Abstract

We present results of our observations on the formation of a silver nanoparticle-containing layer in glass over time. First, silver ions are driven into the glass by field-assisted ion exchange at 300 °C. A following annealing step at 550 °C resulted in the formation of silver nanoparticles (< 4 nm in diameter). This annealing was performed for five different durations (1h, 2h, 4h, 8h, 48h), and thin slices of the cross sections of the glasses have been prepared. The sequence of slices showed the growth of the nanoparticle-containing layer over time. Transmission spectra of the slices have been measured with a spatial resolution of 1.5 µm. Simulating spectra using the Maxwell-Garnett theory allowed us to determine the volume filling factor distribution of the nanoparticles across the layers. A first attempt to simulate the diffusion of silver is performed.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. Chakraborty, “Metal nanoclusters in glasses as non-linear photonic materials,” J. Mater. Sci.33(9), 2235–2249 (1998).
    [CrossRef]
  2. F. Gonella and P. Mazzoldi, Handbook of Nanostructured Materials and Nanothechnology (Academic Press 2000).
  3. H. Mertens and A. Polman, “Plasmon-enhanced erbium luminescence,” Appl. Phys. Lett.89(21), 211107 (2006).
    [CrossRef]
  4. M. Volkan, D. L. Stokes, and T. Vo-Dinh, “A new surface-enhanced Raman scattering substrate based on silver nanoparticles in sol–gel,” J. Raman Spect.30(12), 1057–1065 (1999).
    [CrossRef]
  5. A. Stalmashonak, A. Abdolvand, and G. Seifert, “Metal-glass nanocomposite for optical storage of information,” Appl. Phys. Lett.99(20), 201904 (2011).
    [CrossRef]
  6. U. Kreibig and M. Vollmer, Optical Properties of Metal Clusters (Springer, 1995).
  7. V. M. Shalaev, Optical Properties of Nanostructured Random Media (Springer, 2001).
  8. K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment,” J. Phys. Chem. B107(3), 668–677 (2003).
    [CrossRef]
  9. M. S. Gudiksen, L. J. Lauhon, J. Wang, D. C. Smith, and C. M. Lieber, “Growth of nanowire superlattice structures for nanoscale photonics and electronics,” Nature415(6872), 617–620 (2002).
    [CrossRef] [PubMed]
  10. A. Berger, “Concentration and size depth profile of colloidal silver particles in glass surfaces produced by sodium-silver ion-exchange,” J. Non-Cryst. Solids151(1-2), 88–94 (1992).
    [CrossRef]
  11. Y. Ma, J. Lin, S. Qin, N. Zhou, Q. Bian, H. Wei, and Z. Feng, “Preparation of Ag nanocrystals embedded silicate glass by field-assisted diffusion and its properties of optical absorption,” Solid State Sci.12(8), 1413–1418 (2010).
    [CrossRef]
  12. S. Wackerow, G. Seifert, and A. Abdolvand, “Homogenous silver-doped nanocomposite glass,” Opt. Mater. Express1(7), 1224–1231 (2011).
    [CrossRef]
  13. S. I. Najafi, Introduction to Glass Integrated Optics (Artech House, 1992).
  14. S. Wackerow and G. Seifert, “Co-doping of glasses with rare earth ions and metallic nanoparticles for frequency up-conversion,” Proc. SPIE7725, 77251H, 77251H-10 (2010).
    [CrossRef]
  15. E. Cattaruzza, G. Battaglin, F. Gonella, S. Ali, C. Sada, and A. Quaranta, “Characterization of silicate glasses doped with gold by solid-state field-assisted ion exchange,” Mater. Sci. & Eng. B: Solid-State Mater. for Adv. Tech.149, 195–199 (2008).
  16. D. Salazar, H. Porte, and H. Márquez, “Optical channel waveguides by copper ion-exchange in glass,” Appl. Opt.36(34), 8987–8991 (1997).
    [CrossRef] [PubMed]
  17. R. S. Varma, D. C. Kothari, and R. Tewari, “Nano-composite soda lime silicate glass prepared using silver ion exchange,” J. Non-Cryst. Solids355(22-23), 1246–1251 (2009).
    [CrossRef]
  18. R. Araujo, “Colorless glasses containing ion-exchanged silver,” Appl. Opt.31(25), 5221–5224 (1992).
    [CrossRef] [PubMed]
  19. E. Borsella, E. Cattaruzza, G. De Marchi, F. Gonella, G. Mattei, P. Mazzoldi, A. Quaranta, G. Battaglin, and R. Polloni, “Synthesis of silver clusters in silica-based glasses for optoelectronics applications,” J. Non-Cryst. Solids245(1-3), 122–128 (1999).
    [CrossRef]
  20. A. Hilger, M. Tenfelde, and U. Kreibig, “Silver nanoparticles deposited on dielectric surfaces,” Appl. Phys. B73(4), 361–372 (2001).
    [CrossRef]
  21. B. Lamprecht, A. Leitner, and F. R. Aussenegg, “Femtosecond decay-time measurement of electron-plasma oscillation in nanolithographically designed silver particles,” Appl. Phys. B-Lasers & Opt.64(2), 269–272 (1997).
    [CrossRef]
  22. G. Xu, M. Tazawa, P. Jin, and S. Nakao, “Surface plasmon resonance of sputtered Ag films: substrate and mass thickness dependence,” Appl. Phys., A Mater. Sci. Process.80(7), 1535–1540 (2005).
    [CrossRef]
  23. D. Manikandan, S. Mohan, P. Magudapathy, and K. G. M. Nair, “Blue shift of plasmon resonance in Cu and Ag ion-exchanged and annealed soda-lime glass: an optical absorption study,” Physica B325, 86–91 (2003).
    [CrossRef]
  24. S. Thomas, S. K. Nair, E. M. A. Jamal, S. H. Al-Harthi, M. R. Varma, and M. R. Anantharaman, “Size-dependent surface plasmon resonance in silver silica nanocomposites,” Nanotechnology19(7), 075710 (2008).
    [CrossRef] [PubMed]
  25. K. Yata and T. Yamaguchi, “Ostwald ripening of silver in glass,” J. Mater. Sci.27(1), 101–106 (1992).
    [CrossRef]

2011 (2)

A. Stalmashonak, A. Abdolvand, and G. Seifert, “Metal-glass nanocomposite for optical storage of information,” Appl. Phys. Lett.99(20), 201904 (2011).
[CrossRef]

S. Wackerow, G. Seifert, and A. Abdolvand, “Homogenous silver-doped nanocomposite glass,” Opt. Mater. Express1(7), 1224–1231 (2011).
[CrossRef]

2010 (2)

Y. Ma, J. Lin, S. Qin, N. Zhou, Q. Bian, H. Wei, and Z. Feng, “Preparation of Ag nanocrystals embedded silicate glass by field-assisted diffusion and its properties of optical absorption,” Solid State Sci.12(8), 1413–1418 (2010).
[CrossRef]

S. Wackerow and G. Seifert, “Co-doping of glasses with rare earth ions and metallic nanoparticles for frequency up-conversion,” Proc. SPIE7725, 77251H, 77251H-10 (2010).
[CrossRef]

2009 (1)

R. S. Varma, D. C. Kothari, and R. Tewari, “Nano-composite soda lime silicate glass prepared using silver ion exchange,” J. Non-Cryst. Solids355(22-23), 1246–1251 (2009).
[CrossRef]

2008 (2)

S. Thomas, S. K. Nair, E. M. A. Jamal, S. H. Al-Harthi, M. R. Varma, and M. R. Anantharaman, “Size-dependent surface plasmon resonance in silver silica nanocomposites,” Nanotechnology19(7), 075710 (2008).
[CrossRef] [PubMed]

E. Cattaruzza, G. Battaglin, F. Gonella, S. Ali, C. Sada, and A. Quaranta, “Characterization of silicate glasses doped with gold by solid-state field-assisted ion exchange,” Mater. Sci. & Eng. B: Solid-State Mater. for Adv. Tech.149, 195–199 (2008).

2006 (1)

H. Mertens and A. Polman, “Plasmon-enhanced erbium luminescence,” Appl. Phys. Lett.89(21), 211107 (2006).
[CrossRef]

2005 (1)

G. Xu, M. Tazawa, P. Jin, and S. Nakao, “Surface plasmon resonance of sputtered Ag films: substrate and mass thickness dependence,” Appl. Phys., A Mater. Sci. Process.80(7), 1535–1540 (2005).
[CrossRef]

2003 (2)

D. Manikandan, S. Mohan, P. Magudapathy, and K. G. M. Nair, “Blue shift of plasmon resonance in Cu and Ag ion-exchanged and annealed soda-lime glass: an optical absorption study,” Physica B325, 86–91 (2003).
[CrossRef]

K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment,” J. Phys. Chem. B107(3), 668–677 (2003).
[CrossRef]

2002 (1)

M. S. Gudiksen, L. J. Lauhon, J. Wang, D. C. Smith, and C. M. Lieber, “Growth of nanowire superlattice structures for nanoscale photonics and electronics,” Nature415(6872), 617–620 (2002).
[CrossRef] [PubMed]

2001 (1)

A. Hilger, M. Tenfelde, and U. Kreibig, “Silver nanoparticles deposited on dielectric surfaces,” Appl. Phys. B73(4), 361–372 (2001).
[CrossRef]

1999 (2)

E. Borsella, E. Cattaruzza, G. De Marchi, F. Gonella, G. Mattei, P. Mazzoldi, A. Quaranta, G. Battaglin, and R. Polloni, “Synthesis of silver clusters in silica-based glasses for optoelectronics applications,” J. Non-Cryst. Solids245(1-3), 122–128 (1999).
[CrossRef]

M. Volkan, D. L. Stokes, and T. Vo-Dinh, “A new surface-enhanced Raman scattering substrate based on silver nanoparticles in sol–gel,” J. Raman Spect.30(12), 1057–1065 (1999).
[CrossRef]

1998 (1)

P. Chakraborty, “Metal nanoclusters in glasses as non-linear photonic materials,” J. Mater. Sci.33(9), 2235–2249 (1998).
[CrossRef]

1997 (2)

D. Salazar, H. Porte, and H. Márquez, “Optical channel waveguides by copper ion-exchange in glass,” Appl. Opt.36(34), 8987–8991 (1997).
[CrossRef] [PubMed]

B. Lamprecht, A. Leitner, and F. R. Aussenegg, “Femtosecond decay-time measurement of electron-plasma oscillation in nanolithographically designed silver particles,” Appl. Phys. B-Lasers & Opt.64(2), 269–272 (1997).
[CrossRef]

1992 (3)

K. Yata and T. Yamaguchi, “Ostwald ripening of silver in glass,” J. Mater. Sci.27(1), 101–106 (1992).
[CrossRef]

R. Araujo, “Colorless glasses containing ion-exchanged silver,” Appl. Opt.31(25), 5221–5224 (1992).
[CrossRef] [PubMed]

A. Berger, “Concentration and size depth profile of colloidal silver particles in glass surfaces produced by sodium-silver ion-exchange,” J. Non-Cryst. Solids151(1-2), 88–94 (1992).
[CrossRef]

Abdolvand, A.

A. Stalmashonak, A. Abdolvand, and G. Seifert, “Metal-glass nanocomposite for optical storage of information,” Appl. Phys. Lett.99(20), 201904 (2011).
[CrossRef]

S. Wackerow, G. Seifert, and A. Abdolvand, “Homogenous silver-doped nanocomposite glass,” Opt. Mater. Express1(7), 1224–1231 (2011).
[CrossRef]

Al-Harthi, S. H.

S. Thomas, S. K. Nair, E. M. A. Jamal, S. H. Al-Harthi, M. R. Varma, and M. R. Anantharaman, “Size-dependent surface plasmon resonance in silver silica nanocomposites,” Nanotechnology19(7), 075710 (2008).
[CrossRef] [PubMed]

Ali, S.

E. Cattaruzza, G. Battaglin, F. Gonella, S. Ali, C. Sada, and A. Quaranta, “Characterization of silicate glasses doped with gold by solid-state field-assisted ion exchange,” Mater. Sci. & Eng. B: Solid-State Mater. for Adv. Tech.149, 195–199 (2008).

Anantharaman, M. R.

S. Thomas, S. K. Nair, E. M. A. Jamal, S. H. Al-Harthi, M. R. Varma, and M. R. Anantharaman, “Size-dependent surface plasmon resonance in silver silica nanocomposites,” Nanotechnology19(7), 075710 (2008).
[CrossRef] [PubMed]

Araujo, R.

Aussenegg, F. R.

B. Lamprecht, A. Leitner, and F. R. Aussenegg, “Femtosecond decay-time measurement of electron-plasma oscillation in nanolithographically designed silver particles,” Appl. Phys. B-Lasers & Opt.64(2), 269–272 (1997).
[CrossRef]

Battaglin, G.

E. Cattaruzza, G. Battaglin, F. Gonella, S. Ali, C. Sada, and A. Quaranta, “Characterization of silicate glasses doped with gold by solid-state field-assisted ion exchange,” Mater. Sci. & Eng. B: Solid-State Mater. for Adv. Tech.149, 195–199 (2008).

E. Borsella, E. Cattaruzza, G. De Marchi, F. Gonella, G. Mattei, P. Mazzoldi, A. Quaranta, G. Battaglin, and R. Polloni, “Synthesis of silver clusters in silica-based glasses for optoelectronics applications,” J. Non-Cryst. Solids245(1-3), 122–128 (1999).
[CrossRef]

Berger, A.

A. Berger, “Concentration and size depth profile of colloidal silver particles in glass surfaces produced by sodium-silver ion-exchange,” J. Non-Cryst. Solids151(1-2), 88–94 (1992).
[CrossRef]

Bian, Q.

Y. Ma, J. Lin, S. Qin, N. Zhou, Q. Bian, H. Wei, and Z. Feng, “Preparation of Ag nanocrystals embedded silicate glass by field-assisted diffusion and its properties of optical absorption,” Solid State Sci.12(8), 1413–1418 (2010).
[CrossRef]

Borsella, E.

E. Borsella, E. Cattaruzza, G. De Marchi, F. Gonella, G. Mattei, P. Mazzoldi, A. Quaranta, G. Battaglin, and R. Polloni, “Synthesis of silver clusters in silica-based glasses for optoelectronics applications,” J. Non-Cryst. Solids245(1-3), 122–128 (1999).
[CrossRef]

Cattaruzza, E.

E. Cattaruzza, G. Battaglin, F. Gonella, S. Ali, C. Sada, and A. Quaranta, “Characterization of silicate glasses doped with gold by solid-state field-assisted ion exchange,” Mater. Sci. & Eng. B: Solid-State Mater. for Adv. Tech.149, 195–199 (2008).

E. Borsella, E. Cattaruzza, G. De Marchi, F. Gonella, G. Mattei, P. Mazzoldi, A. Quaranta, G. Battaglin, and R. Polloni, “Synthesis of silver clusters in silica-based glasses for optoelectronics applications,” J. Non-Cryst. Solids245(1-3), 122–128 (1999).
[CrossRef]

Chakraborty, P.

P. Chakraborty, “Metal nanoclusters in glasses as non-linear photonic materials,” J. Mater. Sci.33(9), 2235–2249 (1998).
[CrossRef]

Coronado, E.

K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment,” J. Phys. Chem. B107(3), 668–677 (2003).
[CrossRef]

De Marchi, G.

E. Borsella, E. Cattaruzza, G. De Marchi, F. Gonella, G. Mattei, P. Mazzoldi, A. Quaranta, G. Battaglin, and R. Polloni, “Synthesis of silver clusters in silica-based glasses for optoelectronics applications,” J. Non-Cryst. Solids245(1-3), 122–128 (1999).
[CrossRef]

Feng, Z.

Y. Ma, J. Lin, S. Qin, N. Zhou, Q. Bian, H. Wei, and Z. Feng, “Preparation of Ag nanocrystals embedded silicate glass by field-assisted diffusion and its properties of optical absorption,” Solid State Sci.12(8), 1413–1418 (2010).
[CrossRef]

Gonella, F.

E. Cattaruzza, G. Battaglin, F. Gonella, S. Ali, C. Sada, and A. Quaranta, “Characterization of silicate glasses doped with gold by solid-state field-assisted ion exchange,” Mater. Sci. & Eng. B: Solid-State Mater. for Adv. Tech.149, 195–199 (2008).

E. Borsella, E. Cattaruzza, G. De Marchi, F. Gonella, G. Mattei, P. Mazzoldi, A. Quaranta, G. Battaglin, and R. Polloni, “Synthesis of silver clusters in silica-based glasses for optoelectronics applications,” J. Non-Cryst. Solids245(1-3), 122–128 (1999).
[CrossRef]

Gudiksen, M. S.

M. S. Gudiksen, L. J. Lauhon, J. Wang, D. C. Smith, and C. M. Lieber, “Growth of nanowire superlattice structures for nanoscale photonics and electronics,” Nature415(6872), 617–620 (2002).
[CrossRef] [PubMed]

Hilger, A.

A. Hilger, M. Tenfelde, and U. Kreibig, “Silver nanoparticles deposited on dielectric surfaces,” Appl. Phys. B73(4), 361–372 (2001).
[CrossRef]

Jamal, E. M. A.

S. Thomas, S. K. Nair, E. M. A. Jamal, S. H. Al-Harthi, M. R. Varma, and M. R. Anantharaman, “Size-dependent surface plasmon resonance in silver silica nanocomposites,” Nanotechnology19(7), 075710 (2008).
[CrossRef] [PubMed]

Jin, P.

G. Xu, M. Tazawa, P. Jin, and S. Nakao, “Surface plasmon resonance of sputtered Ag films: substrate and mass thickness dependence,” Appl. Phys., A Mater. Sci. Process.80(7), 1535–1540 (2005).
[CrossRef]

Kelly, K. L.

K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment,” J. Phys. Chem. B107(3), 668–677 (2003).
[CrossRef]

Kothari, D. C.

R. S. Varma, D. C. Kothari, and R. Tewari, “Nano-composite soda lime silicate glass prepared using silver ion exchange,” J. Non-Cryst. Solids355(22-23), 1246–1251 (2009).
[CrossRef]

Kreibig, U.

A. Hilger, M. Tenfelde, and U. Kreibig, “Silver nanoparticles deposited on dielectric surfaces,” Appl. Phys. B73(4), 361–372 (2001).
[CrossRef]

Lamprecht, B.

B. Lamprecht, A. Leitner, and F. R. Aussenegg, “Femtosecond decay-time measurement of electron-plasma oscillation in nanolithographically designed silver particles,” Appl. Phys. B-Lasers & Opt.64(2), 269–272 (1997).
[CrossRef]

Lauhon, L. J.

M. S. Gudiksen, L. J. Lauhon, J. Wang, D. C. Smith, and C. M. Lieber, “Growth of nanowire superlattice structures for nanoscale photonics and electronics,” Nature415(6872), 617–620 (2002).
[CrossRef] [PubMed]

Leitner, A.

B. Lamprecht, A. Leitner, and F. R. Aussenegg, “Femtosecond decay-time measurement of electron-plasma oscillation in nanolithographically designed silver particles,” Appl. Phys. B-Lasers & Opt.64(2), 269–272 (1997).
[CrossRef]

Lieber, C. M.

M. S. Gudiksen, L. J. Lauhon, J. Wang, D. C. Smith, and C. M. Lieber, “Growth of nanowire superlattice structures for nanoscale photonics and electronics,” Nature415(6872), 617–620 (2002).
[CrossRef] [PubMed]

Lin, J.

Y. Ma, J. Lin, S. Qin, N. Zhou, Q. Bian, H. Wei, and Z. Feng, “Preparation of Ag nanocrystals embedded silicate glass by field-assisted diffusion and its properties of optical absorption,” Solid State Sci.12(8), 1413–1418 (2010).
[CrossRef]

Ma, Y.

Y. Ma, J. Lin, S. Qin, N. Zhou, Q. Bian, H. Wei, and Z. Feng, “Preparation of Ag nanocrystals embedded silicate glass by field-assisted diffusion and its properties of optical absorption,” Solid State Sci.12(8), 1413–1418 (2010).
[CrossRef]

Magudapathy, P.

D. Manikandan, S. Mohan, P. Magudapathy, and K. G. M. Nair, “Blue shift of plasmon resonance in Cu and Ag ion-exchanged and annealed soda-lime glass: an optical absorption study,” Physica B325, 86–91 (2003).
[CrossRef]

Manikandan, D.

D. Manikandan, S. Mohan, P. Magudapathy, and K. G. M. Nair, “Blue shift of plasmon resonance in Cu and Ag ion-exchanged and annealed soda-lime glass: an optical absorption study,” Physica B325, 86–91 (2003).
[CrossRef]

Márquez, H.

Mattei, G.

E. Borsella, E. Cattaruzza, G. De Marchi, F. Gonella, G. Mattei, P. Mazzoldi, A. Quaranta, G. Battaglin, and R. Polloni, “Synthesis of silver clusters in silica-based glasses for optoelectronics applications,” J. Non-Cryst. Solids245(1-3), 122–128 (1999).
[CrossRef]

Mazzoldi, P.

E. Borsella, E. Cattaruzza, G. De Marchi, F. Gonella, G. Mattei, P. Mazzoldi, A. Quaranta, G. Battaglin, and R. Polloni, “Synthesis of silver clusters in silica-based glasses for optoelectronics applications,” J. Non-Cryst. Solids245(1-3), 122–128 (1999).
[CrossRef]

Mertens, H.

H. Mertens and A. Polman, “Plasmon-enhanced erbium luminescence,” Appl. Phys. Lett.89(21), 211107 (2006).
[CrossRef]

Mohan, S.

D. Manikandan, S. Mohan, P. Magudapathy, and K. G. M. Nair, “Blue shift of plasmon resonance in Cu and Ag ion-exchanged and annealed soda-lime glass: an optical absorption study,” Physica B325, 86–91 (2003).
[CrossRef]

Nair, K. G. M.

D. Manikandan, S. Mohan, P. Magudapathy, and K. G. M. Nair, “Blue shift of plasmon resonance in Cu and Ag ion-exchanged and annealed soda-lime glass: an optical absorption study,” Physica B325, 86–91 (2003).
[CrossRef]

Nair, S. K.

S. Thomas, S. K. Nair, E. M. A. Jamal, S. H. Al-Harthi, M. R. Varma, and M. R. Anantharaman, “Size-dependent surface plasmon resonance in silver silica nanocomposites,” Nanotechnology19(7), 075710 (2008).
[CrossRef] [PubMed]

Nakao, S.

G. Xu, M. Tazawa, P. Jin, and S. Nakao, “Surface plasmon resonance of sputtered Ag films: substrate and mass thickness dependence,” Appl. Phys., A Mater. Sci. Process.80(7), 1535–1540 (2005).
[CrossRef]

Polloni, R.

E. Borsella, E. Cattaruzza, G. De Marchi, F. Gonella, G. Mattei, P. Mazzoldi, A. Quaranta, G. Battaglin, and R. Polloni, “Synthesis of silver clusters in silica-based glasses for optoelectronics applications,” J. Non-Cryst. Solids245(1-3), 122–128 (1999).
[CrossRef]

Polman, A.

H. Mertens and A. Polman, “Plasmon-enhanced erbium luminescence,” Appl. Phys. Lett.89(21), 211107 (2006).
[CrossRef]

Porte, H.

Qin, S.

Y. Ma, J. Lin, S. Qin, N. Zhou, Q. Bian, H. Wei, and Z. Feng, “Preparation of Ag nanocrystals embedded silicate glass by field-assisted diffusion and its properties of optical absorption,” Solid State Sci.12(8), 1413–1418 (2010).
[CrossRef]

Quaranta, A.

E. Cattaruzza, G. Battaglin, F. Gonella, S. Ali, C. Sada, and A. Quaranta, “Characterization of silicate glasses doped with gold by solid-state field-assisted ion exchange,” Mater. Sci. & Eng. B: Solid-State Mater. for Adv. Tech.149, 195–199 (2008).

E. Borsella, E. Cattaruzza, G. De Marchi, F. Gonella, G. Mattei, P. Mazzoldi, A. Quaranta, G. Battaglin, and R. Polloni, “Synthesis of silver clusters in silica-based glasses for optoelectronics applications,” J. Non-Cryst. Solids245(1-3), 122–128 (1999).
[CrossRef]

Sada, C.

E. Cattaruzza, G. Battaglin, F. Gonella, S. Ali, C. Sada, and A. Quaranta, “Characterization of silicate glasses doped with gold by solid-state field-assisted ion exchange,” Mater. Sci. & Eng. B: Solid-State Mater. for Adv. Tech.149, 195–199 (2008).

Salazar, D.

Schatz, G. C.

K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment,” J. Phys. Chem. B107(3), 668–677 (2003).
[CrossRef]

Seifert, G.

S. Wackerow, G. Seifert, and A. Abdolvand, “Homogenous silver-doped nanocomposite glass,” Opt. Mater. Express1(7), 1224–1231 (2011).
[CrossRef]

A. Stalmashonak, A. Abdolvand, and G. Seifert, “Metal-glass nanocomposite for optical storage of information,” Appl. Phys. Lett.99(20), 201904 (2011).
[CrossRef]

S. Wackerow and G. Seifert, “Co-doping of glasses with rare earth ions and metallic nanoparticles for frequency up-conversion,” Proc. SPIE7725, 77251H, 77251H-10 (2010).
[CrossRef]

Smith, D. C.

M. S. Gudiksen, L. J. Lauhon, J. Wang, D. C. Smith, and C. M. Lieber, “Growth of nanowire superlattice structures for nanoscale photonics and electronics,” Nature415(6872), 617–620 (2002).
[CrossRef] [PubMed]

Stalmashonak, A.

A. Stalmashonak, A. Abdolvand, and G. Seifert, “Metal-glass nanocomposite for optical storage of information,” Appl. Phys. Lett.99(20), 201904 (2011).
[CrossRef]

Stokes, D. L.

M. Volkan, D. L. Stokes, and T. Vo-Dinh, “A new surface-enhanced Raman scattering substrate based on silver nanoparticles in sol–gel,” J. Raman Spect.30(12), 1057–1065 (1999).
[CrossRef]

Tazawa, M.

G. Xu, M. Tazawa, P. Jin, and S. Nakao, “Surface plasmon resonance of sputtered Ag films: substrate and mass thickness dependence,” Appl. Phys., A Mater. Sci. Process.80(7), 1535–1540 (2005).
[CrossRef]

Tenfelde, M.

A. Hilger, M. Tenfelde, and U. Kreibig, “Silver nanoparticles deposited on dielectric surfaces,” Appl. Phys. B73(4), 361–372 (2001).
[CrossRef]

Tewari, R.

R. S. Varma, D. C. Kothari, and R. Tewari, “Nano-composite soda lime silicate glass prepared using silver ion exchange,” J. Non-Cryst. Solids355(22-23), 1246–1251 (2009).
[CrossRef]

Thomas, S.

S. Thomas, S. K. Nair, E. M. A. Jamal, S. H. Al-Harthi, M. R. Varma, and M. R. Anantharaman, “Size-dependent surface plasmon resonance in silver silica nanocomposites,” Nanotechnology19(7), 075710 (2008).
[CrossRef] [PubMed]

Varma, M. R.

S. Thomas, S. K. Nair, E. M. A. Jamal, S. H. Al-Harthi, M. R. Varma, and M. R. Anantharaman, “Size-dependent surface plasmon resonance in silver silica nanocomposites,” Nanotechnology19(7), 075710 (2008).
[CrossRef] [PubMed]

Varma, R. S.

R. S. Varma, D. C. Kothari, and R. Tewari, “Nano-composite soda lime silicate glass prepared using silver ion exchange,” J. Non-Cryst. Solids355(22-23), 1246–1251 (2009).
[CrossRef]

Vo-Dinh, T.

M. Volkan, D. L. Stokes, and T. Vo-Dinh, “A new surface-enhanced Raman scattering substrate based on silver nanoparticles in sol–gel,” J. Raman Spect.30(12), 1057–1065 (1999).
[CrossRef]

Volkan, M.

M. Volkan, D. L. Stokes, and T. Vo-Dinh, “A new surface-enhanced Raman scattering substrate based on silver nanoparticles in sol–gel,” J. Raman Spect.30(12), 1057–1065 (1999).
[CrossRef]

Wackerow, S.

S. Wackerow, G. Seifert, and A. Abdolvand, “Homogenous silver-doped nanocomposite glass,” Opt. Mater. Express1(7), 1224–1231 (2011).
[CrossRef]

S. Wackerow and G. Seifert, “Co-doping of glasses with rare earth ions and metallic nanoparticles for frequency up-conversion,” Proc. SPIE7725, 77251H, 77251H-10 (2010).
[CrossRef]

Wang, J.

M. S. Gudiksen, L. J. Lauhon, J. Wang, D. C. Smith, and C. M. Lieber, “Growth of nanowire superlattice structures for nanoscale photonics and electronics,” Nature415(6872), 617–620 (2002).
[CrossRef] [PubMed]

Wei, H.

Y. Ma, J. Lin, S. Qin, N. Zhou, Q. Bian, H. Wei, and Z. Feng, “Preparation of Ag nanocrystals embedded silicate glass by field-assisted diffusion and its properties of optical absorption,” Solid State Sci.12(8), 1413–1418 (2010).
[CrossRef]

Xu, G.

G. Xu, M. Tazawa, P. Jin, and S. Nakao, “Surface plasmon resonance of sputtered Ag films: substrate and mass thickness dependence,” Appl. Phys., A Mater. Sci. Process.80(7), 1535–1540 (2005).
[CrossRef]

Yamaguchi, T.

K. Yata and T. Yamaguchi, “Ostwald ripening of silver in glass,” J. Mater. Sci.27(1), 101–106 (1992).
[CrossRef]

Yata, K.

K. Yata and T. Yamaguchi, “Ostwald ripening of silver in glass,” J. Mater. Sci.27(1), 101–106 (1992).
[CrossRef]

Zhao, L. L.

K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment,” J. Phys. Chem. B107(3), 668–677 (2003).
[CrossRef]

Zhou, N.

Y. Ma, J. Lin, S. Qin, N. Zhou, Q. Bian, H. Wei, and Z. Feng, “Preparation of Ag nanocrystals embedded silicate glass by field-assisted diffusion and its properties of optical absorption,” Solid State Sci.12(8), 1413–1418 (2010).
[CrossRef]

,” Mater. Sci. & Eng. B: Solid-State Mater. for Adv. Tech. (1)

E. Cattaruzza, G. Battaglin, F. Gonella, S. Ali, C. Sada, and A. Quaranta, “Characterization of silicate glasses doped with gold by solid-state field-assisted ion exchange,” Mater. Sci. & Eng. B: Solid-State Mater. for Adv. Tech.149, 195–199 (2008).

Appl. Opt. (2)

Appl. Phys. B (1)

A. Hilger, M. Tenfelde, and U. Kreibig, “Silver nanoparticles deposited on dielectric surfaces,” Appl. Phys. B73(4), 361–372 (2001).
[CrossRef]

Appl. Phys. B-Lasers & Opt. (1)

B. Lamprecht, A. Leitner, and F. R. Aussenegg, “Femtosecond decay-time measurement of electron-plasma oscillation in nanolithographically designed silver particles,” Appl. Phys. B-Lasers & Opt.64(2), 269–272 (1997).
[CrossRef]

Appl. Phys. Lett. (2)

H. Mertens and A. Polman, “Plasmon-enhanced erbium luminescence,” Appl. Phys. Lett.89(21), 211107 (2006).
[CrossRef]

A. Stalmashonak, A. Abdolvand, and G. Seifert, “Metal-glass nanocomposite for optical storage of information,” Appl. Phys. Lett.99(20), 201904 (2011).
[CrossRef]

Appl. Phys., A Mater. Sci. Process. (1)

G. Xu, M. Tazawa, P. Jin, and S. Nakao, “Surface plasmon resonance of sputtered Ag films: substrate and mass thickness dependence,” Appl. Phys., A Mater. Sci. Process.80(7), 1535–1540 (2005).
[CrossRef]

J. Mater. Sci. (2)

P. Chakraborty, “Metal nanoclusters in glasses as non-linear photonic materials,” J. Mater. Sci.33(9), 2235–2249 (1998).
[CrossRef]

K. Yata and T. Yamaguchi, “Ostwald ripening of silver in glass,” J. Mater. Sci.27(1), 101–106 (1992).
[CrossRef]

J. Non-Cryst. Solids (3)

R. S. Varma, D. C. Kothari, and R. Tewari, “Nano-composite soda lime silicate glass prepared using silver ion exchange,” J. Non-Cryst. Solids355(22-23), 1246–1251 (2009).
[CrossRef]

E. Borsella, E. Cattaruzza, G. De Marchi, F. Gonella, G. Mattei, P. Mazzoldi, A. Quaranta, G. Battaglin, and R. Polloni, “Synthesis of silver clusters in silica-based glasses for optoelectronics applications,” J. Non-Cryst. Solids245(1-3), 122–128 (1999).
[CrossRef]

A. Berger, “Concentration and size depth profile of colloidal silver particles in glass surfaces produced by sodium-silver ion-exchange,” J. Non-Cryst. Solids151(1-2), 88–94 (1992).
[CrossRef]

J. Phys. Chem. B (1)

K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment,” J. Phys. Chem. B107(3), 668–677 (2003).
[CrossRef]

J. Raman Spect. (1)

M. Volkan, D. L. Stokes, and T. Vo-Dinh, “A new surface-enhanced Raman scattering substrate based on silver nanoparticles in sol–gel,” J. Raman Spect.30(12), 1057–1065 (1999).
[CrossRef]

Nanotechnology (1)

S. Thomas, S. K. Nair, E. M. A. Jamal, S. H. Al-Harthi, M. R. Varma, and M. R. Anantharaman, “Size-dependent surface plasmon resonance in silver silica nanocomposites,” Nanotechnology19(7), 075710 (2008).
[CrossRef] [PubMed]

Nature (1)

M. S. Gudiksen, L. J. Lauhon, J. Wang, D. C. Smith, and C. M. Lieber, “Growth of nanowire superlattice structures for nanoscale photonics and electronics,” Nature415(6872), 617–620 (2002).
[CrossRef] [PubMed]

Opt. Mater. Express (1)

Physica B (1)

D. Manikandan, S. Mohan, P. Magudapathy, and K. G. M. Nair, “Blue shift of plasmon resonance in Cu and Ag ion-exchanged and annealed soda-lime glass: an optical absorption study,” Physica B325, 86–91 (2003).
[CrossRef]

Proc. SPIE (1)

S. Wackerow and G. Seifert, “Co-doping of glasses with rare earth ions and metallic nanoparticles for frequency up-conversion,” Proc. SPIE7725, 77251H, 77251H-10 (2010).
[CrossRef]

Solid State Sci. (1)

Y. Ma, J. Lin, S. Qin, N. Zhou, Q. Bian, H. Wei, and Z. Feng, “Preparation of Ag nanocrystals embedded silicate glass by field-assisted diffusion and its properties of optical absorption,” Solid State Sci.12(8), 1413–1418 (2010).
[CrossRef]

Other (4)

S. I. Najafi, Introduction to Glass Integrated Optics (Artech House, 1992).

U. Kreibig and M. Vollmer, Optical Properties of Metal Clusters (Springer, 1995).

V. M. Shalaev, Optical Properties of Nanostructured Random Media (Springer, 2001).

F. Gonella and P. Mazzoldi, Handbook of Nanostructured Materials and Nanothechnology (Academic Press 2000).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

(a) Particle size dependence for f = 0.1% and a layer thickness of 100 µm. (b) Filling factor dependence for particle radius of 10 nm, and a layer thickness proportional to 1/f (in order to make the plasmon bands comparable).

Fig. 2
Fig. 2

Thin slices of the cross sections have been prepared from samples annealed for five different durations (1h, 2h, 4h, 8h, 48h). (a) Microscope images of the thin slices. The former glass surfaces are at the top of the image, while the lower parts of the image show the layers deeper inside the glass. For short annealing times the nanoparticles cause a dark yellow color close to the surface, which changes to brown at the inner end of the layer. For longer annealing times the color at the surface changes to light yellow, while it turns to a darker yellow for the inner regions. (b) Absorbance spectra of the five slices. The depth in the glass is assigned to the vertical axis, while the wavelength is assigned to the horizontal axes. The former glass surface is at the bottom end. Darker colors stand for stronger absorbance. One spectrum has been measured every 1.5 µm.

Fig. 3
Fig. 3

Fitting parameters for the plasmon band profiles measured on the thin slices (solid lines). The filling factor profiles are shown in (a) and the particle radii in (b), both as a function of the depth in the glass. Only the low-concentration end is shown since the concentration was too high in most of the sample to determine it reliably. Dotted lines in (a) are the results of the diffusion simulation, with the profile for 1h diffusion being fit to the MGT profile for the 1h annealed sample.

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

Re ε i ( ω SP )= ε h
ε i (ω)= ε b +1 ω p 2 ω 2 +iγω
γ= v F L +A v F r
ε eff (ω)= ε h ( ε i +2 ε h )+2f( ε i ε h ) ( ε i +2 ε h )f( ε i ε h )
a=lnT=l 2ω c Im ε eff (ω)
f t =D 2 f x 2
a tot = 1.5µm l a i + a 0
T L =70.8µm+35.5µmlnt

Metrics