Rev. Lett.98, 117402 (2007).
    [CrossRef] [PubMed]
  7. A. Alu and M. Agio,eds., Optical Antennas (Cambridge University Press, 2013).
  8. T. Kalkbrenner, M. Ramstein, J. Mlynek, and V. Sandoghdar, “A single gold particle as a probe for apertureless SNOM,” J. Micros.202, 72–76 (2001).
    [CrossRef]
  9. T. Kalkbrenner, U. Håkanson, A. Schädle, S. Burger, C. Henkel, and V. Sandoghdar, “Optical microscopy via spectral modifications of a nano-antenna,” Phys. Rev. Lett.95, 200801 (2005).
  10. P. Anger, P. Bharadwaj, and L. Novotny, “Enhancement and quenching of single molecule fluorescence,” Phys. Rev. Lett.96, 113002 (2006).
    [CrossRef] [PubMed]
  11. S. Kühn, U. Håkanson, L. Rogobete, and V. Sandoghdar, “Enhancement of single molecule fluorescence using a gold nanoparticle as an optical nano-antenna,” Phys. Rev. Lett.97, 017402 (2006).
    [CrossRef] [PubMed]
  12. H. Eghlidi, K.-G. Lee, X.-W. Chen, S. Götzinger, and V. Sandoghdar, “Resolution and enhancement in nanoantenna-based fluorescence microscopy,” Nano Lett.9, 4007–4011 (2009).
    [CrossRef] [PubMed]
  13. P. Bharadwaj and L. Novotny, “Plasmon-enhanced photoemission from a single Y3N@C80 fullerene,” J. Phys. Chem. C114, 7444–7447 (2010).
    [CrossRef]
  14. L. Rogobete, F. Kaminski, M. Agio, and V. Sandoghdar, “Design of nanoantennae for the enhancement of spontaneous emission,” Opt. Lett.32, 1623–1625 (2007).
    [CrossRef] [PubMed]
  15. D.V. Guzatov and V.V. Klimov, “Optical properties of a plasmonic nano-antenna: analytical approach,” New J. Phys.13, 053034 (2011).
    [CrossRef]
  16. J. Farahani, D. W. Pohl, H.-J. Eisler, and B. Hecht, “Single quantum dot coupled to scanning optical antenna: a tunable superemitter,” Phys. Rev. Lett.95, 017402 (2005).
    [CrossRef] [PubMed]
  17. S. Schietinger, M. Barth, T. Aichele, and O. Benson, “Plasmon-enhanced single photon emission from a nanoassembled metal-diamond hybrid structure at room temperature,” Nano Lett.9, 1694–1698 (2009).
    [CrossRef] [PubMed]
  18. A. Kinkhabwala, Z. Yu, S. Fan, Y. Avlasevich, K. Müllen, and W. E. Moerner, “Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna,” Nat. Photon.3, 654–657 (2009).
    [CrossRef]
  19. U. C. Fischer and H. P. Zingsheim, “Submicroscopic contact imaging with visible light by energy transfer,” J. Vac. Sci. Technol.19, 881 (1981).
    [CrossRef]
  20. B. J. Y. Tan, C. H. Sow, T. S. Koh, K. C. Chin, A. T. S. Wee, and C. K. Ong, “Fabrication of size-tunable gold nanoparticles array with nanosphere lithography, reactive ion etching, and thermal annealing,” J. Phys. Chem. B109, 11100–11109 (2005).
    [CrossRef]
  21. T. Kalkbrenner, M. Graf, C. Durkan, J. Mlynek, and V. Sandoghdar, “High-contrast topography-free sample for near-field optical microscopy,” Appl. Phys. Lett.76, 1206 (2000).
    [CrossRef]
  22. R. J. Pfab, J. Zimmermann, C. Hettich, I. Gerhardt, A. Renn, and V. Sandoghdar, “Aligned terrylene molecules in a spin-coated ultrathin crystalline film of p-terphenyl,” Chem. Phys. Lett.387, 490–495 (2004).
    [CrossRef]
  23. C. D. Geddes, A. Parfenov, I. Gryczynski, and J. R. Lakowicz, “Luminescent blinking of gold nanoparticles,” Chem. Phys. Lett.380, 269–272 (2003).
    [CrossRef]
  24. G. S. Harms, T. Irngartinger, D. Reiss, A. Renn, and U. P. Wild, “Fluorescence lifetimes of terrylene in solid matrices,” Chem. Phys. Lett.313, 533–538 (1999).
    [CrossRef]
  25. W. Lukosz and R. E. Kunz, “Fluorescence lifetime of magnetic and electric dipoles near a dielectric interface,” Opt. Commun.20, 195–199 (1977).
    [CrossRef]
  26. R. Ruppin, “Decay of an excited molecule near a small metal sphere,” J. Chem. Phys.76, 1681–1684 (1982).
    [CrossRef]
  27. X-W. Chen, M. Agio, and V. Sandoghdar, “Metallo-dielectric hybrid antennas for ultrastrong enhancement of spontaneous emission,” Phys. Rev. Lett.108, 233001 (2012).
    [CrossRef]
  28. B. C. Buchler, T. Kalkbrenner, C. Hettich, and V. Sandoghdar, “Measuring the quantum efficiency of single radiating dipoles using a scanning mirror,” Phys. Rev. Lett.95, 063003 (2005).
    [CrossRef] [PubMed]
  29. N. M. Mojarad and M. Agio, “Tailoring the excitation of localized surface plasmon-polariton resonances by focusing radially-polarized beams,” Opt. Express17, 117–122 (2009).
    [CrossRef] [PubMed]
  30. M. Agio, G. Mori, F. Kaminski, L. Rogobete, S. Kühn, V. Callegari, P. M. Nellen, F. Robin, Y. Ekinci, U. Sennhauser, H. Jäckel, H. H. Solak, and V. Sandoghdar, “Engineering gold nano-antennae to enhance the emission of quantum emitters,” Proc. SPIE6717, 67170R (2007).
    [CrossRef]

2012

X-W. Chen, M. Agio, and V. Sandoghdar, “Metallo-dielectric hybrid antennas for ultrastrong enhancement of spontaneous emission,” Phys. Rev. Lett.108, 233001 (2012).
[CrossRef]

2011

D.V. Guzatov and V.V. Klimov, “Optical properties of a plasmonic nano-antenna: analytical approach,” New J. Phys.13, 053034 (2011).
[CrossRef]

2010

P. Bharadwaj and L. Novotny, “Plasmon-enhanced photoemission from a single Y3N@C80 fullerene,” J. Phys. Chem. C114, 7444–7447 (2010).
[CrossRef]

2009

N. M. Mojarad and M. Agio, “Tailoring the excitation of localized surface plasmon-polariton resonances by focusing radially-polarized beams,” Opt. Express17, 117–122 (2009).
[CrossRef] [PubMed]

H. Eghlidi, K.-G. Lee, X.-W. Chen, S. Götzinger, and V. Sandoghdar, “Resolution and enhancement in nanoantenna-based fluorescence microscopy,” Nano Lett.9, 4007–4011 (2009).
[CrossRef] [PubMed]

S. Schietinger, M. Barth, T. Aichele, and O. Benson, “Plasmon-enhanced single photon emission from a nanoassembled metal-diamond hybrid structure at room temperature,” Nano Lett.9, 1694–1698 (2009).
[CrossRef] [PubMed]

A. Kinkhabwala, Z. Yu, S. Fan, Y. Avlasevich, K. Müllen, and W. E. Moerner, “Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna,” Nat. Photon.3, 654–657 (2009).
[CrossRef]

2008

T. Kalkbrenner, U. Håkanson, A. Schädle, S. Burger, C. Henkel, and V. Sandoghdar, “Optical microscopy via spectral modifications of a nano-antenna,” Phys. Rev. Lett.95, 200801 (2005).

2007

D. Press, S. Götzinger, S. Reitzenstein, C. Hofmann, A. Löffler, M. Kamp, A. Forchel, and Y. Yamamoto, “Photon antibunching from a single quantum-dot-microcavity system in the strong coupling regime,” Phys. Rev. Lett.98, 117402 (2007).
[CrossRef] [PubMed]

M. Agio, G. Mori, F. Kaminski, L. Rogobete, S. Kühn, V. Callegari, P. M. Nellen, F. Robin, Y. Ekinci, U. Sennhauser, H. Jäckel, H. H. Solak, and V. Sandoghdar, “Engineering gold nano-antennae to enhance the emission of quantum emitters,” Proc. SPIE6717, 67170R (2007).
[CrossRef]

L. Rogobete, F. Kaminski, M. Agio, and V. Sandoghdar, “Design of nanoantennae for the enhancement of spontaneous emission,” Opt. Lett.32, 1623–1625 (2007).
[CrossRef] [PubMed]

2006

P. Anger, P. Bharadwaj, and L. Novotny, “Enhancement and quenching of single molecule fluorescence,” Phys. Rev. Lett.96, 113002 (2006).
[CrossRef] [PubMed]

S. Kühn, U. Håkanson, L. Rogobete, and V. Sandoghdar, “Enhancement of single molecule fluorescence using a gold nanoparticle as an optical nano-antenna,” Phys. Rev. Lett.97, 017402 (2006).
[CrossRef] [PubMed]

2005

J. Farahani, D. W. Pohl, H.-J. Eisler, and B. Hecht, “Single quantum dot coupled to scanning optical antenna: a tunable superemitter,” Phys. Rev. Lett.95, 017402 (2005).
[CrossRef] [PubMed]

B. J. Y. Tan, C. H. Sow, T. S. Koh, K. C. Chin, A. T. S. Wee, and C. K. Ong, “Fabrication of size-tunable gold nanoparticles array with nanosphere lithography, reactive ion etching, and thermal annealing,” J. Phys. Chem. B109, 11100–11109 (2005).
[CrossRef]

B. C. Buchler, T. Kalkbrenner, C. Hettich, and V. Sandoghdar, “Measuring the quantum efficiency of single radiating dipoles using a scanning mirror,” Phys. Rev. Lett.95, 063003 (2005).
[CrossRef] [PubMed]

2004

R. J. Pfab, J. Zimmermann, C. Hettich, I. Gerhardt, A. Renn, and V. Sandoghdar, “Aligned terrylene molecules in a spin-coated ultrathin crystalline film of p-terphenyl,” Chem. Phys. Lett.387, 490–495 (2004).
[CrossRef]

2003

C. D. Geddes, A. Parfenov, I. Gryczynski, and J. R. Lakowicz, “Luminescent blinking of gold nanoparticles,” Chem. Phys. Lett.380, 269–272 (2003).
[CrossRef]

2001

T. Kalkbrenner, M. Ramstein, J. Mlynek, and V. Sandoghdar, “A single gold particle as a probe for apertureless SNOM,” J. Micros.202, 72–76 (2001).
[CrossRef]

2000

T. Kalkbrenner, M. Graf, C. Durkan, J. Mlynek, and V. Sandoghdar, “High-contrast topography-free sample for near-field optical microscopy,” Appl. Phys. Lett.76, 1206 (2000).
[CrossRef]

1999

G. S. Harms, T. Irngartinger, D. Reiss, A. Renn, and U. P. Wild, “Fluorescence lifetimes of terrylene in solid matrices,” Chem. Phys. Lett.313, 533–538 (1999).
[CrossRef]

1982

R. Ruppin, “Decay of an excited molecule near a small metal sphere,” J. Chem. Phys.76, 1681–1684 (1982).
[CrossRef]

1981

U. C. Fischer and H. P. Zingsheim, “Submicroscopic contact imaging with visible light by energy transfer,” J. Vac. Sci. Technol.19, 881 (1981).
[CrossRef]

1977

W. Lukosz and R. E. Kunz, “Fluorescence lifetime of magnetic and electric dipoles near a dielectric interface,” Opt. Commun.20, 195–199 (1977).
[CrossRef]

1974

K. Drexhage, “Interaction of light with monomolecular dye layers,” Prog. Opt.120, 164–232 (1974).

Agio, M.

X-W. Chen, M. Agio, and V. Sandoghdar, “Metallo-dielectric hybrid antennas for ultrastrong enhancement of spontaneous emission,” Phys. Rev. Lett.108, 233001 (2012).
[CrossRef]

N. M. Mojarad and M. Agio, “Tailoring the excitation of localized surface plasmon-polariton resonances by focusing radially-polarized beams,” Opt. Express17, 117–122 (2009).
[CrossRef] [PubMed]

L. Rogobete, F. Kaminski, M. Agio, and V. Sandoghdar, “Design of nanoantennae for the enhancement of spontaneous emission,” Opt. Lett.32, 1623–1625 (2007).
[CrossRef] [PubMed]

M. Agio, G. Mori, F. Kaminski, L. Rogobete, S. Kühn, V. Callegari, P. M. Nellen, F. Robin, Y. Ekinci, U. Sennhauser, H. Jäckel, H. H. Solak, and V. Sandoghdar, “Engineering gold nano-antennae to enhance the emission of quantum emitters,” Proc. SPIE6717, 67170R (2007).
[CrossRef]

A. Alu and M. Agio,eds., Optical Antennas (Cambridge University Press, 2013).

Aichele, T.

S. Schietinger, M. Barth, T. Aichele, and O. Benson, “Plasmon-enhanced single photon emission from a nanoassembled metal-diamond hybrid structure at room temperature,” Nano Lett.9, 1694–1698 (2009).
[CrossRef] [PubMed]

Alu, A.

A. Alu and M. Agio,eds., Optical Antennas (Cambridge University Press, 2013).

Anger, P.

P. Anger, P. Bharadwaj, and L. Novotny, “Enhancement and quenching of single molecule fluorescence,” Phys. Rev. Lett.96, 113002 (2006).
[CrossRef] [PubMed]

Avlasevich, Y.

A. Kinkhabwala, Z. Yu, S. Fan, Y. Avlasevich, K. Müllen, and W. E. Moerner, “Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna,” Nat. Photon.3, 654–657 (2009).
[CrossRef]

Barth, M.

S. Schietinger, M. Barth, T. Aichele, and O. Benson, “Plasmon-enhanced single photon emission from a nanoassembled metal-diamond hybrid structure at room temperature,” Nano Lett.9, 1694–1698 (2009).
[CrossRef] [PubMed]

Benson, O.

S. Schietinger, M. Barth, T. Aichele, and O. Benson, “Plasmon-enhanced single photon emission from a nanoassembled metal-diamond hybrid structure at room temperature,” Nano Lett.9, 1694–1698 (2009).
[CrossRef] [PubMed]

Berman, P. R.

P. R. Berman, Cavity Quantum Electrodynamics (Academic Press, 1994).

Bharadwaj, P.

P. Bharadwaj and L. Novotny, “Plasmon-enhanced photoemission from a single Y3N@C80 fullerene,” J. Phys. Chem. C114, 7444–7447 (2010).
[CrossRef]

P. Anger, P. Bharadwaj, and L. Novotny, “Enhancement and quenching of single molecule fluorescence,” Phys. Rev. Lett.96, 113002 (2006).
[CrossRef] [PubMed]

Buchler, B. C.

B. C. Buchler, T. Kalkbrenner, C. Hettich, and V. Sandoghdar, “Measuring the quantum efficiency of single radiating dipoles using a scanning mirror,” Phys. Rev. Lett.95, 063003 (2005).
[CrossRef] [PubMed]

Burger, S.

T. Kalkbrenner, U. Håkanson, A. Schädle, S. Burger, C. Henkel, and V. Sandoghdar, “Optical microscopy via spectral modifications of a nano-antenna,” Phys. Rev. Lett.95, 200801 (2005).

Callegari, V.

M. Agio, G. Mori, F. Kaminski, L. Rogobete, S. Kühn, V. Callegari, P. M. Nellen, F. Robin, Y. Ekinci, U. Sennhauser, H. Jäckel, H. H. Solak, and V. Sandoghdar, “Engineering gold nano-antennae to enhance the emission of quantum emitters,” Proc. SPIE6717, 67170R (2007).
[CrossRef]

Campillo, A. J.

R. K. Chang and A. J. Campillo, eds., Optical Processes in Microcavities (World Scientific, 1996).

Chang, R. K.

R. K. Chang and A. J. Campillo, eds., Optical Processes in Microcavities (World Scientific, 1996).

Chen, X.-W.

H. Eghlidi, K.-G. Lee, X.-W. Chen, S. Götzinger, and V. Sandoghdar, “Resolution and enhancement in nanoantenna-based fluorescence microscopy,” Nano Lett.9, 4007–4011 (2009).
[CrossRef] [PubMed]

Chen, X-W.

X-W. Chen, M. Agio, and V. Sandoghdar, “Metallo-dielectric hybrid antennas for ultrastrong enhancement of spontaneous emission,” Phys. Rev. Lett.108, 233001 (2012).
[CrossRef]

Chin, K. C.

B. J. Y. Tan, C. H. Sow, T. S. Koh, K. C. Chin, A. T. S. Wee, and C. K. Ong, “Fabrication of size-tunable gold nanoparticles array with nanosphere lithography, reactive ion etching, and thermal annealing,” J. Phys. Chem. B109, 11100–11109 (2005).
[CrossRef]

Drexhage, K.

K. Drexhage, “Interaction of light with monomolecular dye layers,” Prog. Opt.120, 164–232 (1974).

Durkan, C.

T. Kalkbrenner, M. Graf, C. Durkan, J. Mlynek, and V. Sandoghdar, “High-contrast topography-free sample for near-field optical microscopy,” Appl. Phys. Lett.76, 1206 (2000).
[CrossRef]

Eghlidi, H.

H. Eghlidi, K.-G. Lee, X.-W. Chen, S. Götzinger, and V. Sandoghdar, “Resolution and enhancement in nanoantenna-based fluorescence microscopy,” Nano Lett.9, 4007–4011 (2009).
[CrossRef] [PubMed]

Eisler, H.-J.

J. Farahani, D. W. Pohl, H.-J. Eisler, and B. Hecht, “Single quantum dot coupled to scanning optical antenna: a tunable superemitter,” Phys. Rev. Lett.95, 017402 (2005).
[CrossRef] [PubMed]

Ekinci, Y.

M. Agio, G. Mori, F. Kaminski, L. Rogobete, S. Kühn, V. Callegari, P. M. Nellen, F. Robin, Y. Ekinci, U. Sennhauser, H. Jäckel, H. H. Solak, and V. Sandoghdar, “Engineering gold nano-antennae to enhance the emission of quantum emitters,” Proc. SPIE6717, 67170R (2007).
[CrossRef]

Fan, S.

A. Kinkhabwala, Z. Yu, S. Fan, Y. Avlasevich, K. Müllen, and W. E. Moerner, “Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna,” Nat. Photon.3, 654–657 (2009).
[CrossRef]

Farahani, J.

J. Farahani, D. W. Pohl, H.-J. Eisler, and B. Hecht, “Single quantum dot coupled to scanning optical antenna: a tunable superemitter,” Phys. Rev. Lett.95, 017402 (2005).
[CrossRef] [PubMed]

Fischer, U. C.

U. C. Fischer and H. P. Zingsheim, “Submicroscopic contact imaging with visible light by energy transfer,” J. Vac. Sci. Technol.19, 881 (1981).
[CrossRef]

Forchel, A.

D. Press, S. Götzinger, S. Reitzenstein, C. Hofmann, A. Löffler, M. Kamp, A. Forchel, and Y. Yamamoto, “Photon antibunching from a single quantum-dot-microcavity system in the strong coupling regime,” Phys. Rev. Lett.98, 117402 (2007).
[CrossRef] [PubMed]

Geddes, C. D.

C. D. Geddes, A. Parfenov, I. Gryczynski, and J. R. Lakowicz, “Luminescent blinking of gold nanoparticles,” Chem. Phys. Lett.380, 269–272 (2003).
[CrossRef]

Gerhardt, I.

R. J. Pfab, J. Zimmermann, C. Hettich, I. Gerhardt, A. Renn, and V. Sandoghdar, “Aligned terrylene molecules in a spin-coated ultrathin crystalline film of p-terphenyl,” Chem. Phys. Lett.387, 490–495 (2004).
[CrossRef]

Götzinger, S.

H. Eghlidi, K.-G. Lee, X.-W. Chen, S. Götzinger, and V. Sandoghdar, “Resolution and enhancement in nanoantenna-based fluorescence microscopy,” Nano Lett.9, 4007–4011 (2009).
[CrossRef] [PubMed]

D. Press, S. Götzinger, S. Reitzenstein, C. Hofmann, A. Löffler, M. Kamp, A. Forchel, and Y. Yamamoto, “Photon antibunching from a single quantum-dot-microcavity system in the strong coupling regime,” Phys. Rev. Lett.98, 117402 (2007).
[CrossRef] [PubMed]

Graf, M.

T. Kalkbrenner, M. Graf, C. Durkan, J. Mlynek, and V. Sandoghdar, “High-contrast topography-free sample for near-field optical microscopy,” Appl. Phys. Lett.76, 1206 (2000).
[CrossRef]

Gryczynski, I.

C. D. Geddes, A. Parfenov, I. Gryczynski, and J. R. Lakowicz, “Luminescent blinking of gold nanoparticles,” Chem. Phys. Lett.380, 269–272 (2003).
[CrossRef]

Guzatov, D.V.

D.V. Guzatov and V.V. Klimov, “Optical properties of a plasmonic nano-antenna: analytical approach,” New J. Phys.13, 053034 (2011).
[CrossRef]

Håkanson, U.

T. Kalkbrenner, U. Håkanson, A. Schädle, S. Burger, C. Henkel, and V. Sandoghdar, “Optical microscopy via spectral modifications of a nano-antenna,” Phys. Rev. Lett.95, 200801 (2005).

S. Kühn, U. Håkanson, L. Rogobete, and V. Sandoghdar, “Enhancement of single molecule fluorescence using a gold nanoparticle as an optical nano-antenna,” Phys. Rev. Lett.97, 017402 (2006).
[CrossRef] [PubMed]

Harms, G. S.

G. S. Harms, T. Irngartinger, D. Reiss, A. Renn, and U. P. Wild, “Fluorescence lifetimes of terrylene in solid matrices,” Chem. Phys. Lett.313, 533–538 (1999).
[CrossRef]

Hecht, B.

J. Farahani, D. W. Pohl, H.-J. Eisler, and B. Hecht, “Single quantum dot coupled to scanning optical antenna: a tunable superemitter,” Phys. Rev. Lett.95, 017402 (2005).
[CrossRef] [PubMed]

Henkel, C.

T. Kalkbrenner, U. Håkanson, A. Schädle, S. Burger, C. Henkel, and V. Sandoghdar, “Optical microscopy via spectral modifications of a nano-antenna,” Phys. Rev. Lett.95, 200801 (2005).

Hettich, C.

B. C. Buchler, T. Kalkbrenner, C. Hettich, and V. Sandoghdar, “Measuring the quantum efficiency of single radiating dipoles using a scanning mirror,” Phys. Rev. Lett.95, 063003 (2005).
[CrossRef] [PubMed]

R. J. Pfab, J. Zimmermann, C. Hettich, I. Gerhardt, A. Renn, and V. Sandoghdar, “Aligned terrylene molecules in a spin-coated ultrathin crystalline film of p-terphenyl,” Chem. Phys. Lett.387, 490–495 (2004).
[CrossRef]

Hofmann, C.

D. Press, S. Götzinger, S. Reitzenstein, C. Hofmann, A. Löffler, M. Kamp, A. Forchel, and Y. Yamamoto, “Photon antibunching from a single quantum-dot-microcavity system in the strong coupling regime,” Phys. Rev. Lett.98, 117402 (2007).
[CrossRef] [PubMed]

Irngartinger, T.

G. S. Harms, T. Irngartinger, D. Reiss, A. Renn, and U. P. Wild, “Fluorescence lifetimes of terrylene in solid matrices,” Chem. Phys. Lett.313, 533–538 (1999).
[CrossRef]

Jäckel, H.

M. Agio, G. Mori, F. Kaminski, L. Rogobete, S. Kühn, V. Callegari, P. M. Nellen, F. Robin, Y. Ekinci, U. Sennhauser, H. Jäckel, H. H. Solak, and V. Sandoghdar, “Engineering gold nano-antennae to enhance the emission of quantum emitters,” Proc. SPIE6717, 67170R (2007).
[CrossRef]

Kalkbrenner, T.

T. Kalkbrenner, U. Håkanson, A. Schädle, S. Burger, C. Henkel, and V. Sandoghdar, “Optical microscopy via spectral modifications of a nano-antenna,” Phys. Rev. Lett.95, 200801 (2005).

B. C. Buchler, T. Kalkbrenner, C. Hettich, and V. Sandoghdar, “Measuring the quantum efficiency of single radiating dipoles using a scanning mirror,” Phys. Rev. Lett.95, 063003 (2005).
[CrossRef] [PubMed]

T. Kalkbrenner, M. Ramstein, J. Mlynek, and V. Sandoghdar, “A single gold particle as a probe for apertureless SNOM,” J. Micros.202, 72–76 (2001).
[CrossRef]

T. Kalkbrenner, M. Graf, C. Durkan, J. Mlynek, and V. Sandoghdar, “High-contrast topography-free sample for near-field optical microscopy,” Appl. Phys. Lett.76, 1206 (2000).
[CrossRef]

Kaminski, F.

M. Agio, G. Mori, F. Kaminski, L. Rogobete, S. Kühn, V. Callegari, P. M. Nellen, F. Robin, Y. Ekinci, U. Sennhauser, H. Jäckel, H. H. Solak, and V. Sandoghdar, “Engineering gold nano-antennae to enhance the emission of quantum emitters,” Proc. SPIE6717, 67170R (2007).
[CrossRef]

L. Rogobete, F. Kaminski, M. Agio, and V. Sandoghdar, “Design of nanoantennae for the enhancement of spontaneous emission,” Opt. Lett.32, 1623–1625 (2007).
[CrossRef] [PubMed]

Kamp, M.

D. Press, S. Götzinger, S. Reitzenstein, C. Hofmann, A. Löffler, M. Kamp, A. Forchel, and Y. Yamamoto, “Photon antibunching from a single quantum-dot-microcavity system in the strong coupling regime,” Phys. Rev. Lett.98, 117402 (2007).
[CrossRef] [PubMed]

Kinkhabwala, A.

A. Kinkhabwala, Z. Yu, S. Fan, Y. Avlasevich, K. Müllen, and W. E. Moerner, “Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna,” Nat. Photon.3, 654–657 (2009).
[CrossRef]

Klimov, V.V.

D.V. Guzatov and V.V. Klimov, “Optical properties of a plasmonic nano-antenna: analytical approach,” New J. Phys.13, 053034 (2011).
[CrossRef]

Koh, T. S.

B. J. Y. Tan, C. H. Sow, T. S. Koh, K. C. Chin, A. T. S. Wee, and C. K. Ong, “Fabrication of size-tunable gold nanoparticles array with nanosphere lithography, reactive ion etching, and thermal annealing,” J. Phys. Chem. B109, 11100–11109 (2005).
[CrossRef]

Kühn, S.

M. Agio, G. Mori, F. Kaminski, L. Rogobete, S. Kühn, V. Callegari, P. M. Nellen, F. Robin, Y. Ekinci, U. Sennhauser, H. Jäckel, H. H. Solak, and V. Sandoghdar, “Engineering gold nano-antennae to enhance the emission of quantum emitters,” Proc. SPIE6717, 67170R (2007).
[CrossRef]

S. Kühn, U. Håkanson, L. Rogobete, and V. Sandoghdar, “Enhancement of single molecule fluorescence using a gold nanoparticle as an optical nano-antenna,” Phys. Rev. Lett.97, 017402 (2006).
[CrossRef] [PubMed]

Kunz, R. E.

W. Lukosz and R. E. Kunz, “Fluorescence lifetime of magnetic and electric dipoles near a dielectric interface,” Opt. Commun.20, 195–199 (1977).
[CrossRef]

Lakowicz, J. R.

C. D. Geddes, A. Parfenov, I. Gryczynski, and J. R. Lakowicz, “Luminescent blinking of gold nanoparticles,” Chem. Phys. Lett.380, 269–272 (2003).
[CrossRef]

Lee, K.-G.

H. Eghlidi, K.-G. Lee, X.-W. Chen, S. Götzinger, and V. Sandoghdar, “Resolution and enhancement in nanoantenna-based fluorescence microscopy,” Nano Lett.9, 4007–4011 (2009).
[CrossRef] [PubMed]

Löffler, A.

D. Press, S. Götzinger, S. Reitzenstein, C. Hofmann, A. Löffler, M. Kamp, A. Forchel, and Y. Yamamoto, “Photon antibunching from a single quantum-dot-microcavity system in the strong coupling regime,” Phys. Rev. Lett.98, 117402 (2007).
[CrossRef] [PubMed]

Loudon, R.

R. Loudon, The Quantum Theory of Light (Oxford University Press, 2000).

Lukosz, W.

W. Lukosz and R. E. Kunz, “Fluorescence lifetime of magnetic and electric dipoles near a dielectric interface,” Opt. Commun.20, 195–199 (1977).
[CrossRef]

Mlynek, J.

T. Kalkbrenner, M. Ramstein, J. Mlynek, and V. Sandoghdar, “A single gold particle as a probe for apertureless SNOM,” J. Micros.202, 72–76 (2001).
[CrossRef]

T. Kalkbrenner, M. Graf, C. Durkan, J. Mlynek, and V. Sandoghdar, “High-contrast topography-free sample for near-field optical microscopy,” Appl. Phys. Lett.76, 1206 (2000).
[CrossRef]

Moerner, W. E.

A. Kinkhabwala, Z. Yu, S. Fan, Y. Avlasevich, K. Müllen, and W. E. Moerner, “Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna,” Nat. Photon.3, 654–657 (2009).
[CrossRef]

Mojarad, N. M.

Mori, G.

M. Agio, G. Mori, F. Kaminski, L. Rogobete, S. Kühn, V. Callegari, P. M. Nellen, F. Robin, Y. Ekinci, U. Sennhauser, H. Jäckel, H. H. Solak, and V. Sandoghdar, “Engineering gold nano-antennae to enhance the emission of quantum emitters,” Proc. SPIE6717, 67170R (2007).
[CrossRef]

Müllen, K.

A. Kinkhabwala, Z. Yu, S. Fan, Y. Avlasevich, K. Müllen, and W. E. Moerner, “Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna,” Nat. Photon.3, 654–657 (2009).
[CrossRef]

Nellen, P. M.

M. Agio, G. Mori, F. Kaminski, L. Rogobete, S. Kühn, V. Callegari, P. M. Nellen, F. Robin, Y. Ekinci, U. Sennhauser, H. Jäckel, H. H. Solak, and V. Sandoghdar, “Engineering gold nano-antennae to enhance the emission of quantum emitters,” Proc. SPIE6717, 67170R (2007).
[CrossRef]

Novotny, L.

P. Bharadwaj and L. Novotny, “Plasmon-enhanced photoemission from a single Y3N@C80 fullerene,” J. Phys. Chem. C114, 7444–7447 (2010).
[CrossRef]

P. Anger, P. Bharadwaj, and L. Novotny, “Enhancement and quenching of single molecule fluorescence,” Phys. Rev. Lett.96, 113002 (2006).
[CrossRef] [PubMed]

Ong, C. K.

B. J. Y. Tan, C. H. Sow, T. S. Koh, K. C. Chin, A. T. S. Wee, and C. K. Ong, “Fabrication of size-tunable gold nanoparticles array with nanosphere lithography, reactive ion etching, and thermal annealing,” J. Phys. Chem. B109, 11100–11109 (2005).
[CrossRef]

Parfenov, A.

C. D. Geddes, A. Parfenov, I. Gryczynski, and J. R. Lakowicz, “Luminescent blinking of gold nanoparticles,” Chem. Phys. Lett.380, 269–272 (2003).
[CrossRef]

Pfab, R. J.

R. J. Pfab, J. Zimmermann, C. Hettich, I. Gerhardt, A. Renn, and V. Sandoghdar, “Aligned terrylene molecules in a spin-coated ultrathin crystalline film of p-terphenyl,” Chem. Phys. Lett.387, 490–495 (2004).
[CrossRef]

Pohl, D. W.

J. Farahani, D. W. Pohl, H.-J. Eisler, and B. Hecht, “Single quantum dot coupled to scanning optical antenna: a tunable superemitter,” Phys. Rev. Lett.95, 017402 (2005).
[CrossRef] [PubMed]

Press, D.

D. Press, S. Götzinger, S. Reitzenstein, C. Hofmann, A. Löffler, M. Kamp, A. Forchel, and Y. Yamamoto, “Photon antibunching from a single quantum-dot-microcavity system in the strong coupling regime,” Phys. Rev. Lett.98, 117402 (2007).
[CrossRef] [PubMed]

Ramstein, M.

T. Kalkbrenner, M. Ramstein, J. Mlynek, and V. Sandoghdar, “A single gold particle as a probe for apertureless SNOM,” J. Micros.202, 72–76 (2001).
[CrossRef]

Reiss, D.

G. S. Harms, T. Irngartinger, D. Reiss, A. Renn, and U. P. Wild, “Fluorescence lifetimes of terrylene in solid matrices,” Chem. Phys. Lett.313, 533–538 (1999).
[CrossRef]

Reitzenstein, S.

D. Press, S. Götzinger, S. Reitzenstein, C. Hofmann, A. Löffler, M. Kamp, A. Forchel, and Y. Yamamoto, “Photon antibunching from a single quantum-dot-microcavity system in the strong coupling regime,” Phys. Rev. Lett.98, 117402 (2007).
[CrossRef] [PubMed]

Renn, A.

R. J. Pfab, J. Zimmermann, C. Hettich, I. Gerhardt, A. Renn, and V. Sandoghdar, “Aligned terrylene molecules in a spin-coated ultrathin crystalline film of p-terphenyl,” Chem. Phys. Lett.387, 490–495 (2004).
[CrossRef]

G. S. Harms, T. Irngartinger, D. Reiss, A. Renn, and U. P. Wild, “Fluorescence lifetimes of terrylene in solid matrices,” Chem. Phys. Lett.313, 533–538 (1999).
[CrossRef]

Robin, F.

M. Agio, G. Mori, F. Kaminski, L. Rogobete, S. Kühn, V. Callegari, P. M. Nellen, F. Robin, Y. Ekinci, U. Sennhauser, H. Jäckel, H. H. Solak, and V. Sandoghdar, “Engineering gold nano-antennae to enhance the emission of quantum emitters,” Proc. SPIE6717, 67170R (2007).
[CrossRef]

Rogobete, L.

M. Agio, G. Mori, F. Kaminski, L. Rogobete, S. Kühn, V. Callegari, P. M. Nellen, F. Robin, Y. Ekinci, U. Sennhauser, H. Jäckel, H. H. Solak, and V. Sandoghdar, “Engineering gold nano-antennae to enhance the emission of quantum emitters,” Proc. SPIE6717, 67170R (2007).
[CrossRef]

L. Rogobete, F. Kaminski, M. Agio, and V. Sandoghdar, “Design of nanoantennae for the enhancement of spontaneous emission,” Opt. Lett.32, 1623–1625 (2007).
[CrossRef] [PubMed]

S. Kühn, U. Håkanson, L. Rogobete, and V. Sandoghdar, “Enhancement of single molecule fluorescence using a gold nanoparticle as an optical nano-antenna,” Phys. Rev. Lett.97, 017402 (2006).
[CrossRef] [PubMed]

Ruppin, R.

R. Ruppin, “Decay of an excited molecule near a small metal sphere,” J. Chem. Phys.76, 1681–1684 (1982).
[CrossRef]

Sandoghdar, V.

X-W. Chen, M. Agio, and V. Sandoghdar, “Metallo-dielectric hybrid antennas for ultrastrong enhancement of spontaneous emission,” Phys. Rev. Lett.108, 233001 (2012).
[CrossRef]

H. Eghlidi, K.-G. Lee, X.-W. Chen, S. Götzinger, and V. Sandoghdar, “Resolution and enhancement in nanoantenna-based fluorescence microscopy,” Nano Lett.9, 4007–4011 (2009).
[CrossRef] [PubMed]

T. Kalkbrenner, U. Håkanson, A. Schädle, S. Burger, C. Henkel, and V. Sandoghdar, “Optical microscopy via spectral modifications of a nano-antenna,” Phys. Rev. Lett.95, 200801 (2005).

M. Agio, G. Mori, F. Kaminski, L. Rogobete, S. Kühn, V. Callegari, P. M. Nellen, F. Robin, Y. Ekinci, U. Sennhauser, H. Jäckel, H. H. Solak, and V. Sandoghdar, “Engineering gold nano-antennae to enhance the emission of quantum emitters,” Proc. SPIE6717, 67170R (2007).
[CrossRef]

L. Rogobete, F. Kaminski, M. Agio, and V. Sandoghdar, “Design of nanoantennae for the enhancement of spontaneous emission,” Opt. Lett.32, 1623–1625 (2007).
[CrossRef] [PubMed]

S. Kühn, U. Håkanson, L. Rogobete, and V. Sandoghdar, “Enhancement of single molecule fluorescence using a gold nanoparticle as an optical nano-antenna,” Phys. Rev. Lett.97, 017402 (2006).
[CrossRef] [PubMed]

B. C. Buchler, T. Kalkbrenner, C. Hettich, and V. Sandoghdar, “Measuring the quantum efficiency of single radiating dipoles using a scanning mirror,” Phys. Rev. Lett.95, 063003 (2005).
[CrossRef] [PubMed]

R. J. Pfab, J. Zimmermann, C. Hettich, I. Gerhardt, A. Renn, and V. Sandoghdar, “Aligned terrylene molecules in a spin-coated ultrathin crystalline film of p-terphenyl,” Chem. Phys. Lett.387, 490–495 (2004).
[CrossRef]

T. Kalkbrenner, M. Ramstein, J. Mlynek, and V. Sandoghdar, “A single gold particle as a probe for apertureless SNOM,” J. Micros.202, 72–76 (2001).
[CrossRef]

T. Kalkbrenner, M. Graf, C. Durkan, J. Mlynek, and V. Sandoghdar, “High-contrast topography-free sample for near-field optical microscopy,” Appl. Phys. Lett.76, 1206 (2000).
[CrossRef]

Schädle, A.

T. Kalkbrenner, U. Håkanson, A. Schädle, S. Burger, C. Henkel, and V. Sandoghdar, “Optical microscopy via spectral modifications of a nano-antenna,” Phys. Rev. Lett.95, 200801 (2005).

Schietinger, S.

S. Schietinger, M. Barth, T. Aichele, and O. Benson, “Plasmon-enhanced single photon emission from a nanoassembled metal-diamond hybrid structure at room temperature,” Nano Lett.9, 1694–1698 (2009).
[CrossRef] [PubMed]

Sennhauser, U.

M. Agio, G. Mori, F. Kaminski, L. Rogobete, S. Kühn, V. Callegari, P. M. Nellen, F. Robin, Y. Ekinci, U. Sennhauser, H. Jäckel, H. H. Solak, and V. Sandoghdar, “Engineering gold nano-antennae to enhance the emission of quantum emitters,” Proc. SPIE6717, 67170R (2007).
[CrossRef]

Solak, H. H.

M. Agio, G. Mori, F. Kaminski, L. Rogobete, S. Kühn, V. Callegari, P. M. Nellen, F. Robin, Y. Ekinci, U. Sennhauser, H. Jäckel, H. H. Solak, and V. Sandoghdar, “Engineering gold nano-antennae to enhance the emission of quantum emitters,” Proc. SPIE6717, 67170R (2007).
[CrossRef]

Sow, C. H.

B. J. Y. Tan, C. H. Sow, T. S. Koh, K. C. Chin, A. T. S. Wee, and C. K. Ong, “Fabrication of size-tunable gold nanoparticles array with nanosphere lithography, reactive ion etching, and thermal annealing,” J. Phys. Chem. B109, 11100–11109 (2005).
[CrossRef]

Tan, B. J. Y.

B. J. Y. Tan, C. H. Sow, T. S. Koh, K. C. Chin, A. T. S. Wee, and C. K. Ong, “Fabrication of size-tunable gold nanoparticles array with nanosphere lithography, reactive ion etching, and thermal annealing,” J. Phys. Chem. B109, 11100–11109 (2005).
[CrossRef]

Ujihara, K.

H. Yokoyama and K. Ujihara, eds., Spontaneous Emission and Laser Oscillation in Microcavities (CRC Press, 1995).

Wee, A. T. S.

B. J. Y. Tan, C. H. Sow, T. S. Koh, K. C. Chin, A. T. S. Wee, and C. K. Ong, “Fabrication of size-tunable gold nanoparticles array with nanosphere lithography, reactive ion etching, and thermal annealing,” J. Phys. Chem. B109, 11100–11109 (2005).
[CrossRef]

Wild, U. P.

G. S. Harms, T. Irngartinger, D. Reiss, A. Renn, and U. P. Wild, “Fluorescence lifetimes of terrylene in solid matrices,” Chem. Phys. Lett.313, 533–538 (1999).
[CrossRef]

Yamamoto, Y.

D. Press, S. Götzinger, S. Reitzenstein, C. Hofmann, A. Löffler, M. Kamp, A. Forchel, and Y. Yamamoto, “Photon antibunching from a single quantum-dot-microcavity system in the strong coupling regime,” Phys. Rev. Lett.98, 117402 (2007).
[CrossRef] [PubMed]

Yokoyama, H.

H. Yokoyama and K. Ujihara, eds., Spontaneous Emission and Laser Oscillation in Microcavities (CRC Press, 1995).

Yu, Z.

A. Kinkhabwala, Z. Yu, S. Fan, Y. Avlasevich, K. Müllen, and W. E. Moerner, “Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna,” Nat. Photon.3, 654–657 (2009).
[CrossRef]

Zimmermann, J.

R. J. Pfab, J. Zimmermann, C. Hettich, I. Gerhardt, A. Renn, and V. Sandoghdar, “Aligned terrylene molecules in a spin-coated ultrathin crystalline film of p-terphenyl,” Chem. Phys. Lett.387, 490–495 (2004).
[CrossRef]

Zingsheim, H. P.

U. C. Fischer and H. P. Zingsheim, “Submicroscopic contact imaging with visible light by energy transfer,” J. Vac. Sci. Technol.19, 881 (1981).
[CrossRef]

Appl. Phys. Lett.

T. Kalkbrenner, M. Graf, C. Durkan, J. Mlynek, and V. Sandoghdar, “High-contrast topography-free sample for near-field optical microscopy,” Appl. Phys. Lett.76, 1206 (2000).
[CrossRef]

Chem. Phys. Lett.

R. J. Pfab, J. Zimmermann, C. Hettich, I. Gerhardt, A. Renn, and V. Sandoghdar, “Aligned terrylene molecules in a spin-coated ultrathin crystalline film of p-terphenyl,” Chem. Phys. Lett.387, 490–495 (2004).
[CrossRef]

C. D. Geddes, A. Parfenov, I. Gryczynski, and J. R. Lakowicz, “Luminescent blinking of gold nanoparticles,” Chem. Phys. Lett.380, 269–272 (2003).
[CrossRef]

G. S. Harms, T. Irngartinger, D. Reiss, A. Renn, and U. P. Wild, “Fluorescence lifetimes of terrylene in solid matrices,” Chem. Phys. Lett.313, 533–538 (1999).
[CrossRef]

J. Chem. Phys.

R. Ruppin, “Decay of an excited molecule near a small metal sphere,” J. Chem. Phys.76, 1681–1684 (1982).
[CrossRef]

J. Micros.

T. Kalkbrenner, M. Ramstein, J. Mlynek, and V. Sandoghdar, “A single gold particle as a probe for apertureless SNOM,” J. Micros.202, 72–76 (2001).
[CrossRef]

J. Phys. Chem. B

B. J. Y. Tan, C. H. Sow, T. S. Koh, K. C. Chin, A. T. S. Wee, and C. K. Ong, “Fabrication of size-tunable gold nanoparticles array with nanosphere lithography, reactive ion etching, and thermal annealing,” J. Phys. Chem. B109, 11100–11109 (2005).
[CrossRef]

J. Phys. Chem. C

P. Bharadwaj and L. Novotny, “Plasmon-enhanced photoemission from a single Y3N@C80 fullerene,” J. Phys. Chem. C114, 7444–7447 (2010).
[CrossRef]

J. Vac. Sci. Technol.

U. C. Fischer and H. P. Zingsheim, “Submicroscopic contact imaging with visible light by energy transfer,” J. Vac. Sci. Technol.19, 881 (1981).
[CrossRef]

Nano Lett.

S. Schietinger, M. Barth, T. Aichele, and O. Benson, “Plasmon-enhanced single photon emission from a nanoassembled metal-diamond hybrid structure at room temperature,” Nano Lett.9, 1694–1698 (2009).
[CrossRef] [PubMed]

H. Eghlidi, K.-G. Lee, X.-W. Chen, S. Götzinger, and V. Sandoghdar, “Resolution and enhancement in nanoantenna-based fluorescence microscopy,” Nano Lett.9, 4007–4011 (2009).
[CrossRef] [PubMed]

Nat. Photon.

A. Kinkhabwala, Z. Yu, S. Fan, Y. Avlasevich, K. Müllen, and W. E. Moerner, “Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna,” Nat. Photon.3, 654–657 (2009).
[CrossRef]

New J. Phys.

D.V. Guzatov and V.V. Klimov, “Optical properties of a plasmonic nano-antenna: analytical approach,” New J. Phys.13, 053034 (2011).
[CrossRef]

Opt. Commun.

W. Lukosz and R. E. Kunz, “Fluorescence lifetime of magnetic and electric dipoles near a dielectric interface,” Opt. Commun.20, 195–199 (1977).
[CrossRef]

Opt. Express

Opt. Lett.

Phys. Rev. Lett.

X-W. Chen, M. Agio, and V. Sandoghdar, “Metallo-dielectric hybrid antennas for ultrastrong enhancement of spontaneous emission,” Phys. Rev. Lett.108, 233001 (2012).
[CrossRef]

B. C. Buchler, T. Kalkbrenner, C. Hettich, and V. Sandoghdar, “Measuring the quantum efficiency of single radiating dipoles using a scanning mirror,” Phys. Rev. Lett.95, 063003 (2005).
[CrossRef] [PubMed]

J. Farahani, D. W. Pohl, H.-J. Eisler, and B. Hecht, “Single quantum dot coupled to scanning optical antenna: a tunable superemitter,” Phys. Rev. Lett.95, 017402 (2005).
[CrossRef] [PubMed]

D. Press, S. Götzinger, S. Reitzenstein, C. Hofmann, A. Löffler, M. Kamp, A. Forchel, and Y. Yamamoto, “Photon antibunching from a single quantum-dot-microcavity system in the strong coupling regime,” Phys. Rev. Lett.98, 117402 (2007).
[CrossRef] [PubMed]

T. Kalkbrenner, U. Håkanson, A. Schädle, S. Burger, C. Henkel, and V. Sandoghdar, “Optical microscopy via spectral modifications of a nano-antenna,” Phys. Rev. Lett.95, 200801 (2005).

P. Anger, P. Bharadwaj, and L. Novotny, “Enhancement and quenching of single molecule fluorescence,” Phys. Rev. Lett.96, 113002 (2006).
[CrossRef] [PubMed]

S. Kühn, U. Håkanson, L. Rogobete, and V. Sandoghdar, “Enhancement of single molecule fluorescence using a gold nanoparticle as an optical nano-antenna,” Phys. Rev. Lett.97, 017402 (2006).
[CrossRef] [PubMed]

Proc. SPIE

M. Agio, G. Mori, F. Kaminski, L. Rogobete, S. Kühn, V. Callegari, P. M. Nellen, F. Robin, Y. Ekinci, U. Sennhauser, H. Jäckel, H. H. Solak, and V. Sandoghdar, “Engineering gold nano-antennae to enhance the emission of quantum emitters,” Proc. SPIE6717, 67170R (2007).
[CrossRef]

Prog. Opt.

K. Drexhage, “Interaction of light with monomolecular dye layers,” Prog. Opt.120, 164–232 (1974).

Other

P. R. Berman, Cavity Quantum Electrodynamics (Academic Press, 1994).

H. Yokoyama and K. Ujihara, eds., Spontaneous Emission and Laser Oscillation in Microcavities (CRC Press, 1995).

R. K. Chang and A. J. Campillo, eds., Optical Processes in Microcavities (World Scientific, 1996).

A. Alu and M. Agio,eds., Optical Antennas (Cambridge University Press, 2013).

R. Loudon, The Quantum Theory of Light (Oxford University Press, 2000).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Metrics