Abstract

The fulfillment of the reciprocity by five publicly available scattering programs is investigated for a number of different particles. Reciprocity means that the source and the observation point of a given scattering configuration can be interchanged without changing the result. The programs under consideration are either implementations of T-matrix methods or of the discrete dipole approximation. Similarities and differences concerning their reciprocity behavior are discussed. In particular, it is investigated whether and under which conditions reciprocity tests can be used to evaluate the scattering results obtained by the different programs for the given particles.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. I. Mishchenko, J. W. Hovenier, and L. D. Travis, eds., Light Scattering by Nonspherical Particles: Theory, Measurements, and Applications (Academic, 2000).
  2. M. I. Mishchenko, L. D. Travis, and A. A. Lacis, Scattering, Absorption, and Emission of Light by Small Particles (Cambridge University Press, 2002).
  3. F. Borghese, P. Denti, and R. Saija, Scattering from Model Nonspherical Particles: Theory and Applications to Environmental Physics(Springer, 2003).
  4. M. Kahnert, “Numerical methods in electromagnetic scattering theory,” J. Quant. Spectrosc. Radiat. Transfer 79–80, 775–824 (2003).
    [Crossref]
  5. A. Doicu, T. Wriedt, and Y. A. Eremin, Light Scattering by Systems of Particles. Null-Field Method with Discrete Sources: Theory and Programs (Springer, 2006).
  6. A. A. Kokhanovsky, ed., Light Scattering Reviews, Vol. 1 (Springer, 2006).
    [Crossref]
  7. A. A. Kokhanovsky, ed., Light Scattering Reviews, Vol. 2 (Springer, 2007).
    [Crossref]
  8. A. A. Kokhanovsky, ed., Light Scattering Reviews, Vol. 3 (Springer, 2008).
    [Crossref]
  9. A. A. Kokhanovsky, ed., Light Scattering Reviews, Vol. 4 (Springer, 2009).
    [Crossref]
  10. T. Rother, Electromagnetic Wave Scattering on Nonspherical Particles: Basic Methodology and Simulations (Springer, 2009).
    [Crossref]
  11. M. Kahnert, “Electromagnetic scattering by nonspherical particles: recent advances,” J. Quant. Spectrosc. Radiat. Transfer 111, 1788–1790 (2010).
    [Crossref]
  12. T. Wriedt and J. Hellmers, “New scattering information portal for the light–scattering community,” J. Quant. Spectrosc. Radiat. Transfer 109, 1536–1542 (2008).
    [Crossref]
  13. J. Hellmers and T. Wriedt, “New approaches for a light scattering internet information portal and categorization schemes for light scattering software,” J. Quant. Spectrosc. Radiat. Transfer 110, 1511–1517 (2009).
    [Crossref]
  14. http://www.t-matrix.de/
  15. J. W. Hovenier and C. V. M. van der Mee, “Basic relationships for matrices describing scattering by small particles,” in Light Scattering by Nonspherical Particles: Theory, Measurements, and Applications, M. I. Mishchenko, J. W. Hovenier, and L. D. Travis, eds. (Academic, 2000), pp. 61–85.
    [Crossref]
  16. T. Rother and J. Wauer, “Case study about the accuracy behavior of three different T-matrix methods,” Appl. Opt. 49, 5746–5756 (2010).
    [Crossref] [PubMed]
  17. H. C. van de Hulst, Light Scattering by Small Particles (John Wiley & Sons, 1957).
  18. P. Barber and S. C. Hill, Light Scattering by Particles: Computational Methods (World Scientific, 1990).
  19. J. Wauer, K. Schmidt, T. Rother, T. Ernst, and M. Hess, “Two software tools for the plane–wave scattering on nonspherical particles in the German Aerospace Center’s virtual laboratory,” Appl. Opt. 43, 6371–6379 (2004).
    [Crossref] [PubMed]
  20. D. W. Mackowski, K. Fuller, and M. I. Mishchenko, “Codes for calculation of scattering by clusters of spheres,” ftp://ftp.eng.auburn.edu/pub/dmckwski/scatcodes/index.html.
  21. D. W. Mackowski and M. I. Mishchenko, “A multiple sphere T-matrix Fortran code for use on parallel computer clusters,” J. Quant. Spectrosc. Radiat. Transfer 112, 2182–2192 (2011).
    [Crossref]
  22. M. Kahnert, T. Nousiainen, H. Lindqvist, and M. Ebert, “Optical properties of light absorbing carbon aggregates mixed with sulphate: assessment of different model geometries for climate forcing calculations,” Opt. Express20, 10042–10058 (2012), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-20-9-10042 .
    [Crossref] [PubMed]
  23. L. Tsang, J. A. Kong, and R. T. Shin, Theory of Microwave Remote Sensing (John Wiley & Sons, 1985).
  24. M. Kahnert, “Irreducible representations of finite groups in the T-matrix formulation of the electromagnetic scattering problem”, J. Opt. Soc. Am. A 22, 1187–1199 (2005).
    [Crossref]
  25. A. Mugnai and W. J. Wiscombe, “Scattering of radiation by moderately nonspherical particles,” J. Atmos. Sci. 37, 1291–1307 (1980).
    [Crossref]
  26. H. Volten, O. Muñoz, J. W. Hovenier, J. F. de Haan, W. Vassen, W. J. van der Zande, and L. B. F. M. Waters, “WWW scattering matrix database for small mineral particles at 441.6 and 632.8 nm,” J. Quant. Spectrosc. Radiat. Transfer 90, 191–206 (2005).
    [Crossref]
  27. S. G. Warren and R. E. Brandt, “Optical constants of ice from the ultraviolet to the microwave: a revised compilation,” J. Geophys. Res. 113, D14220 (2008).
    [Crossref]
  28. T. Rother, K. Schmidt, J. Wauer, V. Shcherbakov, and J.-F. Gayet, “Light scattering on Chebyshev particles of higher order,” Appl. Opt. 45, 6030–6037 (2006).
    [Crossref] [PubMed]
  29. T. Rother, “Generalization of the separation of variables method for nonspherical scattering on dielectric objects,” J. Quant. Spectrosc. Radiat. Transfer 60, 335–353 (1998).
    [Crossref]
  30. P. C. Waterman, “Symmetry, unitarity, and geometry in electromagnetic scattering,” Phys. Rev. D 3, 825–839 (1971).
    [Crossref]
  31. D. W. Mackowski, “Analysis of radiative scattering for multiple sphere configurations,” Proc. R. Soc. London A 433, 599–614 (1991).
    [Crossref]
  32. D. W. Mackowski, “Calculation of total cross sections of multiple sphere clusters,” J. Opt. Soc. Am. A 11, 2851–2861 (1994).
    [Crossref]
  33. The MSTM package is available at http://www.eng.auburn.edu/users/dmckwski/scatcodes .
  34. B. T. Draine and J. J. Goodman, “Beyond Clausius–Mossotti: wave propagation on a polarizable point lattice and the discrete dipole approximation,” Astrophys. J. 405, 685–697 (1993).
    [Crossref]
  35. D. Gutkowicz-Krusin and B. T. Draine, “Propagation of electromagnetic waves on a rectangular lattice of polarizable points,” (2004), http://arxiv.org/abs/astro-ph/0403082 .
  36. M. A. Yurkin and A. G. Hoekstra, “The discrete–dipole–approximation code ADDA: capabilities and known limitations,” J. Quant. Spectrosc. Radiat. Transfer 112, 2234–2247 (2011).
    [Crossref]
  37. M. A. Yurkin and A. G. Hoekstra, “The discrete dipole approximation: an overview and recent developments,” J. Quant. Spectrosc. Radiat. Transfer 106, 558–589 (2007).
    [Crossref]
  38. B. T. Draine, “The discrete dipole approximation and its application to interstellar graphite grains,” Astrophys. J. 333, 848–872 (1988).
    [Crossref]
  39. M. A. Yurkin, V. P. Maltsev, and A. G. Hoekstra, “Convergence of the discrete dipole approximation. II. an extrapolation technique to increase the accuracy,” J. Opt. Soc. Am. A 23, 2592–2601 (2006).
    [Crossref]
  40. M. A. Yurkin, D. de Kanter, and A. G. Hoekstra, “Accuracy of the discrete dipole approximation for simulation of optical properties of gold nanoparticles,” J. Nanophoton. 4, 041585 (2010).
    [Crossref]
  41. M. A. Yurkin, A. G. Hoekstra, R. S. Brock, and J. Q. Lu, “Systematic comparison of the discrete dipole approximation and the finite difference time domain method for large dielectric scatterers,” Opt. Express15, 17902–17911 (2007), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-15-26-17902 .
    [Crossref] [PubMed]
  42. M. A. Yurkin, M. Min, and A. G. Hoekstra, “Application of the discrete dipole approximation to very large refractive indices: filtered coupled dipoles revived,” Phys. Rev. E 82, 036703 (2010).
    [Crossref]
  43. B. T. Draine and P. J. Flatau, “Discrete–dipole approximation for scattering calculations,” J. Opt. Soc. Am. A 11, 1491–1499 (1994).
    [Crossref]
  44. http://www.astro.princeton.edu/draine/DDSCAT.html
  45. http://ddscat.wikidot.com/start
  46. B. T. Draine and P. J. Flatau, “User guide to the discrete dipole approximation code DDSCAT 7.1,” (2010), http://arXiv.org/abs/1002.1505v1 .
  47. X. A. Penttila, E. Zubko, K. Lumme, K. Muinonen, M. A. Yurkin, B. T. Draine, J. Rahola, A. G. Hoekstra, and Y. Shkuratov,“Comparison between discrete dipole implementations and exact techniques,” J. Quant. Spectrosc. Radiat. Transfer 106, 417–436 (2007).
    [Crossref]
  48. J. Gasteiger, M. Wiegner, S. Groß, V. Freudenthaler, C. Toledano, M. Tesche, and K. Kandler, “Modelling lidar–relevant optical properties of complex mineral dust aerosols,” Tellus B 63, 725–741 (2011).
    [Crossref]

2011 (3)

M. A. Yurkin and A. G. Hoekstra, “The discrete–dipole–approximation code ADDA: capabilities and known limitations,” J. Quant. Spectrosc. Radiat. Transfer 112, 2234–2247 (2011).
[Crossref]

D. W. Mackowski and M. I. Mishchenko, “A multiple sphere T-matrix Fortran code for use on parallel computer clusters,” J. Quant. Spectrosc. Radiat. Transfer 112, 2182–2192 (2011).
[Crossref]

J. Gasteiger, M. Wiegner, S. Groß, V. Freudenthaler, C. Toledano, M. Tesche, and K. Kandler, “Modelling lidar–relevant optical properties of complex mineral dust aerosols,” Tellus B 63, 725–741 (2011).
[Crossref]

2010 (4)

T. Rother and J. Wauer, “Case study about the accuracy behavior of three different T-matrix methods,” Appl. Opt. 49, 5746–5756 (2010).
[Crossref] [PubMed]

M. A. Yurkin, D. de Kanter, and A. G. Hoekstra, “Accuracy of the discrete dipole approximation for simulation of optical properties of gold nanoparticles,” J. Nanophoton. 4, 041585 (2010).
[Crossref]

M. A. Yurkin, M. Min, and A. G. Hoekstra, “Application of the discrete dipole approximation to very large refractive indices: filtered coupled dipoles revived,” Phys. Rev. E 82, 036703 (2010).
[Crossref]

M. Kahnert, “Electromagnetic scattering by nonspherical particles: recent advances,” J. Quant. Spectrosc. Radiat. Transfer 111, 1788–1790 (2010).
[Crossref]

2009 (1)

J. Hellmers and T. Wriedt, “New approaches for a light scattering internet information portal and categorization schemes for light scattering software,” J. Quant. Spectrosc. Radiat. Transfer 110, 1511–1517 (2009).
[Crossref]

2008 (2)

T. Wriedt and J. Hellmers, “New scattering information portal for the light–scattering community,” J. Quant. Spectrosc. Radiat. Transfer 109, 1536–1542 (2008).
[Crossref]

S. G. Warren and R. E. Brandt, “Optical constants of ice from the ultraviolet to the microwave: a revised compilation,” J. Geophys. Res. 113, D14220 (2008).
[Crossref]

2007 (2)

X. A. Penttila, E. Zubko, K. Lumme, K. Muinonen, M. A. Yurkin, B. T. Draine, J. Rahola, A. G. Hoekstra, and Y. Shkuratov,“Comparison between discrete dipole implementations and exact techniques,” J. Quant. Spectrosc. Radiat. Transfer 106, 417–436 (2007).
[Crossref]

M. A. Yurkin and A. G. Hoekstra, “The discrete dipole approximation: an overview and recent developments,” J. Quant. Spectrosc. Radiat. Transfer 106, 558–589 (2007).
[Crossref]

2006 (2)

2005 (2)

M. Kahnert, “Irreducible representations of finite groups in the T-matrix formulation of the electromagnetic scattering problem”, J. Opt. Soc. Am. A 22, 1187–1199 (2005).
[Crossref]

H. Volten, O. Muñoz, J. W. Hovenier, J. F. de Haan, W. Vassen, W. J. van der Zande, and L. B. F. M. Waters, “WWW scattering matrix database for small mineral particles at 441.6 and 632.8 nm,” J. Quant. Spectrosc. Radiat. Transfer 90, 191–206 (2005).
[Crossref]

2004 (1)

2003 (1)

M. Kahnert, “Numerical methods in electromagnetic scattering theory,” J. Quant. Spectrosc. Radiat. Transfer 79–80, 775–824 (2003).
[Crossref]

1998 (1)

T. Rother, “Generalization of the separation of variables method for nonspherical scattering on dielectric objects,” J. Quant. Spectrosc. Radiat. Transfer 60, 335–353 (1998).
[Crossref]

1994 (2)

1993 (1)

B. T. Draine and J. J. Goodman, “Beyond Clausius–Mossotti: wave propagation on a polarizable point lattice and the discrete dipole approximation,” Astrophys. J. 405, 685–697 (1993).
[Crossref]

1991 (1)

D. W. Mackowski, “Analysis of radiative scattering for multiple sphere configurations,” Proc. R. Soc. London A 433, 599–614 (1991).
[Crossref]

1988 (1)

B. T. Draine, “The discrete dipole approximation and its application to interstellar graphite grains,” Astrophys. J. 333, 848–872 (1988).
[Crossref]

1980 (1)

A. Mugnai and W. J. Wiscombe, “Scattering of radiation by moderately nonspherical particles,” J. Atmos. Sci. 37, 1291–1307 (1980).
[Crossref]

1971 (1)

P. C. Waterman, “Symmetry, unitarity, and geometry in electromagnetic scattering,” Phys. Rev. D 3, 825–839 (1971).
[Crossref]

Barber, P.

P. Barber and S. C. Hill, Light Scattering by Particles: Computational Methods (World Scientific, 1990).

Borghese, F.

F. Borghese, P. Denti, and R. Saija, Scattering from Model Nonspherical Particles: Theory and Applications to Environmental Physics(Springer, 2003).

Brandt, R. E.

S. G. Warren and R. E. Brandt, “Optical constants of ice from the ultraviolet to the microwave: a revised compilation,” J. Geophys. Res. 113, D14220 (2008).
[Crossref]

de Haan, J. F.

H. Volten, O. Muñoz, J. W. Hovenier, J. F. de Haan, W. Vassen, W. J. van der Zande, and L. B. F. M. Waters, “WWW scattering matrix database for small mineral particles at 441.6 and 632.8 nm,” J. Quant. Spectrosc. Radiat. Transfer 90, 191–206 (2005).
[Crossref]

de Kanter, D.

M. A. Yurkin, D. de Kanter, and A. G. Hoekstra, “Accuracy of the discrete dipole approximation for simulation of optical properties of gold nanoparticles,” J. Nanophoton. 4, 041585 (2010).
[Crossref]

Denti, P.

F. Borghese, P. Denti, and R. Saija, Scattering from Model Nonspherical Particles: Theory and Applications to Environmental Physics(Springer, 2003).

Doicu, A.

A. Doicu, T. Wriedt, and Y. A. Eremin, Light Scattering by Systems of Particles. Null-Field Method with Discrete Sources: Theory and Programs (Springer, 2006).

Draine, B. T.

X. A. Penttila, E. Zubko, K. Lumme, K. Muinonen, M. A. Yurkin, B. T. Draine, J. Rahola, A. G. Hoekstra, and Y. Shkuratov,“Comparison between discrete dipole implementations and exact techniques,” J. Quant. Spectrosc. Radiat. Transfer 106, 417–436 (2007).
[Crossref]

B. T. Draine and P. J. Flatau, “Discrete–dipole approximation for scattering calculations,” J. Opt. Soc. Am. A 11, 1491–1499 (1994).
[Crossref]

B. T. Draine and J. J. Goodman, “Beyond Clausius–Mossotti: wave propagation on a polarizable point lattice and the discrete dipole approximation,” Astrophys. J. 405, 685–697 (1993).
[Crossref]

B. T. Draine, “The discrete dipole approximation and its application to interstellar graphite grains,” Astrophys. J. 333, 848–872 (1988).
[Crossref]

Eremin, Y. A.

A. Doicu, T. Wriedt, and Y. A. Eremin, Light Scattering by Systems of Particles. Null-Field Method with Discrete Sources: Theory and Programs (Springer, 2006).

Ernst, T.

Flatau, P. J.

Freudenthaler, V.

J. Gasteiger, M. Wiegner, S. Groß, V. Freudenthaler, C. Toledano, M. Tesche, and K. Kandler, “Modelling lidar–relevant optical properties of complex mineral dust aerosols,” Tellus B 63, 725–741 (2011).
[Crossref]

Gasteiger, J.

J. Gasteiger, M. Wiegner, S. Groß, V. Freudenthaler, C. Toledano, M. Tesche, and K. Kandler, “Modelling lidar–relevant optical properties of complex mineral dust aerosols,” Tellus B 63, 725–741 (2011).
[Crossref]

Gayet, J.-F.

Goodman, J. J.

B. T. Draine and J. J. Goodman, “Beyond Clausius–Mossotti: wave propagation on a polarizable point lattice and the discrete dipole approximation,” Astrophys. J. 405, 685–697 (1993).
[Crossref]

Groß, S.

J. Gasteiger, M. Wiegner, S. Groß, V. Freudenthaler, C. Toledano, M. Tesche, and K. Kandler, “Modelling lidar–relevant optical properties of complex mineral dust aerosols,” Tellus B 63, 725–741 (2011).
[Crossref]

Hellmers, J.

J. Hellmers and T. Wriedt, “New approaches for a light scattering internet information portal and categorization schemes for light scattering software,” J. Quant. Spectrosc. Radiat. Transfer 110, 1511–1517 (2009).
[Crossref]

T. Wriedt and J. Hellmers, “New scattering information portal for the light–scattering community,” J. Quant. Spectrosc. Radiat. Transfer 109, 1536–1542 (2008).
[Crossref]

Hess, M.

Hill, S. C.

P. Barber and S. C. Hill, Light Scattering by Particles: Computational Methods (World Scientific, 1990).

Hoekstra, A. G.

M. A. Yurkin and A. G. Hoekstra, “The discrete–dipole–approximation code ADDA: capabilities and known limitations,” J. Quant. Spectrosc. Radiat. Transfer 112, 2234–2247 (2011).
[Crossref]

M. A. Yurkin, D. de Kanter, and A. G. Hoekstra, “Accuracy of the discrete dipole approximation for simulation of optical properties of gold nanoparticles,” J. Nanophoton. 4, 041585 (2010).
[Crossref]

M. A. Yurkin, M. Min, and A. G. Hoekstra, “Application of the discrete dipole approximation to very large refractive indices: filtered coupled dipoles revived,” Phys. Rev. E 82, 036703 (2010).
[Crossref]

X. A. Penttila, E. Zubko, K. Lumme, K. Muinonen, M. A. Yurkin, B. T. Draine, J. Rahola, A. G. Hoekstra, and Y. Shkuratov,“Comparison between discrete dipole implementations and exact techniques,” J. Quant. Spectrosc. Radiat. Transfer 106, 417–436 (2007).
[Crossref]

M. A. Yurkin and A. G. Hoekstra, “The discrete dipole approximation: an overview and recent developments,” J. Quant. Spectrosc. Radiat. Transfer 106, 558–589 (2007).
[Crossref]

M. A. Yurkin, V. P. Maltsev, and A. G. Hoekstra, “Convergence of the discrete dipole approximation. II. an extrapolation technique to increase the accuracy,” J. Opt. Soc. Am. A 23, 2592–2601 (2006).
[Crossref]

Hovenier, J. W.

H. Volten, O. Muñoz, J. W. Hovenier, J. F. de Haan, W. Vassen, W. J. van der Zande, and L. B. F. M. Waters, “WWW scattering matrix database for small mineral particles at 441.6 and 632.8 nm,” J. Quant. Spectrosc. Radiat. Transfer 90, 191–206 (2005).
[Crossref]

J. W. Hovenier and C. V. M. van der Mee, “Basic relationships for matrices describing scattering by small particles,” in Light Scattering by Nonspherical Particles: Theory, Measurements, and Applications, M. I. Mishchenko, J. W. Hovenier, and L. D. Travis, eds. (Academic, 2000), pp. 61–85.
[Crossref]

Kahnert, M.

M. Kahnert, “Electromagnetic scattering by nonspherical particles: recent advances,” J. Quant. Spectrosc. Radiat. Transfer 111, 1788–1790 (2010).
[Crossref]

M. Kahnert, “Irreducible representations of finite groups in the T-matrix formulation of the electromagnetic scattering problem”, J. Opt. Soc. Am. A 22, 1187–1199 (2005).
[Crossref]

M. Kahnert, “Numerical methods in electromagnetic scattering theory,” J. Quant. Spectrosc. Radiat. Transfer 79–80, 775–824 (2003).
[Crossref]

Kandler, K.

J. Gasteiger, M. Wiegner, S. Groß, V. Freudenthaler, C. Toledano, M. Tesche, and K. Kandler, “Modelling lidar–relevant optical properties of complex mineral dust aerosols,” Tellus B 63, 725–741 (2011).
[Crossref]

Kong, J. A.

L. Tsang, J. A. Kong, and R. T. Shin, Theory of Microwave Remote Sensing (John Wiley & Sons, 1985).

Lacis, A. A.

M. I. Mishchenko, L. D. Travis, and A. A. Lacis, Scattering, Absorption, and Emission of Light by Small Particles (Cambridge University Press, 2002).

Lumme, K.

X. A. Penttila, E. Zubko, K. Lumme, K. Muinonen, M. A. Yurkin, B. T. Draine, J. Rahola, A. G. Hoekstra, and Y. Shkuratov,“Comparison between discrete dipole implementations and exact techniques,” J. Quant. Spectrosc. Radiat. Transfer 106, 417–436 (2007).
[Crossref]

Mackowski, D. W.

D. W. Mackowski and M. I. Mishchenko, “A multiple sphere T-matrix Fortran code for use on parallel computer clusters,” J. Quant. Spectrosc. Radiat. Transfer 112, 2182–2192 (2011).
[Crossref]

D. W. Mackowski, “Calculation of total cross sections of multiple sphere clusters,” J. Opt. Soc. Am. A 11, 2851–2861 (1994).
[Crossref]

D. W. Mackowski, “Analysis of radiative scattering for multiple sphere configurations,” Proc. R. Soc. London A 433, 599–614 (1991).
[Crossref]

Maltsev, V. P.

Min, M.

M. A. Yurkin, M. Min, and A. G. Hoekstra, “Application of the discrete dipole approximation to very large refractive indices: filtered coupled dipoles revived,” Phys. Rev. E 82, 036703 (2010).
[Crossref]

Mishchenko, M. I.

D. W. Mackowski and M. I. Mishchenko, “A multiple sphere T-matrix Fortran code for use on parallel computer clusters,” J. Quant. Spectrosc. Radiat. Transfer 112, 2182–2192 (2011).
[Crossref]

M. I. Mishchenko, L. D. Travis, and A. A. Lacis, Scattering, Absorption, and Emission of Light by Small Particles (Cambridge University Press, 2002).

Mugnai, A.

A. Mugnai and W. J. Wiscombe, “Scattering of radiation by moderately nonspherical particles,” J. Atmos. Sci. 37, 1291–1307 (1980).
[Crossref]

Muinonen, K.

X. A. Penttila, E. Zubko, K. Lumme, K. Muinonen, M. A. Yurkin, B. T. Draine, J. Rahola, A. G. Hoekstra, and Y. Shkuratov,“Comparison between discrete dipole implementations and exact techniques,” J. Quant. Spectrosc. Radiat. Transfer 106, 417–436 (2007).
[Crossref]

Muñoz, O.

H. Volten, O. Muñoz, J. W. Hovenier, J. F. de Haan, W. Vassen, W. J. van der Zande, and L. B. F. M. Waters, “WWW scattering matrix database for small mineral particles at 441.6 and 632.8 nm,” J. Quant. Spectrosc. Radiat. Transfer 90, 191–206 (2005).
[Crossref]

Penttila, X. A.

X. A. Penttila, E. Zubko, K. Lumme, K. Muinonen, M. A. Yurkin, B. T. Draine, J. Rahola, A. G. Hoekstra, and Y. Shkuratov,“Comparison between discrete dipole implementations and exact techniques,” J. Quant. Spectrosc. Radiat. Transfer 106, 417–436 (2007).
[Crossref]

Rahola, J.

X. A. Penttila, E. Zubko, K. Lumme, K. Muinonen, M. A. Yurkin, B. T. Draine, J. Rahola, A. G. Hoekstra, and Y. Shkuratov,“Comparison between discrete dipole implementations and exact techniques,” J. Quant. Spectrosc. Radiat. Transfer 106, 417–436 (2007).
[Crossref]

Rother, T.

Saija, R.

F. Borghese, P. Denti, and R. Saija, Scattering from Model Nonspherical Particles: Theory and Applications to Environmental Physics(Springer, 2003).

Schmidt, K.

Shcherbakov, V.

Shin, R. T.

L. Tsang, J. A. Kong, and R. T. Shin, Theory of Microwave Remote Sensing (John Wiley & Sons, 1985).

Shkuratov, Y.

X. A. Penttila, E. Zubko, K. Lumme, K. Muinonen, M. A. Yurkin, B. T. Draine, J. Rahola, A. G. Hoekstra, and Y. Shkuratov,“Comparison between discrete dipole implementations and exact techniques,” J. Quant. Spectrosc. Radiat. Transfer 106, 417–436 (2007).
[Crossref]

Tesche, M.

J. Gasteiger, M. Wiegner, S. Groß, V. Freudenthaler, C. Toledano, M. Tesche, and K. Kandler, “Modelling lidar–relevant optical properties of complex mineral dust aerosols,” Tellus B 63, 725–741 (2011).
[Crossref]

Toledano, C.

J. Gasteiger, M. Wiegner, S. Groß, V. Freudenthaler, C. Toledano, M. Tesche, and K. Kandler, “Modelling lidar–relevant optical properties of complex mineral dust aerosols,” Tellus B 63, 725–741 (2011).
[Crossref]

Travis, L. D.

M. I. Mishchenko, L. D. Travis, and A. A. Lacis, Scattering, Absorption, and Emission of Light by Small Particles (Cambridge University Press, 2002).

Tsang, L.

L. Tsang, J. A. Kong, and R. T. Shin, Theory of Microwave Remote Sensing (John Wiley & Sons, 1985).

van de Hulst, H. C.

H. C. van de Hulst, Light Scattering by Small Particles (John Wiley & Sons, 1957).

van der Mee, C. V. M.

J. W. Hovenier and C. V. M. van der Mee, “Basic relationships for matrices describing scattering by small particles,” in Light Scattering by Nonspherical Particles: Theory, Measurements, and Applications, M. I. Mishchenko, J. W. Hovenier, and L. D. Travis, eds. (Academic, 2000), pp. 61–85.
[Crossref]

van der Zande, W. J.

H. Volten, O. Muñoz, J. W. Hovenier, J. F. de Haan, W. Vassen, W. J. van der Zande, and L. B. F. M. Waters, “WWW scattering matrix database for small mineral particles at 441.6 and 632.8 nm,” J. Quant. Spectrosc. Radiat. Transfer 90, 191–206 (2005).
[Crossref]

Vassen, W.

H. Volten, O. Muñoz, J. W. Hovenier, J. F. de Haan, W. Vassen, W. J. van der Zande, and L. B. F. M. Waters, “WWW scattering matrix database for small mineral particles at 441.6 and 632.8 nm,” J. Quant. Spectrosc. Radiat. Transfer 90, 191–206 (2005).
[Crossref]

Volten, H.

H. Volten, O. Muñoz, J. W. Hovenier, J. F. de Haan, W. Vassen, W. J. van der Zande, and L. B. F. M. Waters, “WWW scattering matrix database for small mineral particles at 441.6 and 632.8 nm,” J. Quant. Spectrosc. Radiat. Transfer 90, 191–206 (2005).
[Crossref]

Warren, S. G.

S. G. Warren and R. E. Brandt, “Optical constants of ice from the ultraviolet to the microwave: a revised compilation,” J. Geophys. Res. 113, D14220 (2008).
[Crossref]

Waterman, P. C.

P. C. Waterman, “Symmetry, unitarity, and geometry in electromagnetic scattering,” Phys. Rev. D 3, 825–839 (1971).
[Crossref]

Waters, L. B. F. M.

H. Volten, O. Muñoz, J. W. Hovenier, J. F. de Haan, W. Vassen, W. J. van der Zande, and L. B. F. M. Waters, “WWW scattering matrix database for small mineral particles at 441.6 and 632.8 nm,” J. Quant. Spectrosc. Radiat. Transfer 90, 191–206 (2005).
[Crossref]

Wauer, J.

Wiegner, M.

J. Gasteiger, M. Wiegner, S. Groß, V. Freudenthaler, C. Toledano, M. Tesche, and K. Kandler, “Modelling lidar–relevant optical properties of complex mineral dust aerosols,” Tellus B 63, 725–741 (2011).
[Crossref]

Wiscombe, W. J.

A. Mugnai and W. J. Wiscombe, “Scattering of radiation by moderately nonspherical particles,” J. Atmos. Sci. 37, 1291–1307 (1980).
[Crossref]

Wriedt, T.

J. Hellmers and T. Wriedt, “New approaches for a light scattering internet information portal and categorization schemes for light scattering software,” J. Quant. Spectrosc. Radiat. Transfer 110, 1511–1517 (2009).
[Crossref]

T. Wriedt and J. Hellmers, “New scattering information portal for the light–scattering community,” J. Quant. Spectrosc. Radiat. Transfer 109, 1536–1542 (2008).
[Crossref]

A. Doicu, T. Wriedt, and Y. A. Eremin, Light Scattering by Systems of Particles. Null-Field Method with Discrete Sources: Theory and Programs (Springer, 2006).

Yurkin, M. A.

M. A. Yurkin and A. G. Hoekstra, “The discrete–dipole–approximation code ADDA: capabilities and known limitations,” J. Quant. Spectrosc. Radiat. Transfer 112, 2234–2247 (2011).
[Crossref]

M. A. Yurkin, M. Min, and A. G. Hoekstra, “Application of the discrete dipole approximation to very large refractive indices: filtered coupled dipoles revived,” Phys. Rev. E 82, 036703 (2010).
[Crossref]

M. A. Yurkin, D. de Kanter, and A. G. Hoekstra, “Accuracy of the discrete dipole approximation for simulation of optical properties of gold nanoparticles,” J. Nanophoton. 4, 041585 (2010).
[Crossref]

M. A. Yurkin and A. G. Hoekstra, “The discrete dipole approximation: an overview and recent developments,” J. Quant. Spectrosc. Radiat. Transfer 106, 558–589 (2007).
[Crossref]

X. A. Penttila, E. Zubko, K. Lumme, K. Muinonen, M. A. Yurkin, B. T. Draine, J. Rahola, A. G. Hoekstra, and Y. Shkuratov,“Comparison between discrete dipole implementations and exact techniques,” J. Quant. Spectrosc. Radiat. Transfer 106, 417–436 (2007).
[Crossref]

M. A. Yurkin, V. P. Maltsev, and A. G. Hoekstra, “Convergence of the discrete dipole approximation. II. an extrapolation technique to increase the accuracy,” J. Opt. Soc. Am. A 23, 2592–2601 (2006).
[Crossref]

Zubko, E.

X. A. Penttila, E. Zubko, K. Lumme, K. Muinonen, M. A. Yurkin, B. T. Draine, J. Rahola, A. G. Hoekstra, and Y. Shkuratov,“Comparison between discrete dipole implementations and exact techniques,” J. Quant. Spectrosc. Radiat. Transfer 106, 417–436 (2007).
[Crossref]

Appl. Opt. (3)

Astrophys. J. (2)

B. T. Draine and J. J. Goodman, “Beyond Clausius–Mossotti: wave propagation on a polarizable point lattice and the discrete dipole approximation,” Astrophys. J. 405, 685–697 (1993).
[Crossref]

B. T. Draine, “The discrete dipole approximation and its application to interstellar graphite grains,” Astrophys. J. 333, 848–872 (1988).
[Crossref]

J. Atmos. Sci. (1)

A. Mugnai and W. J. Wiscombe, “Scattering of radiation by moderately nonspherical particles,” J. Atmos. Sci. 37, 1291–1307 (1980).
[Crossref]

J. Geophys. Res. (1)

S. G. Warren and R. E. Brandt, “Optical constants of ice from the ultraviolet to the microwave: a revised compilation,” J. Geophys. Res. 113, D14220 (2008).
[Crossref]

J. Nanophoton. (1)

M. A. Yurkin, D. de Kanter, and A. G. Hoekstra, “Accuracy of the discrete dipole approximation for simulation of optical properties of gold nanoparticles,” J. Nanophoton. 4, 041585 (2010).
[Crossref]

J. Opt. Soc. Am. A (4)

J. Quant. Spectrosc. Radiat. Transfer (10)

M. A. Yurkin and A. G. Hoekstra, “The discrete–dipole–approximation code ADDA: capabilities and known limitations,” J. Quant. Spectrosc. Radiat. Transfer 112, 2234–2247 (2011).
[Crossref]

M. A. Yurkin and A. G. Hoekstra, “The discrete dipole approximation: an overview and recent developments,” J. Quant. Spectrosc. Radiat. Transfer 106, 558–589 (2007).
[Crossref]

H. Volten, O. Muñoz, J. W. Hovenier, J. F. de Haan, W. Vassen, W. J. van der Zande, and L. B. F. M. Waters, “WWW scattering matrix database for small mineral particles at 441.6 and 632.8 nm,” J. Quant. Spectrosc. Radiat. Transfer 90, 191–206 (2005).
[Crossref]

X. A. Penttila, E. Zubko, K. Lumme, K. Muinonen, M. A. Yurkin, B. T. Draine, J. Rahola, A. G. Hoekstra, and Y. Shkuratov,“Comparison between discrete dipole implementations and exact techniques,” J. Quant. Spectrosc. Radiat. Transfer 106, 417–436 (2007).
[Crossref]

T. Rother, “Generalization of the separation of variables method for nonspherical scattering on dielectric objects,” J. Quant. Spectrosc. Radiat. Transfer 60, 335–353 (1998).
[Crossref]

D. W. Mackowski and M. I. Mishchenko, “A multiple sphere T-matrix Fortran code for use on parallel computer clusters,” J. Quant. Spectrosc. Radiat. Transfer 112, 2182–2192 (2011).
[Crossref]

M. Kahnert, “Numerical methods in electromagnetic scattering theory,” J. Quant. Spectrosc. Radiat. Transfer 79–80, 775–824 (2003).
[Crossref]

M. Kahnert, “Electromagnetic scattering by nonspherical particles: recent advances,” J. Quant. Spectrosc. Radiat. Transfer 111, 1788–1790 (2010).
[Crossref]

T. Wriedt and J. Hellmers, “New scattering information portal for the light–scattering community,” J. Quant. Spectrosc. Radiat. Transfer 109, 1536–1542 (2008).
[Crossref]

J. Hellmers and T. Wriedt, “New approaches for a light scattering internet information portal and categorization schemes for light scattering software,” J. Quant. Spectrosc. Radiat. Transfer 110, 1511–1517 (2009).
[Crossref]

Phys. Rev. D (1)

P. C. Waterman, “Symmetry, unitarity, and geometry in electromagnetic scattering,” Phys. Rev. D 3, 825–839 (1971).
[Crossref]

Phys. Rev. E (1)

M. A. Yurkin, M. Min, and A. G. Hoekstra, “Application of the discrete dipole approximation to very large refractive indices: filtered coupled dipoles revived,” Phys. Rev. E 82, 036703 (2010).
[Crossref]

Proc. R. Soc. London A (1)

D. W. Mackowski, “Analysis of radiative scattering for multiple sphere configurations,” Proc. R. Soc. London A 433, 599–614 (1991).
[Crossref]

Tellus B (1)

J. Gasteiger, M. Wiegner, S. Groß, V. Freudenthaler, C. Toledano, M. Tesche, and K. Kandler, “Modelling lidar–relevant optical properties of complex mineral dust aerosols,” Tellus B 63, 725–741 (2011).
[Crossref]

Other (22)

H. C. van de Hulst, Light Scattering by Small Particles (John Wiley & Sons, 1957).

P. Barber and S. C. Hill, Light Scattering by Particles: Computational Methods (World Scientific, 1990).

http://www.astro.princeton.edu/draine/DDSCAT.html

http://ddscat.wikidot.com/start

B. T. Draine and P. J. Flatau, “User guide to the discrete dipole approximation code DDSCAT 7.1,” (2010), http://arXiv.org/abs/1002.1505v1 .

D. Gutkowicz-Krusin and B. T. Draine, “Propagation of electromagnetic waves on a rectangular lattice of polarizable points,” (2004), http://arxiv.org/abs/astro-ph/0403082 .

M. A. Yurkin, A. G. Hoekstra, R. S. Brock, and J. Q. Lu, “Systematic comparison of the discrete dipole approximation and the finite difference time domain method for large dielectric scatterers,” Opt. Express15, 17902–17911 (2007), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-15-26-17902 .
[Crossref] [PubMed]

The MSTM package is available at http://www.eng.auburn.edu/users/dmckwski/scatcodes .

M. Kahnert, T. Nousiainen, H. Lindqvist, and M. Ebert, “Optical properties of light absorbing carbon aggregates mixed with sulphate: assessment of different model geometries for climate forcing calculations,” Opt. Express20, 10042–10058 (2012), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-20-9-10042 .
[Crossref] [PubMed]

L. Tsang, J. A. Kong, and R. T. Shin, Theory of Microwave Remote Sensing (John Wiley & Sons, 1985).

M. I. Mishchenko, J. W. Hovenier, and L. D. Travis, eds., Light Scattering by Nonspherical Particles: Theory, Measurements, and Applications (Academic, 2000).

M. I. Mishchenko, L. D. Travis, and A. A. Lacis, Scattering, Absorption, and Emission of Light by Small Particles (Cambridge University Press, 2002).

F. Borghese, P. Denti, and R. Saija, Scattering from Model Nonspherical Particles: Theory and Applications to Environmental Physics(Springer, 2003).

http://www.t-matrix.de/

J. W. Hovenier and C. V. M. van der Mee, “Basic relationships for matrices describing scattering by small particles,” in Light Scattering by Nonspherical Particles: Theory, Measurements, and Applications, M. I. Mishchenko, J. W. Hovenier, and L. D. Travis, eds. (Academic, 2000), pp. 61–85.
[Crossref]

D. W. Mackowski, K. Fuller, and M. I. Mishchenko, “Codes for calculation of scattering by clusters of spheres,” ftp://ftp.eng.auburn.edu/pub/dmckwski/scatcodes/index.html.

A. Doicu, T. Wriedt, and Y. A. Eremin, Light Scattering by Systems of Particles. Null-Field Method with Discrete Sources: Theory and Programs (Springer, 2006).

A. A. Kokhanovsky, ed., Light Scattering Reviews, Vol. 1 (Springer, 2006).
[Crossref]

A. A. Kokhanovsky, ed., Light Scattering Reviews, Vol. 2 (Springer, 2007).
[Crossref]

A. A. Kokhanovsky, ed., Light Scattering Reviews, Vol. 3 (Springer, 2008).
[Crossref]

A. A. Kokhanovsky, ed., Light Scattering Reviews, Vol. 4 (Springer, 2009).
[Crossref]

T. Rother, Electromagnetic Wave Scattering on Nonspherical Particles: Basic Methodology and Simulations (Springer, 2009).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Configurations of the bisphere with touching components ((a) and (b)) and of the cube ((c) and (d)) where the incident field Einc propagates along the positive z-axis. The y-axis points to the reader. (a) The rotational axis is oriented along the positive z-axis (θp = 0°). The scattered field Esca is observed in positive x-direction (θ = 90°). (b) The rotational axis is oriented along the positive x-axis (θp = 90°). The scattered field Esca is observed in negative x-direction (θ = 270°). (c) The central axis, which stands perpendicularly on the top and bottom faces of the cube while going through its center, is oriented along the positive z-axis (θp = 0°). The scattered field Esca is observed in positive x-direction (θ = 90°) out of a cube edge. (d) The central axis is oriented along the positive x-axis (θp = 90°). The scattered field Esca is observed in negative x-direction (θ = 270°).

Fig. 2
Fig. 2

vv-polarized DSCS of the scatterer cyl_2 in the orientations θp = 0° (black line) and θp = 90° (red line) calculated with mieschka. The corresponding reciprocal scattering angles θ = 90° and θ = 270° are marked by vertical lines.

Fig. 3
Fig. 3

Reciprocity errors evv and ehh according to Eq. (7) for sphd_p_2 in the two reciprocal configurations (θp = 0°, θ = 90°) and (θp = 90°, θ = 270°) using mieschka (a) versus the relative error within the chosen Barber–Hill convergence criterion, and (b) versus ncut. (ncut, lcut, nint) are given by Table 3.

Fig. 4
Fig. 4

Reciprocity errors evv and ehh according to Eq. (7) for bi_sph_2 in the two reciprocal configurations (θp = 0°, θ = 90°) and (θp = 90°, θ = 270°) using mstm versus translation_epsilon.

Fig. 5
Fig. 5

hh-polarized DSCS of the scatterer sphd_o_2 in the orientations θp = 0° and θp = 90° calculated using ADDA with LDR polarizability (black line) and mieschka (red line).

Fig. 6
Fig. 6

Reciprocity errors evv and ehh according to Eq. (7) for sphd_o_1 in the two reciprocal configurations (θp = 0°, θ = 90°) and (θp = 90°, θ = 270°) using ADDA with CLDR polarizability versus discretization level.

Fig. 7
Fig. 7

hh-polarized DSCS of the scatterer (a) sphd_o_1 and (b) sphd_o_2 in the orientation θp = 0° calculated using ADDA at different discretizations and mieschka (green line). (a) ADDA with CLDR polarizability (black line – 32 dipoles in x-direction, red line – 128 dipoles in x-direction, blue line – extrapolated) (b) ADDA with LDR polarizability (black line – 88 dipoles in x-direction, red line – 256 dipoles in x-direction, blue line – extrapolated)

Tables (5)

Tables Icon

Table 1 Scatterer geometries considered in the investigations.

Tables Icon

Table 2 Reciprocity errors ehh and evv, defined by Eq. (7), for the reciprocal configurations (θp = 0°, θ = 90°) and (θp = 90°, θ = 270°) using mieschka, ADDA with LDR polarizability, and DDSCATwith GKDLDR (CLDR) polarizability.

Tables Icon

Table 3 Convergence parameters (ncut, lcut, nint) determined automatically in the standard mode of mieschka for sphd_p_2 in the orientation θp = 90° at different input values of the relative error within the chosen Barber–Hill convergence criterion. Note that the relative integration error has been fixed to 0.1%.

Tables Icon

Table 4 Reciprocity errors ehh and evv, defined by Eq. (7), for the reciprocal configurations (θp = 0°, θ = 90°) and (θp = 90°, θ = 270°) using scsmfo1b and mstm for the bispheres.

Tables Icon

Table 5 Polarized DSCS and reciprocity errors ehh and evv, defined by Eq. (7), for the reciprocal configurations c1 = (θp = 0°, θ = 90°) and c2 = (θp = 90°, θ = 270°) using ADDA with RRC polarizability for cube 1 at different program parameters.

Equations (20)

Equations on this page are rendered with MathJax. Learn more.

E inc = e 0 exp ( i k 0 z )
( E sca v E sca h ) = exp ( i k 0 r ) r ( F vv ( θ , ϕ ) F vh ( θ , ϕ ) F hv ( θ , ϕ ) F hh ( θ , ϕ ) ) ( E inc v E inc h )
d σ α β d Ω ( θ , ϕ ) = k 0 2 | F α β ( θ , ϕ ) | 2
d σ α β d Ω ( n inc , n sca ) = d σ β α d Ω ( n sca , n inc ) .
d σ α α d Ω ( θ p = 0 ° , θ = θ 1 ) = d σ α α d Ω ( θ p = 180 ° θ 1 , θ = 360 ° θ 1 )
d σ α α d Ω ( θ p = 0 ° , θ = θ 1 ) = d σ α α d Ω ( θ p = θ 1 180 ° , θ = θ 1 )
e α α ( c 1 , c 2 ) = | d σ α α ( c 1 ) / d Ω d σ α α ( c 2 ) / d Ω | d σ α α ( c 1 ) / d Ω 100 %
R ( γ ) = r 0 ( 1 + ε cos ( n γ ) ) , γ [ 0 ° , 180 ° ] .
E sca ( k 0 r ) = τ = 1 2 n = 1 l = n n f τ n l Ψ τ n l ( k 0 r )
E int ( k s r ) = τ = 1 2 n = 1 l = n n p τ n l Rg Ψ τ n l ( k s r )
E inc ( k 0 r ) = τ = 1 2 n = 1 l = n n a τ n l Rg Ψ τ n l ( k 0 r )
f = 𝒯 a .
α ¯ = V d χ { I ¯ + [ ( 4 π / 3 ) I ¯ M ¯ ] χ } 1 = α CM ( I ¯ M ¯ α CM / V d ) 1 ,
α CM = V d 3 4 π ε 1 ε + 2
M ¯ LDR = I ¯ [ ( b 1 LDR + b 2 LDR m 2 + b 3 LDR m 2 S ) ( k 0 d ) 2 + ( 2 / 3 ) i ( k 0 d ) 3 ] ,
b 1 LDR 1.8915316 , b 2 LDR 0.1648469 , b 3 LDR 1.7700004 , S = μ ( a μ e μ 0 ) 2 ,
M μ ν CLDR = δ μ ν [ ( b 1 LDR + b 2 LDR m 2 + b 3 LDR m 2 a μ 2 ) ( k 0 d ) 2 + ( 2 / 3 ) i ( k 0 d ) 3 ]
M ¯ RRC = I ¯ ( 2 / 3 ) i ( k 0 d ) 3 .
α i 1 P i j i G ¯ i j P j = E i inc ,
G ¯ i j = G ¯ ( r i , r j ) = exp ( i k 0 R ) R [ k 0 2 ( I ¯ R ^ R ^ R 2 ) 1 i k 0 R R 2 ( I ¯ 3 R ^ R ^ R 2 ) ] ,

Metrics