Abstract

Based on the analysis of the evanescent wave from total internal reflection, a light-emitting diode (LED) structure with a plasmonic Ag nanostructure and indium tin oxide (ITO) grating was proposed to enhance the extraction efficiency. The two-dimensional finite-difference time-domain method was used to study the spectral properties of the hybrid structure and the effects of structure parameters on extraction enhancement. The results demonstrate that the plasmonic Ag nanostructure can couple the evanescent wave to a propagation wave around the GaN/ITO interface, and then the photons are scattered out of the LED chips by the ITO grating with high extraction efficiency. Under the optimal parameters, the light extraction efficiency can reach approximately three times the original value at a relatively longer wavelength.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. M. Phillips, M. E. Coltrin, M. H. Crawford, A. J. Fischer, M. R. Krames, R. Mueller‐Mach, G. O. Mueller, Y. Ohno, L. E. S. Rohwer, J. A. Simmons, and J. Y. Tsao, “Research challenges to ultra‐efficient inorganic solid‐state lighting,” Laser Photonics Rev.1(4), 307–333 (2007).
    [CrossRef]
  2. S. Pimputkar, J. S. Speck, S. P. DenBaars, and S. Nakamura, “Prospects for LED lighting,” Nat. Photonics3(4), 180–182 (2009).
    [CrossRef]
  3. E. F. Schubert and J. K. Kim, “Solid-state light sources getting smart,” Science308(5726), 1274–1278 (2005).
    [CrossRef] [PubMed]
  4. N. Holonyak and S. Bevacqua, “Coherent (visible) light emission from Ga (AsP) junctions,” Appl. Phys. Lett.1(4), 82 (1962).
    [CrossRef]
  5. S. Nakamura, M. Senoh, and T. Mukai, “High‐power InGaN/GaN double‐heterostructure violet light emitting diodes,” Appl. Phys. Lett.62(19), 2390–2392 (1993).
    [CrossRef]
  6. M. R. Krames, O. B. Shchekin, R. Mueller-Mach, G. O. Mueller, L. Zhou, G. Harbers, and M. G. Craford, “Status and future of high-power light-emitting diodes for solid-state lighting,” J. Display Tech.3(2), 160–175 (2007).
    [CrossRef]
  7. Y. Kawakami, Y. Narukawa, K. Omae, S. Fujita, and S. Nakamura, “Dimensionality of Excitons in InGaN‐Based Light Emitting Devices,” Phys. Status Solidi, A Appl. Res.178(1), 331–336 (2000).
    [CrossRef]
  8. M. Hansen, P. Fini, L. Zhao, A. Abare, L. A. Coldren, J. S. Speck, and S. P. DenBaars, “Improved characteristics of InGaN multiple-quantum-well laser diodes grown on laterally epitaxially overgrown GaN on sapphire,” Appl. Phys. Lett.76(5), 529 (2000).
    [CrossRef]
  9. T. X. Lee, K. F. Gao, W. T. Chien, and C. C. Sun, “Light extraction analysis of GaN-based light-emitting diodes with surface texture and/or patterned substrate,” Opt. Express15(11), 6670–6676 (2007).
    [CrossRef] [PubMed]
  10. J. Y. Cho, K. J. Byeon, H. Park, J. Kim, H. S. Kim, and H. Lee, “Improvement of photon extraction efficiency of GaN-based LED using micro and nano complex polymer structures,” Nanoscale Res. Lett.6(1), 578 (2011).
    [CrossRef] [PubMed]
  11. M. V. Bogdanov, K. A. Bulashevich, O. V. Khokhlev, I. Y. Evstratov, M. S. Ramm, and S. Y. Karpov, “Effect of ITO spreading layer on performance of blue light-emitting diodes,” Phys. Status Solidi., C Curr. Top. Solid State Phys.7(7-8), 2127–2129 (2010).
    [CrossRef]
  12. A. I. Zhmakin, “Enhancement of light extraction from light emitting diodes,” Phys. Rep.498(4-5), 189–241 (2011).
    [CrossRef]
  13. Y. Gou, Y. Xuan, Y. Han, and Q. Li, “Enhancement of light-emitting efficiency using combined plasmonic Ag grating and dielectric grating,” J. Lumin.131(11), 2382–2386 (2011).
    [CrossRef]
  14. B. J. Matterson, J. M. Lupton, A. F. Safonov, M. G. Salt, W. L. Barnes, and I. D. W. Samuel, “Increased efficiency and controlled light output from a microstructured light-emitting diode,” Adv. Mater. (Deerfield Beach Fla.)13(2), 123–127 (2001).
    [CrossRef]
  15. D. H. Kim, C. O. Cho, Y. G. Roh, H. Jeon, Y. S. Park, J. Cho, J. S. Im, C. Sone, Y. Park, W. J. Choi, and Q.-H. Park, “Enhanced light extraction from GaN-based light-emitting diodes with holographically generated two-dimensional photonic crystal patterns,” Appl. Phys. Lett.87(20), 203508 (2005).
    [CrossRef]
  16. X. Gu, T. Qiu, W. Zhang, and P. K. Chu, “Light-emitting diodes enhanced by localized surface plasmon resonance,” Nanoscale Res. Lett.6(1), 199 (2011).
    [CrossRef] [PubMed]
  17. J. Chen, Q. K. Wang, and H. H. Li, “Further enhancement of light extraction efficiency of light-emitting diode with Ag film grown on photonic crystals,” Opt. Appl.41, 51–61 (2011).
  18. S. K. Kim, H. S. Ee, W. Choi, S. H. Kwon, J. H. Kang, Y. H. Kim, H. Kwon, and H. G. Park, “Surface-plasmon-induced light absorption on a rough silver surface,” Appl. Phys. Lett.98(1), 011109 (2011).
    [CrossRef]
  19. S. Chandramohan, B. D. Ryu, P. Uthirakumar, J. H. Kang, H. K. Kim, H. G. Kim, and C.-H. Hong, “Tuning the spectrometric properties of white light by surface plasmon effect using Ag nanoparticles in a colour converting light-emitting diode,” Solid-State Electron.57(1), 90–92 (2011).
    [CrossRef]
  20. H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater.9(3), 205–213 (2010).
    [CrossRef] [PubMed]
  21. J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater.9(4), 368 (2010).
  22. K. Okamoto, “Surface plasmon enhanced solid-state light-emitting devices,” in Nanoscale Photonics and Optoelectronics, eds. Z. Wang and A. Neogi, (Springer, (2010), 27-46.
  23. Y. Xiao, J. P. Yang, P. P. Cheng, J. J. Zhu, Z. Q. Xu, Y. H. Deng, S. T. Lee, Y. Q. Li, and J. X. Tang, “Surface plasmon-enhanced electroluminescence in organic light-emitting diodes incorporating Au nanoparticles,” Appl. Phys. Lett.100(1), 013308 (2012).
    [CrossRef]
  24. J.-H. Sung, B.-S. Kim, C.-H. Choi, M.-W. Lee, S.-G. Lee, S.-G. Park, E.-H. Lee, and O. Beom-Hoan, “Enhanced luminescence of GaN-based light-emitting diode with a localized surface plasmon resonance,” Microelectron. Eng.86(4-6), 1120–1123 (2009).
    [CrossRef]
  25. S. Trieu, X. Jin, A. Ellaboudy, B. Zhang, X.-N. Kang, G.-Y. Zhang, X. Chang, W. Wei, S. Y. Jian, and F. X. Xing, “Top transmission grating GaN LED simulations for light extraction improvement,” W. Bernd, H. Fritz, A. Yasuhiko, and F. Alexandre, eds. (SPIE, 2011), p. 79331Y.
  26. K. K. Kim, H. Kim, S. N. Lee, and S. Cho, “Structural, optical, and electrical properties of E-beam and sputter-deposited ITO films for LED applications,” Electron Mater Lett7(2), 145–149 (2011).
    [CrossRef]
  27. C. Wiesmann, “Nano-structured LEDs–Light extraction mechanisms and applications,” Ph.D. thesis, Science Faculty, Universität Regensburg, Regensburg, Germany, (2010)
  28. U. S. Inan and R. A. Marshall, Numerical Electromagnetics: The FDTD Method (Cambridge Univ. Press, 2011).
  29. F. Haddad, A. Chikouche, and M. Laour, “Simulation of the opti-physical parameters of selectives surfaces of absorber by the FDTD method applied to solar water heater,” Energy Proc.6, 413–421 (2011).
    [CrossRef]
  30. P. B. Johnson and R. Christy, “Optical constants of the noble metals,” Phys. Rev. B6(12), 4370–4379 (1972).
    [CrossRef]

2012

Y. Xiao, J. P. Yang, P. P. Cheng, J. J. Zhu, Z. Q. Xu, Y. H. Deng, S. T. Lee, Y. Q. Li, and J. X. Tang, “Surface plasmon-enhanced electroluminescence in organic light-emitting diodes incorporating Au nanoparticles,” Appl. Phys. Lett.100(1), 013308 (2012).
[CrossRef]

2011

K. K. Kim, H. Kim, S. N. Lee, and S. Cho, “Structural, optical, and electrical properties of E-beam and sputter-deposited ITO films for LED applications,” Electron Mater Lett7(2), 145–149 (2011).
[CrossRef]

F. Haddad, A. Chikouche, and M. Laour, “Simulation of the opti-physical parameters of selectives surfaces of absorber by the FDTD method applied to solar water heater,” Energy Proc.6, 413–421 (2011).
[CrossRef]

J. Y. Cho, K. J. Byeon, H. Park, J. Kim, H. S. Kim, and H. Lee, “Improvement of photon extraction efficiency of GaN-based LED using micro and nano complex polymer structures,” Nanoscale Res. Lett.6(1), 578 (2011).
[CrossRef] [PubMed]

A. I. Zhmakin, “Enhancement of light extraction from light emitting diodes,” Phys. Rep.498(4-5), 189–241 (2011).
[CrossRef]

Y. Gou, Y. Xuan, Y. Han, and Q. Li, “Enhancement of light-emitting efficiency using combined plasmonic Ag grating and dielectric grating,” J. Lumin.131(11), 2382–2386 (2011).
[CrossRef]

X. Gu, T. Qiu, W. Zhang, and P. K. Chu, “Light-emitting diodes enhanced by localized surface plasmon resonance,” Nanoscale Res. Lett.6(1), 199 (2011).
[CrossRef] [PubMed]

J. Chen, Q. K. Wang, and H. H. Li, “Further enhancement of light extraction efficiency of light-emitting diode with Ag film grown on photonic crystals,” Opt. Appl.41, 51–61 (2011).

S. K. Kim, H. S. Ee, W. Choi, S. H. Kwon, J. H. Kang, Y. H. Kim, H. Kwon, and H. G. Park, “Surface-plasmon-induced light absorption on a rough silver surface,” Appl. Phys. Lett.98(1), 011109 (2011).
[CrossRef]

S. Chandramohan, B. D. Ryu, P. Uthirakumar, J. H. Kang, H. K. Kim, H. G. Kim, and C.-H. Hong, “Tuning the spectrometric properties of white light by surface plasmon effect using Ag nanoparticles in a colour converting light-emitting diode,” Solid-State Electron.57(1), 90–92 (2011).
[CrossRef]

2010

H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater.9(3), 205–213 (2010).
[CrossRef] [PubMed]

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater.9(4), 368 (2010).

M. V. Bogdanov, K. A. Bulashevich, O. V. Khokhlev, I. Y. Evstratov, M. S. Ramm, and S. Y. Karpov, “Effect of ITO spreading layer on performance of blue light-emitting diodes,” Phys. Status Solidi., C Curr. Top. Solid State Phys.7(7-8), 2127–2129 (2010).
[CrossRef]

2009

S. Pimputkar, J. S. Speck, S. P. DenBaars, and S. Nakamura, “Prospects for LED lighting,” Nat. Photonics3(4), 180–182 (2009).
[CrossRef]

J.-H. Sung, B.-S. Kim, C.-H. Choi, M.-W. Lee, S.-G. Lee, S.-G. Park, E.-H. Lee, and O. Beom-Hoan, “Enhanced luminescence of GaN-based light-emitting diode with a localized surface plasmon resonance,” Microelectron. Eng.86(4-6), 1120–1123 (2009).
[CrossRef]

2007

J. M. Phillips, M. E. Coltrin, M. H. Crawford, A. J. Fischer, M. R. Krames, R. Mueller‐Mach, G. O. Mueller, Y. Ohno, L. E. S. Rohwer, J. A. Simmons, and J. Y. Tsao, “Research challenges to ultra‐efficient inorganic solid‐state lighting,” Laser Photonics Rev.1(4), 307–333 (2007).
[CrossRef]

M. R. Krames, O. B. Shchekin, R. Mueller-Mach, G. O. Mueller, L. Zhou, G. Harbers, and M. G. Craford, “Status and future of high-power light-emitting diodes for solid-state lighting,” J. Display Tech.3(2), 160–175 (2007).
[CrossRef]

T. X. Lee, K. F. Gao, W. T. Chien, and C. C. Sun, “Light extraction analysis of GaN-based light-emitting diodes with surface texture and/or patterned substrate,” Opt. Express15(11), 6670–6676 (2007).
[CrossRef] [PubMed]

2005

D. H. Kim, C. O. Cho, Y. G. Roh, H. Jeon, Y. S. Park, J. Cho, J. S. Im, C. Sone, Y. Park, W. J. Choi, and Q.-H. Park, “Enhanced light extraction from GaN-based light-emitting diodes with holographically generated two-dimensional photonic crystal patterns,” Appl. Phys. Lett.87(20), 203508 (2005).
[CrossRef]

E. F. Schubert and J. K. Kim, “Solid-state light sources getting smart,” Science308(5726), 1274–1278 (2005).
[CrossRef] [PubMed]

2001

B. J. Matterson, J. M. Lupton, A. F. Safonov, M. G. Salt, W. L. Barnes, and I. D. W. Samuel, “Increased efficiency and controlled light output from a microstructured light-emitting diode,” Adv. Mater. (Deerfield Beach Fla.)13(2), 123–127 (2001).
[CrossRef]

2000

Y. Kawakami, Y. Narukawa, K. Omae, S. Fujita, and S. Nakamura, “Dimensionality of Excitons in InGaN‐Based Light Emitting Devices,” Phys. Status Solidi, A Appl. Res.178(1), 331–336 (2000).
[CrossRef]

M. Hansen, P. Fini, L. Zhao, A. Abare, L. A. Coldren, J. S. Speck, and S. P. DenBaars, “Improved characteristics of InGaN multiple-quantum-well laser diodes grown on laterally epitaxially overgrown GaN on sapphire,” Appl. Phys. Lett.76(5), 529 (2000).
[CrossRef]

1993

S. Nakamura, M. Senoh, and T. Mukai, “High‐power InGaN/GaN double‐heterostructure violet light emitting diodes,” Appl. Phys. Lett.62(19), 2390–2392 (1993).
[CrossRef]

1972

P. B. Johnson and R. Christy, “Optical constants of the noble metals,” Phys. Rev. B6(12), 4370–4379 (1972).
[CrossRef]

1962

N. Holonyak and S. Bevacqua, “Coherent (visible) light emission from Ga (AsP) junctions,” Appl. Phys. Lett.1(4), 82 (1962).
[CrossRef]

Abare, A.

M. Hansen, P. Fini, L. Zhao, A. Abare, L. A. Coldren, J. S. Speck, and S. P. DenBaars, “Improved characteristics of InGaN multiple-quantum-well laser diodes grown on laterally epitaxially overgrown GaN on sapphire,” Appl. Phys. Lett.76(5), 529 (2000).
[CrossRef]

Atwater, H. A.

H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater.9(3), 205–213 (2010).
[CrossRef] [PubMed]

Barnard, E. S.

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater.9(4), 368 (2010).

Barnes, W. L.

B. J. Matterson, J. M. Lupton, A. F. Safonov, M. G. Salt, W. L. Barnes, and I. D. W. Samuel, “Increased efficiency and controlled light output from a microstructured light-emitting diode,” Adv. Mater. (Deerfield Beach Fla.)13(2), 123–127 (2001).
[CrossRef]

Beom-Hoan, O.

J.-H. Sung, B.-S. Kim, C.-H. Choi, M.-W. Lee, S.-G. Lee, S.-G. Park, E.-H. Lee, and O. Beom-Hoan, “Enhanced luminescence of GaN-based light-emitting diode with a localized surface plasmon resonance,” Microelectron. Eng.86(4-6), 1120–1123 (2009).
[CrossRef]

Bevacqua, S.

N. Holonyak and S. Bevacqua, “Coherent (visible) light emission from Ga (AsP) junctions,” Appl. Phys. Lett.1(4), 82 (1962).
[CrossRef]

Bogdanov, M. V.

M. V. Bogdanov, K. A. Bulashevich, O. V. Khokhlev, I. Y. Evstratov, M. S. Ramm, and S. Y. Karpov, “Effect of ITO spreading layer on performance of blue light-emitting diodes,” Phys. Status Solidi., C Curr. Top. Solid State Phys.7(7-8), 2127–2129 (2010).
[CrossRef]

Brongersma, M. L.

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater.9(4), 368 (2010).

Bulashevich, K. A.

M. V. Bogdanov, K. A. Bulashevich, O. V. Khokhlev, I. Y. Evstratov, M. S. Ramm, and S. Y. Karpov, “Effect of ITO spreading layer on performance of blue light-emitting diodes,” Phys. Status Solidi., C Curr. Top. Solid State Phys.7(7-8), 2127–2129 (2010).
[CrossRef]

Byeon, K. J.

J. Y. Cho, K. J. Byeon, H. Park, J. Kim, H. S. Kim, and H. Lee, “Improvement of photon extraction efficiency of GaN-based LED using micro and nano complex polymer structures,” Nanoscale Res. Lett.6(1), 578 (2011).
[CrossRef] [PubMed]

Cai, W.

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater.9(4), 368 (2010).

Chandramohan, S.

S. Chandramohan, B. D. Ryu, P. Uthirakumar, J. H. Kang, H. K. Kim, H. G. Kim, and C.-H. Hong, “Tuning the spectrometric properties of white light by surface plasmon effect using Ag nanoparticles in a colour converting light-emitting diode,” Solid-State Electron.57(1), 90–92 (2011).
[CrossRef]

Chen, J.

J. Chen, Q. K. Wang, and H. H. Li, “Further enhancement of light extraction efficiency of light-emitting diode with Ag film grown on photonic crystals,” Opt. Appl.41, 51–61 (2011).

Cheng, P. P.

Y. Xiao, J. P. Yang, P. P. Cheng, J. J. Zhu, Z. Q. Xu, Y. H. Deng, S. T. Lee, Y. Q. Li, and J. X. Tang, “Surface plasmon-enhanced electroluminescence in organic light-emitting diodes incorporating Au nanoparticles,” Appl. Phys. Lett.100(1), 013308 (2012).
[CrossRef]

Chien, W. T.

Chikouche, A.

F. Haddad, A. Chikouche, and M. Laour, “Simulation of the opti-physical parameters of selectives surfaces of absorber by the FDTD method applied to solar water heater,” Energy Proc.6, 413–421 (2011).
[CrossRef]

Cho, C. O.

D. H. Kim, C. O. Cho, Y. G. Roh, H. Jeon, Y. S. Park, J. Cho, J. S. Im, C. Sone, Y. Park, W. J. Choi, and Q.-H. Park, “Enhanced light extraction from GaN-based light-emitting diodes with holographically generated two-dimensional photonic crystal patterns,” Appl. Phys. Lett.87(20), 203508 (2005).
[CrossRef]

Cho, J.

D. H. Kim, C. O. Cho, Y. G. Roh, H. Jeon, Y. S. Park, J. Cho, J. S. Im, C. Sone, Y. Park, W. J. Choi, and Q.-H. Park, “Enhanced light extraction from GaN-based light-emitting diodes with holographically generated two-dimensional photonic crystal patterns,” Appl. Phys. Lett.87(20), 203508 (2005).
[CrossRef]

Cho, J. Y.

J. Y. Cho, K. J. Byeon, H. Park, J. Kim, H. S. Kim, and H. Lee, “Improvement of photon extraction efficiency of GaN-based LED using micro and nano complex polymer structures,” Nanoscale Res. Lett.6(1), 578 (2011).
[CrossRef] [PubMed]

Cho, S.

K. K. Kim, H. Kim, S. N. Lee, and S. Cho, “Structural, optical, and electrical properties of E-beam and sputter-deposited ITO films for LED applications,” Electron Mater Lett7(2), 145–149 (2011).
[CrossRef]

Choi, C.-H.

J.-H. Sung, B.-S. Kim, C.-H. Choi, M.-W. Lee, S.-G. Lee, S.-G. Park, E.-H. Lee, and O. Beom-Hoan, “Enhanced luminescence of GaN-based light-emitting diode with a localized surface plasmon resonance,” Microelectron. Eng.86(4-6), 1120–1123 (2009).
[CrossRef]

Choi, W.

S. K. Kim, H. S. Ee, W. Choi, S. H. Kwon, J. H. Kang, Y. H. Kim, H. Kwon, and H. G. Park, “Surface-plasmon-induced light absorption on a rough silver surface,” Appl. Phys. Lett.98(1), 011109 (2011).
[CrossRef]

Choi, W. J.

D. H. Kim, C. O. Cho, Y. G. Roh, H. Jeon, Y. S. Park, J. Cho, J. S. Im, C. Sone, Y. Park, W. J. Choi, and Q.-H. Park, “Enhanced light extraction from GaN-based light-emitting diodes with holographically generated two-dimensional photonic crystal patterns,” Appl. Phys. Lett.87(20), 203508 (2005).
[CrossRef]

Christy, R.

P. B. Johnson and R. Christy, “Optical constants of the noble metals,” Phys. Rev. B6(12), 4370–4379 (1972).
[CrossRef]

Chu, P. K.

X. Gu, T. Qiu, W. Zhang, and P. K. Chu, “Light-emitting diodes enhanced by localized surface plasmon resonance,” Nanoscale Res. Lett.6(1), 199 (2011).
[CrossRef] [PubMed]

Coldren, L. A.

M. Hansen, P. Fini, L. Zhao, A. Abare, L. A. Coldren, J. S. Speck, and S. P. DenBaars, “Improved characteristics of InGaN multiple-quantum-well laser diodes grown on laterally epitaxially overgrown GaN on sapphire,” Appl. Phys. Lett.76(5), 529 (2000).
[CrossRef]

Coltrin, M. E.

J. M. Phillips, M. E. Coltrin, M. H. Crawford, A. J. Fischer, M. R. Krames, R. Mueller‐Mach, G. O. Mueller, Y. Ohno, L. E. S. Rohwer, J. A. Simmons, and J. Y. Tsao, “Research challenges to ultra‐efficient inorganic solid‐state lighting,” Laser Photonics Rev.1(4), 307–333 (2007).
[CrossRef]

Craford, M. G.

M. R. Krames, O. B. Shchekin, R. Mueller-Mach, G. O. Mueller, L. Zhou, G. Harbers, and M. G. Craford, “Status and future of high-power light-emitting diodes for solid-state lighting,” J. Display Tech.3(2), 160–175 (2007).
[CrossRef]

Crawford, M. H.

J. M. Phillips, M. E. Coltrin, M. H. Crawford, A. J. Fischer, M. R. Krames, R. Mueller‐Mach, G. O. Mueller, Y. Ohno, L. E. S. Rohwer, J. A. Simmons, and J. Y. Tsao, “Research challenges to ultra‐efficient inorganic solid‐state lighting,” Laser Photonics Rev.1(4), 307–333 (2007).
[CrossRef]

DenBaars, S. P.

S. Pimputkar, J. S. Speck, S. P. DenBaars, and S. Nakamura, “Prospects for LED lighting,” Nat. Photonics3(4), 180–182 (2009).
[CrossRef]

M. Hansen, P. Fini, L. Zhao, A. Abare, L. A. Coldren, J. S. Speck, and S. P. DenBaars, “Improved characteristics of InGaN multiple-quantum-well laser diodes grown on laterally epitaxially overgrown GaN on sapphire,” Appl. Phys. Lett.76(5), 529 (2000).
[CrossRef]

Deng, Y. H.

Y. Xiao, J. P. Yang, P. P. Cheng, J. J. Zhu, Z. Q. Xu, Y. H. Deng, S. T. Lee, Y. Q. Li, and J. X. Tang, “Surface plasmon-enhanced electroluminescence in organic light-emitting diodes incorporating Au nanoparticles,” Appl. Phys. Lett.100(1), 013308 (2012).
[CrossRef]

Ee, H. S.

S. K. Kim, H. S. Ee, W. Choi, S. H. Kwon, J. H. Kang, Y. H. Kim, H. Kwon, and H. G. Park, “Surface-plasmon-induced light absorption on a rough silver surface,” Appl. Phys. Lett.98(1), 011109 (2011).
[CrossRef]

Evstratov, I. Y.

M. V. Bogdanov, K. A. Bulashevich, O. V. Khokhlev, I. Y. Evstratov, M. S. Ramm, and S. Y. Karpov, “Effect of ITO spreading layer on performance of blue light-emitting diodes,” Phys. Status Solidi., C Curr. Top. Solid State Phys.7(7-8), 2127–2129 (2010).
[CrossRef]

Fini, P.

M. Hansen, P. Fini, L. Zhao, A. Abare, L. A. Coldren, J. S. Speck, and S. P. DenBaars, “Improved characteristics of InGaN multiple-quantum-well laser diodes grown on laterally epitaxially overgrown GaN on sapphire,” Appl. Phys. Lett.76(5), 529 (2000).
[CrossRef]

Fischer, A. J.

J. M. Phillips, M. E. Coltrin, M. H. Crawford, A. J. Fischer, M. R. Krames, R. Mueller‐Mach, G. O. Mueller, Y. Ohno, L. E. S. Rohwer, J. A. Simmons, and J. Y. Tsao, “Research challenges to ultra‐efficient inorganic solid‐state lighting,” Laser Photonics Rev.1(4), 307–333 (2007).
[CrossRef]

Fujita, S.

Y. Kawakami, Y. Narukawa, K. Omae, S. Fujita, and S. Nakamura, “Dimensionality of Excitons in InGaN‐Based Light Emitting Devices,” Phys. Status Solidi, A Appl. Res.178(1), 331–336 (2000).
[CrossRef]

Gao, K. F.

Gou, Y.

Y. Gou, Y. Xuan, Y. Han, and Q. Li, “Enhancement of light-emitting efficiency using combined plasmonic Ag grating and dielectric grating,” J. Lumin.131(11), 2382–2386 (2011).
[CrossRef]

Gu, X.

X. Gu, T. Qiu, W. Zhang, and P. K. Chu, “Light-emitting diodes enhanced by localized surface plasmon resonance,” Nanoscale Res. Lett.6(1), 199 (2011).
[CrossRef] [PubMed]

Haddad, F.

F. Haddad, A. Chikouche, and M. Laour, “Simulation of the opti-physical parameters of selectives surfaces of absorber by the FDTD method applied to solar water heater,” Energy Proc.6, 413–421 (2011).
[CrossRef]

Han, Y.

Y. Gou, Y. Xuan, Y. Han, and Q. Li, “Enhancement of light-emitting efficiency using combined plasmonic Ag grating and dielectric grating,” J. Lumin.131(11), 2382–2386 (2011).
[CrossRef]

Hansen, M.

M. Hansen, P. Fini, L. Zhao, A. Abare, L. A. Coldren, J. S. Speck, and S. P. DenBaars, “Improved characteristics of InGaN multiple-quantum-well laser diodes grown on laterally epitaxially overgrown GaN on sapphire,” Appl. Phys. Lett.76(5), 529 (2000).
[CrossRef]

Harbers, G.

M. R. Krames, O. B. Shchekin, R. Mueller-Mach, G. O. Mueller, L. Zhou, G. Harbers, and M. G. Craford, “Status and future of high-power light-emitting diodes for solid-state lighting,” J. Display Tech.3(2), 160–175 (2007).
[CrossRef]

Holonyak, N.

N. Holonyak and S. Bevacqua, “Coherent (visible) light emission from Ga (AsP) junctions,” Appl. Phys. Lett.1(4), 82 (1962).
[CrossRef]

Hong, C.-H.

S. Chandramohan, B. D. Ryu, P. Uthirakumar, J. H. Kang, H. K. Kim, H. G. Kim, and C.-H. Hong, “Tuning the spectrometric properties of white light by surface plasmon effect using Ag nanoparticles in a colour converting light-emitting diode,” Solid-State Electron.57(1), 90–92 (2011).
[CrossRef]

Im, J. S.

D. H. Kim, C. O. Cho, Y. G. Roh, H. Jeon, Y. S. Park, J. Cho, J. S. Im, C. Sone, Y. Park, W. J. Choi, and Q.-H. Park, “Enhanced light extraction from GaN-based light-emitting diodes with holographically generated two-dimensional photonic crystal patterns,” Appl. Phys. Lett.87(20), 203508 (2005).
[CrossRef]

Jeon, H.

D. H. Kim, C. O. Cho, Y. G. Roh, H. Jeon, Y. S. Park, J. Cho, J. S. Im, C. Sone, Y. Park, W. J. Choi, and Q.-H. Park, “Enhanced light extraction from GaN-based light-emitting diodes with holographically generated two-dimensional photonic crystal patterns,” Appl. Phys. Lett.87(20), 203508 (2005).
[CrossRef]

Johnson, P. B.

P. B. Johnson and R. Christy, “Optical constants of the noble metals,” Phys. Rev. B6(12), 4370–4379 (1972).
[CrossRef]

Jun, Y. C.

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater.9(4), 368 (2010).

Kang, J. H.

S. Chandramohan, B. D. Ryu, P. Uthirakumar, J. H. Kang, H. K. Kim, H. G. Kim, and C.-H. Hong, “Tuning the spectrometric properties of white light by surface plasmon effect using Ag nanoparticles in a colour converting light-emitting diode,” Solid-State Electron.57(1), 90–92 (2011).
[CrossRef]

S. K. Kim, H. S. Ee, W. Choi, S. H. Kwon, J. H. Kang, Y. H. Kim, H. Kwon, and H. G. Park, “Surface-plasmon-induced light absorption on a rough silver surface,” Appl. Phys. Lett.98(1), 011109 (2011).
[CrossRef]

Karpov, S. Y.

M. V. Bogdanov, K. A. Bulashevich, O. V. Khokhlev, I. Y. Evstratov, M. S. Ramm, and S. Y. Karpov, “Effect of ITO spreading layer on performance of blue light-emitting diodes,” Phys. Status Solidi., C Curr. Top. Solid State Phys.7(7-8), 2127–2129 (2010).
[CrossRef]

Kawakami, Y.

Y. Kawakami, Y. Narukawa, K. Omae, S. Fujita, and S. Nakamura, “Dimensionality of Excitons in InGaN‐Based Light Emitting Devices,” Phys. Status Solidi, A Appl. Res.178(1), 331–336 (2000).
[CrossRef]

Khokhlev, O. V.

M. V. Bogdanov, K. A. Bulashevich, O. V. Khokhlev, I. Y. Evstratov, M. S. Ramm, and S. Y. Karpov, “Effect of ITO spreading layer on performance of blue light-emitting diodes,” Phys. Status Solidi., C Curr. Top. Solid State Phys.7(7-8), 2127–2129 (2010).
[CrossRef]

Kim, B.-S.

J.-H. Sung, B.-S. Kim, C.-H. Choi, M.-W. Lee, S.-G. Lee, S.-G. Park, E.-H. Lee, and O. Beom-Hoan, “Enhanced luminescence of GaN-based light-emitting diode with a localized surface plasmon resonance,” Microelectron. Eng.86(4-6), 1120–1123 (2009).
[CrossRef]

Kim, D. H.

D. H. Kim, C. O. Cho, Y. G. Roh, H. Jeon, Y. S. Park, J. Cho, J. S. Im, C. Sone, Y. Park, W. J. Choi, and Q.-H. Park, “Enhanced light extraction from GaN-based light-emitting diodes with holographically generated two-dimensional photonic crystal patterns,” Appl. Phys. Lett.87(20), 203508 (2005).
[CrossRef]

Kim, H.

K. K. Kim, H. Kim, S. N. Lee, and S. Cho, “Structural, optical, and electrical properties of E-beam and sputter-deposited ITO films for LED applications,” Electron Mater Lett7(2), 145–149 (2011).
[CrossRef]

Kim, H. G.

S. Chandramohan, B. D. Ryu, P. Uthirakumar, J. H. Kang, H. K. Kim, H. G. Kim, and C.-H. Hong, “Tuning the spectrometric properties of white light by surface plasmon effect using Ag nanoparticles in a colour converting light-emitting diode,” Solid-State Electron.57(1), 90–92 (2011).
[CrossRef]

Kim, H. K.

S. Chandramohan, B. D. Ryu, P. Uthirakumar, J. H. Kang, H. K. Kim, H. G. Kim, and C.-H. Hong, “Tuning the spectrometric properties of white light by surface plasmon effect using Ag nanoparticles in a colour converting light-emitting diode,” Solid-State Electron.57(1), 90–92 (2011).
[CrossRef]

Kim, H. S.

J. Y. Cho, K. J. Byeon, H. Park, J. Kim, H. S. Kim, and H. Lee, “Improvement of photon extraction efficiency of GaN-based LED using micro and nano complex polymer structures,” Nanoscale Res. Lett.6(1), 578 (2011).
[CrossRef] [PubMed]

Kim, J.

J. Y. Cho, K. J. Byeon, H. Park, J. Kim, H. S. Kim, and H. Lee, “Improvement of photon extraction efficiency of GaN-based LED using micro and nano complex polymer structures,” Nanoscale Res. Lett.6(1), 578 (2011).
[CrossRef] [PubMed]

Kim, J. K.

E. F. Schubert and J. K. Kim, “Solid-state light sources getting smart,” Science308(5726), 1274–1278 (2005).
[CrossRef] [PubMed]

Kim, K. K.

K. K. Kim, H. Kim, S. N. Lee, and S. Cho, “Structural, optical, and electrical properties of E-beam and sputter-deposited ITO films for LED applications,” Electron Mater Lett7(2), 145–149 (2011).
[CrossRef]

Kim, S. K.

S. K. Kim, H. S. Ee, W. Choi, S. H. Kwon, J. H. Kang, Y. H. Kim, H. Kwon, and H. G. Park, “Surface-plasmon-induced light absorption on a rough silver surface,” Appl. Phys. Lett.98(1), 011109 (2011).
[CrossRef]

Kim, Y. H.

S. K. Kim, H. S. Ee, W. Choi, S. H. Kwon, J. H. Kang, Y. H. Kim, H. Kwon, and H. G. Park, “Surface-plasmon-induced light absorption on a rough silver surface,” Appl. Phys. Lett.98(1), 011109 (2011).
[CrossRef]

Krames, M. R.

J. M. Phillips, M. E. Coltrin, M. H. Crawford, A. J. Fischer, M. R. Krames, R. Mueller‐Mach, G. O. Mueller, Y. Ohno, L. E. S. Rohwer, J. A. Simmons, and J. Y. Tsao, “Research challenges to ultra‐efficient inorganic solid‐state lighting,” Laser Photonics Rev.1(4), 307–333 (2007).
[CrossRef]

M. R. Krames, O. B. Shchekin, R. Mueller-Mach, G. O. Mueller, L. Zhou, G. Harbers, and M. G. Craford, “Status and future of high-power light-emitting diodes for solid-state lighting,” J. Display Tech.3(2), 160–175 (2007).
[CrossRef]

Kwon, H.

S. K. Kim, H. S. Ee, W. Choi, S. H. Kwon, J. H. Kang, Y. H. Kim, H. Kwon, and H. G. Park, “Surface-plasmon-induced light absorption on a rough silver surface,” Appl. Phys. Lett.98(1), 011109 (2011).
[CrossRef]

Kwon, S. H.

S. K. Kim, H. S. Ee, W. Choi, S. H. Kwon, J. H. Kang, Y. H. Kim, H. Kwon, and H. G. Park, “Surface-plasmon-induced light absorption on a rough silver surface,” Appl. Phys. Lett.98(1), 011109 (2011).
[CrossRef]

Laour, M.

F. Haddad, A. Chikouche, and M. Laour, “Simulation of the opti-physical parameters of selectives surfaces of absorber by the FDTD method applied to solar water heater,” Energy Proc.6, 413–421 (2011).
[CrossRef]

Lee, E.-H.

J.-H. Sung, B.-S. Kim, C.-H. Choi, M.-W. Lee, S.-G. Lee, S.-G. Park, E.-H. Lee, and O. Beom-Hoan, “Enhanced luminescence of GaN-based light-emitting diode with a localized surface plasmon resonance,” Microelectron. Eng.86(4-6), 1120–1123 (2009).
[CrossRef]

Lee, H.

J. Y. Cho, K. J. Byeon, H. Park, J. Kim, H. S. Kim, and H. Lee, “Improvement of photon extraction efficiency of GaN-based LED using micro and nano complex polymer structures,” Nanoscale Res. Lett.6(1), 578 (2011).
[CrossRef] [PubMed]

Lee, M.-W.

J.-H. Sung, B.-S. Kim, C.-H. Choi, M.-W. Lee, S.-G. Lee, S.-G. Park, E.-H. Lee, and O. Beom-Hoan, “Enhanced luminescence of GaN-based light-emitting diode with a localized surface plasmon resonance,” Microelectron. Eng.86(4-6), 1120–1123 (2009).
[CrossRef]

Lee, S. N.

K. K. Kim, H. Kim, S. N. Lee, and S. Cho, “Structural, optical, and electrical properties of E-beam and sputter-deposited ITO films for LED applications,” Electron Mater Lett7(2), 145–149 (2011).
[CrossRef]

Lee, S. T.

Y. Xiao, J. P. Yang, P. P. Cheng, J. J. Zhu, Z. Q. Xu, Y. H. Deng, S. T. Lee, Y. Q. Li, and J. X. Tang, “Surface plasmon-enhanced electroluminescence in organic light-emitting diodes incorporating Au nanoparticles,” Appl. Phys. Lett.100(1), 013308 (2012).
[CrossRef]

Lee, S.-G.

J.-H. Sung, B.-S. Kim, C.-H. Choi, M.-W. Lee, S.-G. Lee, S.-G. Park, E.-H. Lee, and O. Beom-Hoan, “Enhanced luminescence of GaN-based light-emitting diode with a localized surface plasmon resonance,” Microelectron. Eng.86(4-6), 1120–1123 (2009).
[CrossRef]

Lee, T. X.

Li, H. H.

J. Chen, Q. K. Wang, and H. H. Li, “Further enhancement of light extraction efficiency of light-emitting diode with Ag film grown on photonic crystals,” Opt. Appl.41, 51–61 (2011).

Li, Q.

Y. Gou, Y. Xuan, Y. Han, and Q. Li, “Enhancement of light-emitting efficiency using combined plasmonic Ag grating and dielectric grating,” J. Lumin.131(11), 2382–2386 (2011).
[CrossRef]

Li, Y. Q.

Y. Xiao, J. P. Yang, P. P. Cheng, J. J. Zhu, Z. Q. Xu, Y. H. Deng, S. T. Lee, Y. Q. Li, and J. X. Tang, “Surface plasmon-enhanced electroluminescence in organic light-emitting diodes incorporating Au nanoparticles,” Appl. Phys. Lett.100(1), 013308 (2012).
[CrossRef]

Lupton, J. M.

B. J. Matterson, J. M. Lupton, A. F. Safonov, M. G. Salt, W. L. Barnes, and I. D. W. Samuel, “Increased efficiency and controlled light output from a microstructured light-emitting diode,” Adv. Mater. (Deerfield Beach Fla.)13(2), 123–127 (2001).
[CrossRef]

Matterson, B. J.

B. J. Matterson, J. M. Lupton, A. F. Safonov, M. G. Salt, W. L. Barnes, and I. D. W. Samuel, “Increased efficiency and controlled light output from a microstructured light-emitting diode,” Adv. Mater. (Deerfield Beach Fla.)13(2), 123–127 (2001).
[CrossRef]

Mueller, G. O.

M. R. Krames, O. B. Shchekin, R. Mueller-Mach, G. O. Mueller, L. Zhou, G. Harbers, and M. G. Craford, “Status and future of high-power light-emitting diodes for solid-state lighting,” J. Display Tech.3(2), 160–175 (2007).
[CrossRef]

J. M. Phillips, M. E. Coltrin, M. H. Crawford, A. J. Fischer, M. R. Krames, R. Mueller‐Mach, G. O. Mueller, Y. Ohno, L. E. S. Rohwer, J. A. Simmons, and J. Y. Tsao, “Research challenges to ultra‐efficient inorganic solid‐state lighting,” Laser Photonics Rev.1(4), 307–333 (2007).
[CrossRef]

Mueller-Mach, R.

J. M. Phillips, M. E. Coltrin, M. H. Crawford, A. J. Fischer, M. R. Krames, R. Mueller‐Mach, G. O. Mueller, Y. Ohno, L. E. S. Rohwer, J. A. Simmons, and J. Y. Tsao, “Research challenges to ultra‐efficient inorganic solid‐state lighting,” Laser Photonics Rev.1(4), 307–333 (2007).
[CrossRef]

M. R. Krames, O. B. Shchekin, R. Mueller-Mach, G. O. Mueller, L. Zhou, G. Harbers, and M. G. Craford, “Status and future of high-power light-emitting diodes for solid-state lighting,” J. Display Tech.3(2), 160–175 (2007).
[CrossRef]

Mukai, T.

S. Nakamura, M. Senoh, and T. Mukai, “High‐power InGaN/GaN double‐heterostructure violet light emitting diodes,” Appl. Phys. Lett.62(19), 2390–2392 (1993).
[CrossRef]

Nakamura, S.

S. Pimputkar, J. S. Speck, S. P. DenBaars, and S. Nakamura, “Prospects for LED lighting,” Nat. Photonics3(4), 180–182 (2009).
[CrossRef]

Y. Kawakami, Y. Narukawa, K. Omae, S. Fujita, and S. Nakamura, “Dimensionality of Excitons in InGaN‐Based Light Emitting Devices,” Phys. Status Solidi, A Appl. Res.178(1), 331–336 (2000).
[CrossRef]

S. Nakamura, M. Senoh, and T. Mukai, “High‐power InGaN/GaN double‐heterostructure violet light emitting diodes,” Appl. Phys. Lett.62(19), 2390–2392 (1993).
[CrossRef]

Narukawa, Y.

Y. Kawakami, Y. Narukawa, K. Omae, S. Fujita, and S. Nakamura, “Dimensionality of Excitons in InGaN‐Based Light Emitting Devices,” Phys. Status Solidi, A Appl. Res.178(1), 331–336 (2000).
[CrossRef]

Ohno, Y.

J. M. Phillips, M. E. Coltrin, M. H. Crawford, A. J. Fischer, M. R. Krames, R. Mueller‐Mach, G. O. Mueller, Y. Ohno, L. E. S. Rohwer, J. A. Simmons, and J. Y. Tsao, “Research challenges to ultra‐efficient inorganic solid‐state lighting,” Laser Photonics Rev.1(4), 307–333 (2007).
[CrossRef]

Omae, K.

Y. Kawakami, Y. Narukawa, K. Omae, S. Fujita, and S. Nakamura, “Dimensionality of Excitons in InGaN‐Based Light Emitting Devices,” Phys. Status Solidi, A Appl. Res.178(1), 331–336 (2000).
[CrossRef]

Park, H.

J. Y. Cho, K. J. Byeon, H. Park, J. Kim, H. S. Kim, and H. Lee, “Improvement of photon extraction efficiency of GaN-based LED using micro and nano complex polymer structures,” Nanoscale Res. Lett.6(1), 578 (2011).
[CrossRef] [PubMed]

Park, H. G.

S. K. Kim, H. S. Ee, W. Choi, S. H. Kwon, J. H. Kang, Y. H. Kim, H. Kwon, and H. G. Park, “Surface-plasmon-induced light absorption on a rough silver surface,” Appl. Phys. Lett.98(1), 011109 (2011).
[CrossRef]

Park, Q.-H.

D. H. Kim, C. O. Cho, Y. G. Roh, H. Jeon, Y. S. Park, J. Cho, J. S. Im, C. Sone, Y. Park, W. J. Choi, and Q.-H. Park, “Enhanced light extraction from GaN-based light-emitting diodes with holographically generated two-dimensional photonic crystal patterns,” Appl. Phys. Lett.87(20), 203508 (2005).
[CrossRef]

Park, S.-G.

J.-H. Sung, B.-S. Kim, C.-H. Choi, M.-W. Lee, S.-G. Lee, S.-G. Park, E.-H. Lee, and O. Beom-Hoan, “Enhanced luminescence of GaN-based light-emitting diode with a localized surface plasmon resonance,” Microelectron. Eng.86(4-6), 1120–1123 (2009).
[CrossRef]

Park, Y.

D. H. Kim, C. O. Cho, Y. G. Roh, H. Jeon, Y. S. Park, J. Cho, J. S. Im, C. Sone, Y. Park, W. J. Choi, and Q.-H. Park, “Enhanced light extraction from GaN-based light-emitting diodes with holographically generated two-dimensional photonic crystal patterns,” Appl. Phys. Lett.87(20), 203508 (2005).
[CrossRef]

Park, Y. S.

D. H. Kim, C. O. Cho, Y. G. Roh, H. Jeon, Y. S. Park, J. Cho, J. S. Im, C. Sone, Y. Park, W. J. Choi, and Q.-H. Park, “Enhanced light extraction from GaN-based light-emitting diodes with holographically generated two-dimensional photonic crystal patterns,” Appl. Phys. Lett.87(20), 203508 (2005).
[CrossRef]

Phillips, J. M.

J. M. Phillips, M. E. Coltrin, M. H. Crawford, A. J. Fischer, M. R. Krames, R. Mueller‐Mach, G. O. Mueller, Y. Ohno, L. E. S. Rohwer, J. A. Simmons, and J. Y. Tsao, “Research challenges to ultra‐efficient inorganic solid‐state lighting,” Laser Photonics Rev.1(4), 307–333 (2007).
[CrossRef]

Pimputkar, S.

S. Pimputkar, J. S. Speck, S. P. DenBaars, and S. Nakamura, “Prospects for LED lighting,” Nat. Photonics3(4), 180–182 (2009).
[CrossRef]

Polman, A.

H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater.9(3), 205–213 (2010).
[CrossRef] [PubMed]

Qiu, T.

X. Gu, T. Qiu, W. Zhang, and P. K. Chu, “Light-emitting diodes enhanced by localized surface plasmon resonance,” Nanoscale Res. Lett.6(1), 199 (2011).
[CrossRef] [PubMed]

Ramm, M. S.

M. V. Bogdanov, K. A. Bulashevich, O. V. Khokhlev, I. Y. Evstratov, M. S. Ramm, and S. Y. Karpov, “Effect of ITO spreading layer on performance of blue light-emitting diodes,” Phys. Status Solidi., C Curr. Top. Solid State Phys.7(7-8), 2127–2129 (2010).
[CrossRef]

Roh, Y. G.

D. H. Kim, C. O. Cho, Y. G. Roh, H. Jeon, Y. S. Park, J. Cho, J. S. Im, C. Sone, Y. Park, W. J. Choi, and Q.-H. Park, “Enhanced light extraction from GaN-based light-emitting diodes with holographically generated two-dimensional photonic crystal patterns,” Appl. Phys. Lett.87(20), 203508 (2005).
[CrossRef]

Rohwer, L. E. S.

J. M. Phillips, M. E. Coltrin, M. H. Crawford, A. J. Fischer, M. R. Krames, R. Mueller‐Mach, G. O. Mueller, Y. Ohno, L. E. S. Rohwer, J. A. Simmons, and J. Y. Tsao, “Research challenges to ultra‐efficient inorganic solid‐state lighting,” Laser Photonics Rev.1(4), 307–333 (2007).
[CrossRef]

Ryu, B. D.

S. Chandramohan, B. D. Ryu, P. Uthirakumar, J. H. Kang, H. K. Kim, H. G. Kim, and C.-H. Hong, “Tuning the spectrometric properties of white light by surface plasmon effect using Ag nanoparticles in a colour converting light-emitting diode,” Solid-State Electron.57(1), 90–92 (2011).
[CrossRef]

Safonov, A. F.

B. J. Matterson, J. M. Lupton, A. F. Safonov, M. G. Salt, W. L. Barnes, and I. D. W. Samuel, “Increased efficiency and controlled light output from a microstructured light-emitting diode,” Adv. Mater. (Deerfield Beach Fla.)13(2), 123–127 (2001).
[CrossRef]

Salt, M. G.

B. J. Matterson, J. M. Lupton, A. F. Safonov, M. G. Salt, W. L. Barnes, and I. D. W. Samuel, “Increased efficiency and controlled light output from a microstructured light-emitting diode,” Adv. Mater. (Deerfield Beach Fla.)13(2), 123–127 (2001).
[CrossRef]

Samuel, I. D. W.

B. J. Matterson, J. M. Lupton, A. F. Safonov, M. G. Salt, W. L. Barnes, and I. D. W. Samuel, “Increased efficiency and controlled light output from a microstructured light-emitting diode,” Adv. Mater. (Deerfield Beach Fla.)13(2), 123–127 (2001).
[CrossRef]

Schubert, E. F.

E. F. Schubert and J. K. Kim, “Solid-state light sources getting smart,” Science308(5726), 1274–1278 (2005).
[CrossRef] [PubMed]

Schuller, J. A.

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater.9(4), 368 (2010).

Senoh, M.

S. Nakamura, M. Senoh, and T. Mukai, “High‐power InGaN/GaN double‐heterostructure violet light emitting diodes,” Appl. Phys. Lett.62(19), 2390–2392 (1993).
[CrossRef]

Shchekin, O. B.

M. R. Krames, O. B. Shchekin, R. Mueller-Mach, G. O. Mueller, L. Zhou, G. Harbers, and M. G. Craford, “Status and future of high-power light-emitting diodes for solid-state lighting,” J. Display Tech.3(2), 160–175 (2007).
[CrossRef]

Simmons, J. A.

J. M. Phillips, M. E. Coltrin, M. H. Crawford, A. J. Fischer, M. R. Krames, R. Mueller‐Mach, G. O. Mueller, Y. Ohno, L. E. S. Rohwer, J. A. Simmons, and J. Y. Tsao, “Research challenges to ultra‐efficient inorganic solid‐state lighting,” Laser Photonics Rev.1(4), 307–333 (2007).
[CrossRef]

Sone, C.

D. H. Kim, C. O. Cho, Y. G. Roh, H. Jeon, Y. S. Park, J. Cho, J. S. Im, C. Sone, Y. Park, W. J. Choi, and Q.-H. Park, “Enhanced light extraction from GaN-based light-emitting diodes with holographically generated two-dimensional photonic crystal patterns,” Appl. Phys. Lett.87(20), 203508 (2005).
[CrossRef]

Speck, J. S.

S. Pimputkar, J. S. Speck, S. P. DenBaars, and S. Nakamura, “Prospects for LED lighting,” Nat. Photonics3(4), 180–182 (2009).
[CrossRef]

M. Hansen, P. Fini, L. Zhao, A. Abare, L. A. Coldren, J. S. Speck, and S. P. DenBaars, “Improved characteristics of InGaN multiple-quantum-well laser diodes grown on laterally epitaxially overgrown GaN on sapphire,” Appl. Phys. Lett.76(5), 529 (2000).
[CrossRef]

Sun, C. C.

Sung, J.-H.

J.-H. Sung, B.-S. Kim, C.-H. Choi, M.-W. Lee, S.-G. Lee, S.-G. Park, E.-H. Lee, and O. Beom-Hoan, “Enhanced luminescence of GaN-based light-emitting diode with a localized surface plasmon resonance,” Microelectron. Eng.86(4-6), 1120–1123 (2009).
[CrossRef]

Tang, J. X.

Y. Xiao, J. P. Yang, P. P. Cheng, J. J. Zhu, Z. Q. Xu, Y. H. Deng, S. T. Lee, Y. Q. Li, and J. X. Tang, “Surface plasmon-enhanced electroluminescence in organic light-emitting diodes incorporating Au nanoparticles,” Appl. Phys. Lett.100(1), 013308 (2012).
[CrossRef]

Tsao, J. Y.

J. M. Phillips, M. E. Coltrin, M. H. Crawford, A. J. Fischer, M. R. Krames, R. Mueller‐Mach, G. O. Mueller, Y. Ohno, L. E. S. Rohwer, J. A. Simmons, and J. Y. Tsao, “Research challenges to ultra‐efficient inorganic solid‐state lighting,” Laser Photonics Rev.1(4), 307–333 (2007).
[CrossRef]

Uthirakumar, P.

S. Chandramohan, B. D. Ryu, P. Uthirakumar, J. H. Kang, H. K. Kim, H. G. Kim, and C.-H. Hong, “Tuning the spectrometric properties of white light by surface plasmon effect using Ag nanoparticles in a colour converting light-emitting diode,” Solid-State Electron.57(1), 90–92 (2011).
[CrossRef]

Wang, Q. K.

J. Chen, Q. K. Wang, and H. H. Li, “Further enhancement of light extraction efficiency of light-emitting diode with Ag film grown on photonic crystals,” Opt. Appl.41, 51–61 (2011).

White, J. S.

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater.9(4), 368 (2010).

Xiao, Y.

Y. Xiao, J. P. Yang, P. P. Cheng, J. J. Zhu, Z. Q. Xu, Y. H. Deng, S. T. Lee, Y. Q. Li, and J. X. Tang, “Surface plasmon-enhanced electroluminescence in organic light-emitting diodes incorporating Au nanoparticles,” Appl. Phys. Lett.100(1), 013308 (2012).
[CrossRef]

Xu, Z. Q.

Y. Xiao, J. P. Yang, P. P. Cheng, J. J. Zhu, Z. Q. Xu, Y. H. Deng, S. T. Lee, Y. Q. Li, and J. X. Tang, “Surface plasmon-enhanced electroluminescence in organic light-emitting diodes incorporating Au nanoparticles,” Appl. Phys. Lett.100(1), 013308 (2012).
[CrossRef]

Xuan, Y.

Y. Gou, Y. Xuan, Y. Han, and Q. Li, “Enhancement of light-emitting efficiency using combined plasmonic Ag grating and dielectric grating,” J. Lumin.131(11), 2382–2386 (2011).
[CrossRef]

Yang, J. P.

Y. Xiao, J. P. Yang, P. P. Cheng, J. J. Zhu, Z. Q. Xu, Y. H. Deng, S. T. Lee, Y. Q. Li, and J. X. Tang, “Surface plasmon-enhanced electroluminescence in organic light-emitting diodes incorporating Au nanoparticles,” Appl. Phys. Lett.100(1), 013308 (2012).
[CrossRef]

Zhang, W.

X. Gu, T. Qiu, W. Zhang, and P. K. Chu, “Light-emitting diodes enhanced by localized surface plasmon resonance,” Nanoscale Res. Lett.6(1), 199 (2011).
[CrossRef] [PubMed]

Zhao, L.

M. Hansen, P. Fini, L. Zhao, A. Abare, L. A. Coldren, J. S. Speck, and S. P. DenBaars, “Improved characteristics of InGaN multiple-quantum-well laser diodes grown on laterally epitaxially overgrown GaN on sapphire,” Appl. Phys. Lett.76(5), 529 (2000).
[CrossRef]

Zhmakin, A. I.

A. I. Zhmakin, “Enhancement of light extraction from light emitting diodes,” Phys. Rep.498(4-5), 189–241 (2011).
[CrossRef]

Zhou, L.

M. R. Krames, O. B. Shchekin, R. Mueller-Mach, G. O. Mueller, L. Zhou, G. Harbers, and M. G. Craford, “Status and future of high-power light-emitting diodes for solid-state lighting,” J. Display Tech.3(2), 160–175 (2007).
[CrossRef]

Zhu, J. J.

Y. Xiao, J. P. Yang, P. P. Cheng, J. J. Zhu, Z. Q. Xu, Y. H. Deng, S. T. Lee, Y. Q. Li, and J. X. Tang, “Surface plasmon-enhanced electroluminescence in organic light-emitting diodes incorporating Au nanoparticles,” Appl. Phys. Lett.100(1), 013308 (2012).
[CrossRef]

Adv. Mater. (Deerfield Beach Fla.)

B. J. Matterson, J. M. Lupton, A. F. Safonov, M. G. Salt, W. L. Barnes, and I. D. W. Samuel, “Increased efficiency and controlled light output from a microstructured light-emitting diode,” Adv. Mater. (Deerfield Beach Fla.)13(2), 123–127 (2001).
[CrossRef]

Appl. Phys. Lett.

D. H. Kim, C. O. Cho, Y. G. Roh, H. Jeon, Y. S. Park, J. Cho, J. S. Im, C. Sone, Y. Park, W. J. Choi, and Q.-H. Park, “Enhanced light extraction from GaN-based light-emitting diodes with holographically generated two-dimensional photonic crystal patterns,” Appl. Phys. Lett.87(20), 203508 (2005).
[CrossRef]

N. Holonyak and S. Bevacqua, “Coherent (visible) light emission from Ga (AsP) junctions,” Appl. Phys. Lett.1(4), 82 (1962).
[CrossRef]

S. Nakamura, M. Senoh, and T. Mukai, “High‐power InGaN/GaN double‐heterostructure violet light emitting diodes,” Appl. Phys. Lett.62(19), 2390–2392 (1993).
[CrossRef]

M. Hansen, P. Fini, L. Zhao, A. Abare, L. A. Coldren, J. S. Speck, and S. P. DenBaars, “Improved characteristics of InGaN multiple-quantum-well laser diodes grown on laterally epitaxially overgrown GaN on sapphire,” Appl. Phys. Lett.76(5), 529 (2000).
[CrossRef]

S. K. Kim, H. S. Ee, W. Choi, S. H. Kwon, J. H. Kang, Y. H. Kim, H. Kwon, and H. G. Park, “Surface-plasmon-induced light absorption on a rough silver surface,” Appl. Phys. Lett.98(1), 011109 (2011).
[CrossRef]

Y. Xiao, J. P. Yang, P. P. Cheng, J. J. Zhu, Z. Q. Xu, Y. H. Deng, S. T. Lee, Y. Q. Li, and J. X. Tang, “Surface plasmon-enhanced electroluminescence in organic light-emitting diodes incorporating Au nanoparticles,” Appl. Phys. Lett.100(1), 013308 (2012).
[CrossRef]

Electron Mater Lett

K. K. Kim, H. Kim, S. N. Lee, and S. Cho, “Structural, optical, and electrical properties of E-beam and sputter-deposited ITO films for LED applications,” Electron Mater Lett7(2), 145–149 (2011).
[CrossRef]

Energy Proc.

F. Haddad, A. Chikouche, and M. Laour, “Simulation of the opti-physical parameters of selectives surfaces of absorber by the FDTD method applied to solar water heater,” Energy Proc.6, 413–421 (2011).
[CrossRef]

J. Display Tech.

M. R. Krames, O. B. Shchekin, R. Mueller-Mach, G. O. Mueller, L. Zhou, G. Harbers, and M. G. Craford, “Status and future of high-power light-emitting diodes for solid-state lighting,” J. Display Tech.3(2), 160–175 (2007).
[CrossRef]

J. Lumin.

Y. Gou, Y. Xuan, Y. Han, and Q. Li, “Enhancement of light-emitting efficiency using combined plasmonic Ag grating and dielectric grating,” J. Lumin.131(11), 2382–2386 (2011).
[CrossRef]

Laser Photonics Rev.

J. M. Phillips, M. E. Coltrin, M. H. Crawford, A. J. Fischer, M. R. Krames, R. Mueller‐Mach, G. O. Mueller, Y. Ohno, L. E. S. Rohwer, J. A. Simmons, and J. Y. Tsao, “Research challenges to ultra‐efficient inorganic solid‐state lighting,” Laser Photonics Rev.1(4), 307–333 (2007).
[CrossRef]

Microelectron. Eng.

J.-H. Sung, B.-S. Kim, C.-H. Choi, M.-W. Lee, S.-G. Lee, S.-G. Park, E.-H. Lee, and O. Beom-Hoan, “Enhanced luminescence of GaN-based light-emitting diode with a localized surface plasmon resonance,” Microelectron. Eng.86(4-6), 1120–1123 (2009).
[CrossRef]

Nanoscale Res. Lett.

J. Y. Cho, K. J. Byeon, H. Park, J. Kim, H. S. Kim, and H. Lee, “Improvement of photon extraction efficiency of GaN-based LED using micro and nano complex polymer structures,” Nanoscale Res. Lett.6(1), 578 (2011).
[CrossRef] [PubMed]

X. Gu, T. Qiu, W. Zhang, and P. K. Chu, “Light-emitting diodes enhanced by localized surface plasmon resonance,” Nanoscale Res. Lett.6(1), 199 (2011).
[CrossRef] [PubMed]

Nat. Mater.

H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater.9(3), 205–213 (2010).
[CrossRef] [PubMed]

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater.9(4), 368 (2010).

Nat. Photonics

S. Pimputkar, J. S. Speck, S. P. DenBaars, and S. Nakamura, “Prospects for LED lighting,” Nat. Photonics3(4), 180–182 (2009).
[CrossRef]

Opt. Appl.

J. Chen, Q. K. Wang, and H. H. Li, “Further enhancement of light extraction efficiency of light-emitting diode with Ag film grown on photonic crystals,” Opt. Appl.41, 51–61 (2011).

Opt. Express

Phys. Rep.

A. I. Zhmakin, “Enhancement of light extraction from light emitting diodes,” Phys. Rep.498(4-5), 189–241 (2011).
[CrossRef]

Phys. Rev. B

P. B. Johnson and R. Christy, “Optical constants of the noble metals,” Phys. Rev. B6(12), 4370–4379 (1972).
[CrossRef]

Phys. Status Solidi, A Appl. Res.

Y. Kawakami, Y. Narukawa, K. Omae, S. Fujita, and S. Nakamura, “Dimensionality of Excitons in InGaN‐Based Light Emitting Devices,” Phys. Status Solidi, A Appl. Res.178(1), 331–336 (2000).
[CrossRef]

Phys. Status Solidi., C Curr. Top. Solid State Phys.

M. V. Bogdanov, K. A. Bulashevich, O. V. Khokhlev, I. Y. Evstratov, M. S. Ramm, and S. Y. Karpov, “Effect of ITO spreading layer on performance of blue light-emitting diodes,” Phys. Status Solidi., C Curr. Top. Solid State Phys.7(7-8), 2127–2129 (2010).
[CrossRef]

Science

E. F. Schubert and J. K. Kim, “Solid-state light sources getting smart,” Science308(5726), 1274–1278 (2005).
[CrossRef] [PubMed]

Solid-State Electron.

S. Chandramohan, B. D. Ryu, P. Uthirakumar, J. H. Kang, H. K. Kim, H. G. Kim, and C.-H. Hong, “Tuning the spectrometric properties of white light by surface plasmon effect using Ag nanoparticles in a colour converting light-emitting diode,” Solid-State Electron.57(1), 90–92 (2011).
[CrossRef]

Other

K. Okamoto, “Surface plasmon enhanced solid-state light-emitting devices,” in Nanoscale Photonics and Optoelectronics, eds. Z. Wang and A. Neogi, (Springer, (2010), 27-46.

S. Trieu, X. Jin, A. Ellaboudy, B. Zhang, X.-N. Kang, G.-Y. Zhang, X. Chang, W. Wei, S. Y. Jian, and F. X. Xing, “Top transmission grating GaN LED simulations for light extraction improvement,” W. Bernd, H. Fritz, A. Yasuhiko, and F. Alexandre, eds. (SPIE, 2011), p. 79331Y.

C. Wiesmann, “Nano-structured LEDs–Light extraction mechanisms and applications,” Ph.D. thesis, Science Faculty, Universität Regensburg, Regensburg, Germany, (2010)

U. S. Inan and R. A. Marshall, Numerical Electromagnetics: The FDTD Method (Cambridge Univ. Press, 2011).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Attenuated length of the evanescent wave generated at the interface between GaN and ITO. The changes in the attenuated length with the incident angle and wavelength are shown.

Fig. 2
Fig. 2

Schematic diagram of the computational LED model used in the FDTD simulation, where the PML absorption boundary condition has been shown. The red line is the electromagnetic field detector, which records the energy flow through the upper surface. The pink dot represents the radiation source.

Fig. 3
Fig. 3

Energy flux on the energy detector surface for the half Ag nanostructure chip model, with parameters listed in Table 1. The inset at the bottom of the diagram is the chip model. Lx represents the length of one side of the simulation region.

Fig. 4
Fig. 4

Enhancement factors of the LED chip models when the radiation source is (a) a TM-polarized or (b) a TE-polarized wave.

Fig. 5
Fig. 5

Poynting vector distribution of the whole computation domain for (a) Case 1 and (b) Case 2. Lx and Ly are the side lengths of the two-dimensional simulation region.

Fig. 6
Fig. 6

Effect of the distance h between the Ag nanostructure and the GaN layer on the enhancement factors.

Fig. 7
Fig. 7

Effect of the depth d of the Ag nanostructure on the enhancement factors.

Fig. 8
Fig. 8

Effect of the period w of the chip model on the enhancement factors.

Fig. 9
Fig. 9

Effect of the filling ratio f of the chip model on the enhancement factors.

Tables (2)

Tables Icon

Table 1 Parameter values of the Ag grating chip model. (unit: μm)

Tables Icon

Table 2 Parameter values of the four types of chip models.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

l a =1/| Im( k 0 ( n 1 ) 2 ( n 2 sin θ i ) 2 ) |
E x t = 1 ε 0 H y z H y t = 1 μ 0 E x z
E x n+ 1 2 (k) E x n 1 2 (k) Δt = 1 ε 0 H y n (k+ 1 2 ) H y n (k 1 2 ) Δx H y n+1 (k+ 1 2 ) H y n (k+ 1 2 ) Δt = 1 μ 0 E x n+ 1 2 (k+1) E x n+ 1 2 Δx
J t + (t) τ = ε 0 ω p 2 E(t)
ε Ag (ω)= ε ω p 2 ω 2 +jωγ
F λ = P λ,with P λ,without

Metrics