Abstract

We report on the first experiments on saturable absorption in graphene at microwave frequency band. Almost independent of the incident frequency, microwave absorbance of graphene always decreases with increasing the power and reaches at a constant level for power larger than 80 µW, evidencing the microwave saturable absorption property of graphene. Optical saturable absorption of the same graphene sample was also experimentally confirmed by an open-aperture Z-scan technique by one laser at telecommunication band and another pico-second laser at 1053 nm, respectively. Herein, we are able to conclude that graphene is indeed a broadband saturable absorber that can operate at both microwave and optical band.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. E. McCann, “Asymmetry gap in the electronic band structure of bilayer graphene,” Phys. Rev. B74(16), 161403 (2006).
    [CrossRef]
  2. K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V. Grigorieva, S. V. Dubonos, and A. A. Firsov, “Two-dimensional gas of massless Dirac fermions in graphene,” Nature438(7065), 197–200 (2005).
    [CrossRef] [PubMed]
  3. F. Xia, T. Mueller, Y. M. Lin, A. Valdes-Garcia, and P. Avouris, “Ultrafast graphene photodetector,” Nat. Nanotechnol.4(12), 839–843 (2009).
    [CrossRef] [PubMed]
  4. M. Liu, X. Yin, E. Ulin-Avila, B. Geng, T. Zentgraf, L. Ju, F. Wang, and X. Zhang, “A graphene-based broadband optical modulator,” Nature474(7349), 64–67 (2011).
    [CrossRef] [PubMed]
  5. Q. Bao, H. Zhang, B. Wang, Z. Ni, C. H. Y. X. Lim, Y. Wang, D. Y. Tang, and K. P. Loh, “Broadband graphene polarizer,” Nat. Photonics5(7), 411–415 (2011).
    [CrossRef]
  6. R. N. Zitter, “Saturated optical absorption through band filling in semiconductors,” Appl. Phys. Lett.14(2), 73–74 (1969).
    [CrossRef]
  7. Q. Bao, H. Zhang, Y. Wang, Z. Ni, Y. Yan, Z. X. Shen, K. P. Loh, and D. Y. Tang, “Atomic-layer graphene as a saturable absorber for ultrafast pulsed lasers,” Adv. Funct. Mater.19(19), 3077–3083 (2009).
    [CrossRef]
  8. W. D. Tan, C. Y. Su, R. J. Knize, G. Q. Xie, L. J. Li, and D. Y. Tang, “Mode locking of ceramic Nd:yttrium aluminum garnet with graphene as a saturable absorber,” Appl. Phys. Lett.96(3), 031106 (2010).
    [CrossRef]
  9. L. M. Zhao, D. Y. Tang, H. Zhang, X. Wu, Q. Bao, and K. P. Loh, “Dissipative soliton operation of an ytterbium-doped fiber laser mode locked with atomic multilayer graphene,” Opt. Lett.35(21), 3622–3624 (2010).
    [CrossRef] [PubMed]
  10. W. B. Cho, J. W. Kim, H. W. Lee, S. Bae, B. H. Hong, S. Y. Choi, I. H. Baek, K. Kim, D.-I. Yeom, and F. Rotermund, “High-quality, large-area monolayer graphene for efficient bulk laser mode-locking near 1.25 μm,” Opt. Lett.36(20), 4089–4091 (2011).
    [CrossRef] [PubMed]
  11. H. Zhang, D. Tang, R. J. Knize, L. Zhao, Q. Bao, and K. P. Loh, “Graphene mode locked, wavelength-tunable, dissipative soliton fiber laser,” Appl. Phys. Lett.96(11), 111112 (2010).
    [CrossRef]
  12. J. Liu, Y. G. Wang, Z. S. Qu, L. H. Zheng, L. B. Su, and J. Xu, “Graphene oxide absorber for 2 μm passive mode-locking Tm: YAlO3 laser,” Laser Phys. Lett.9(1), 15–19 (2012).
    [CrossRef]
  13. E. D. Obraztsova, M. G. Rybin, A. V. Tausenev, V. A. Shotniev, V. R. Sorochenko, P. S. Rusakov, and I. I. Kondrashov, “Graphene for laser applications,” presented at the Graphene 2012 International Conference, Brussels, Belgium, 10–13 Apr. 2012.
  14. Y. M. Chang, H. Kim, J. H. Lee, and Y. W. Song, “Multilayered graphene efficiently formed by mechanical exfoliation for nonlinear saturable absorbers in fiber mode-locked lasers,” Appl. Phys. Lett.97(21), 211102 (2010).
    [CrossRef]
  15. A. Martinez, K. Fuse, and S. Yamashita, “Mechanical exfoliation of graphene for the passive mode-locking of fiber lasers,” Appl. Phys. Lett.99(12), 121107 (2011).
    [CrossRef]
  16. Y. W. Song, S. Y. Jang, W. S. Han, and M. K. Bae, “Graphene mode-lockers for fiber lasers functioned with evanescent field interaction,” Appl. Phys. Lett.96(5), 051122 (2010).
    [CrossRef]
  17. H. Kim, J. Cho, S. Y. Jang, and Y. M. Song, “Deformation-immunized optical deposition of graphene for ultrafast pulsed lasers,” Appl. Phys. Lett.98(2), 021104 (2011).
    [CrossRef]
  18. D. Popa, Z. Sun, F. Torrisi, T. Hasan, F. Wang, and A. C. Ferrari, “Sub 200 fs pulse generation from a graphene mode-locked fiber laser,” Appl. Phys. Lett.97(20), 203106 (2010).
    [CrossRef]
  19. V. P. Gusynin, S. G. Sharapov, and J. P. Carbotte, “Unusual microwave response of Dirac quasiparticles in graphene,” Phys. Rev. Lett.96(25), 256802 (2006).
    [CrossRef] [PubMed]
  20. G. Deligeorgis, M. Dragoman, D. Neculoiu, D. Dragoman, G. Konstantinidis, A. Cismaru, and R. Plana, “Microwave propagation in graphene,” Appl. Phys. Lett.95(7), 073107 (2009).
    [CrossRef]
  21. G. Deligeorgis, M. Dragoman, D. Neculoiu, D. Dragoman, G. Konstantinidis, A. Cismaru, and R. Plana, “Microwave switching of graphene field effect transistor at and far from the Dirac point,” Appl. Phys. Lett.96(10), 103105 (2010).
    [CrossRef]
  22. H. Wang, D. Nezich, J. Kong, and T. Palacios, “Graphene frequency multipliers,” IEEE Electron Device Lett.30(5), 547–549 (2009).
    [CrossRef]
  23. S. A. Mikhailov and K. Ziegler, “Nonlinear electromagnetic response of graphene: frequency multiplication and the self-consistent-field effects,” J. Phys. Condens. Matter20(38), 384204 (2008).
    [CrossRef] [PubMed]
  24. A. R. Wright, X. G. Xu, J. C. Cao, and C. Zhang, “Strong nonlinear optical response of graphene in the terahertz regime,” Appl. Phys. Lett.95(7), 072101 (2009).
    [CrossRef]
  25. A. R. Wright, J. C. Cao, and C. Zhang, “Enhanced optical conductivity of bilayer graphene nanoribbons in the terahertz regime,” Phys. Rev. Lett.103(20), 207401 (2009).
    [CrossRef] [PubMed]
  26. E. Hendry, P. J. Hale, J. Moger, A. K. Savchenko, and S. A. Mikhailov, “Coherent nonlinear optical response of graphene,” Phys. Rev. Lett.105(9), 097401 (2010).
    [CrossRef] [PubMed]
  27. Y. Hernandez, V. Nicolosi, M. Lotya, F. M. Blighe, Z. Sun, S. De, I. T. McGovern, B. Holland, M. Byrne, Y. K. Gun’Ko, J. J. Boland, P. Niraj, G. Duesberg, S. Krishnamurthy, R. Goodhue, J. Hutchison, V. Scardaci, A. C. Ferrari, and J. N. Coleman, “High-yield production of graphene by liquid-phase exfoliation of graphite,” Nat. Nanotechnol.3(9), 563–568 (2008).
    [CrossRef] [PubMed]
  28. M. Lotya, Y. Hernandez, P. J. King, R. J. Smith, V. Nicolosi, L. S. Karlsson, F. M. Blighe, S. De, Z. Wang, I. T. McGovern, G. S. Duesberg, and J. N. Coleman, “Liquid phase production of graphene by exfoliation of graphite in surfactant/water solutions,” J. Am. Chem. Soc.131(10), 3611–3620 (2009).
    [CrossRef] [PubMed]
  29. J. J. O’Reilly, P. M. Lane, R. Heidemann, and R. Hofstetter, “Optical generation of very narrowlinewidth millimetrewave signals,” Electron. Lett.28, 2309–2311 (1992).
  30. J. Yu, G.-K. Chang, Z. Jia, A. Chowdhury, M.-F. Huang, H.-C. Chien, Y.-T. Hsueh, W. Jian, C. Liu, and Z. Dong, “Cost-effective optical millimeter technologies and field demonstrations for very high throughput wireless-over-fiber access systems,” J. Lightwave Technol.28(16), 2376–2397 (2010).
    [CrossRef]
  31. W. Li and J. Yao, “Investigation of photonically assisted microwave frequency multiplication based on external modulation,” IEEE Trans. Microw. Theory Tech.58(11), 3259–3268 (2010).
    [CrossRef]
  32. L. Chen, H. Wen, and S. Wen, “A radio-over-fiber system with a novel scheme for millimeter-wave generation and wavelength reuse for up-link connection,” IEEE Photon. Technol. Lett.18(19), 2056–2058 (2006).
    [CrossRef]
  33. Y. Li, Z. Zheng, L. Chen, S. Wen, and D. Fan, “Polarization-insensitive wavelength-division-multiplexing optical millimeter wave generation based on copolarized pump four wave mixing in a semiconductor optical amplifier,” Appl. Opt.48(16), 3008–3013 (2009).
    [CrossRef] [PubMed]
  34. H. Zhang, S. Virally, Q. Bao, L. Kian Ping, S. Massar, N. Godbout, and P. Kockaert, “Z-scan measurement of the nonlinear refractive index of graphene,” Opt. Lett.37(11), 1856–1858 (2012).
    [CrossRef] [PubMed]
  35. A. H. Castro Neto, N. M. R. Peres, K. S. Novoselov, and A. K. Geim, “The electronic properties of graphene,” Rev. Mod. Phys.81(1), 109–162 (2009).
    [CrossRef]
  36. L. Mertz, “Mode-locked maser theory of pulsars,” Astrophys. Space Sci.30(1), 43–55 (1974).
    [CrossRef]

2012 (2)

J. Liu, Y. G. Wang, Z. S. Qu, L. H. Zheng, L. B. Su, and J. Xu, “Graphene oxide absorber for 2 μm passive mode-locking Tm: YAlO3 laser,” Laser Phys. Lett.9(1), 15–19 (2012).
[CrossRef]

H. Zhang, S. Virally, Q. Bao, L. Kian Ping, S. Massar, N. Godbout, and P. Kockaert, “Z-scan measurement of the nonlinear refractive index of graphene,” Opt. Lett.37(11), 1856–1858 (2012).
[CrossRef] [PubMed]

2011 (5)

W. B. Cho, J. W. Kim, H. W. Lee, S. Bae, B. H. Hong, S. Y. Choi, I. H. Baek, K. Kim, D.-I. Yeom, and F. Rotermund, “High-quality, large-area monolayer graphene for efficient bulk laser mode-locking near 1.25 μm,” Opt. Lett.36(20), 4089–4091 (2011).
[CrossRef] [PubMed]

A. Martinez, K. Fuse, and S. Yamashita, “Mechanical exfoliation of graphene for the passive mode-locking of fiber lasers,” Appl. Phys. Lett.99(12), 121107 (2011).
[CrossRef]

H. Kim, J. Cho, S. Y. Jang, and Y. M. Song, “Deformation-immunized optical deposition of graphene for ultrafast pulsed lasers,” Appl. Phys. Lett.98(2), 021104 (2011).
[CrossRef]

M. Liu, X. Yin, E. Ulin-Avila, B. Geng, T. Zentgraf, L. Ju, F. Wang, and X. Zhang, “A graphene-based broadband optical modulator,” Nature474(7349), 64–67 (2011).
[CrossRef] [PubMed]

Q. Bao, H. Zhang, B. Wang, Z. Ni, C. H. Y. X. Lim, Y. Wang, D. Y. Tang, and K. P. Loh, “Broadband graphene polarizer,” Nat. Photonics5(7), 411–415 (2011).
[CrossRef]

2010 (10)

W. D. Tan, C. Y. Su, R. J. Knize, G. Q. Xie, L. J. Li, and D. Y. Tang, “Mode locking of ceramic Nd:yttrium aluminum garnet with graphene as a saturable absorber,” Appl. Phys. Lett.96(3), 031106 (2010).
[CrossRef]

L. M. Zhao, D. Y. Tang, H. Zhang, X. Wu, Q. Bao, and K. P. Loh, “Dissipative soliton operation of an ytterbium-doped fiber laser mode locked with atomic multilayer graphene,” Opt. Lett.35(21), 3622–3624 (2010).
[CrossRef] [PubMed]

D. Popa, Z. Sun, F. Torrisi, T. Hasan, F. Wang, and A. C. Ferrari, “Sub 200 fs pulse generation from a graphene mode-locked fiber laser,” Appl. Phys. Lett.97(20), 203106 (2010).
[CrossRef]

Y. W. Song, S. Y. Jang, W. S. Han, and M. K. Bae, “Graphene mode-lockers for fiber lasers functioned with evanescent field interaction,” Appl. Phys. Lett.96(5), 051122 (2010).
[CrossRef]

H. Zhang, D. Tang, R. J. Knize, L. Zhao, Q. Bao, and K. P. Loh, “Graphene mode locked, wavelength-tunable, dissipative soliton fiber laser,” Appl. Phys. Lett.96(11), 111112 (2010).
[CrossRef]

Y. M. Chang, H. Kim, J. H. Lee, and Y. W. Song, “Multilayered graphene efficiently formed by mechanical exfoliation for nonlinear saturable absorbers in fiber mode-locked lasers,” Appl. Phys. Lett.97(21), 211102 (2010).
[CrossRef]

J. Yu, G.-K. Chang, Z. Jia, A. Chowdhury, M.-F. Huang, H.-C. Chien, Y.-T. Hsueh, W. Jian, C. Liu, and Z. Dong, “Cost-effective optical millimeter technologies and field demonstrations for very high throughput wireless-over-fiber access systems,” J. Lightwave Technol.28(16), 2376–2397 (2010).
[CrossRef]

W. Li and J. Yao, “Investigation of photonically assisted microwave frequency multiplication based on external modulation,” IEEE Trans. Microw. Theory Tech.58(11), 3259–3268 (2010).
[CrossRef]

G. Deligeorgis, M. Dragoman, D. Neculoiu, D. Dragoman, G. Konstantinidis, A. Cismaru, and R. Plana, “Microwave switching of graphene field effect transistor at and far from the Dirac point,” Appl. Phys. Lett.96(10), 103105 (2010).
[CrossRef]

E. Hendry, P. J. Hale, J. Moger, A. K. Savchenko, and S. A. Mikhailov, “Coherent nonlinear optical response of graphene,” Phys. Rev. Lett.105(9), 097401 (2010).
[CrossRef] [PubMed]

2009 (9)

M. Lotya, Y. Hernandez, P. J. King, R. J. Smith, V. Nicolosi, L. S. Karlsson, F. M. Blighe, S. De, Z. Wang, I. T. McGovern, G. S. Duesberg, and J. N. Coleman, “Liquid phase production of graphene by exfoliation of graphite in surfactant/water solutions,” J. Am. Chem. Soc.131(10), 3611–3620 (2009).
[CrossRef] [PubMed]

H. Wang, D. Nezich, J. Kong, and T. Palacios, “Graphene frequency multipliers,” IEEE Electron Device Lett.30(5), 547–549 (2009).
[CrossRef]

A. R. Wright, X. G. Xu, J. C. Cao, and C. Zhang, “Strong nonlinear optical response of graphene in the terahertz regime,” Appl. Phys. Lett.95(7), 072101 (2009).
[CrossRef]

A. R. Wright, J. C. Cao, and C. Zhang, “Enhanced optical conductivity of bilayer graphene nanoribbons in the terahertz regime,” Phys. Rev. Lett.103(20), 207401 (2009).
[CrossRef] [PubMed]

G. Deligeorgis, M. Dragoman, D. Neculoiu, D. Dragoman, G. Konstantinidis, A. Cismaru, and R. Plana, “Microwave propagation in graphene,” Appl. Phys. Lett.95(7), 073107 (2009).
[CrossRef]

Y. Li, Z. Zheng, L. Chen, S. Wen, and D. Fan, “Polarization-insensitive wavelength-division-multiplexing optical millimeter wave generation based on copolarized pump four wave mixing in a semiconductor optical amplifier,” Appl. Opt.48(16), 3008–3013 (2009).
[CrossRef] [PubMed]

A. H. Castro Neto, N. M. R. Peres, K. S. Novoselov, and A. K. Geim, “The electronic properties of graphene,” Rev. Mod. Phys.81(1), 109–162 (2009).
[CrossRef]

F. Xia, T. Mueller, Y. M. Lin, A. Valdes-Garcia, and P. Avouris, “Ultrafast graphene photodetector,” Nat. Nanotechnol.4(12), 839–843 (2009).
[CrossRef] [PubMed]

Q. Bao, H. Zhang, Y. Wang, Z. Ni, Y. Yan, Z. X. Shen, K. P. Loh, and D. Y. Tang, “Atomic-layer graphene as a saturable absorber for ultrafast pulsed lasers,” Adv. Funct. Mater.19(19), 3077–3083 (2009).
[CrossRef]

2008 (2)

S. A. Mikhailov and K. Ziegler, “Nonlinear electromagnetic response of graphene: frequency multiplication and the self-consistent-field effects,” J. Phys. Condens. Matter20(38), 384204 (2008).
[CrossRef] [PubMed]

Y. Hernandez, V. Nicolosi, M. Lotya, F. M. Blighe, Z. Sun, S. De, I. T. McGovern, B. Holland, M. Byrne, Y. K. Gun’Ko, J. J. Boland, P. Niraj, G. Duesberg, S. Krishnamurthy, R. Goodhue, J. Hutchison, V. Scardaci, A. C. Ferrari, and J. N. Coleman, “High-yield production of graphene by liquid-phase exfoliation of graphite,” Nat. Nanotechnol.3(9), 563–568 (2008).
[CrossRef] [PubMed]

2006 (3)

L. Chen, H. Wen, and S. Wen, “A radio-over-fiber system with a novel scheme for millimeter-wave generation and wavelength reuse for up-link connection,” IEEE Photon. Technol. Lett.18(19), 2056–2058 (2006).
[CrossRef]

E. McCann, “Asymmetry gap in the electronic band structure of bilayer graphene,” Phys. Rev. B74(16), 161403 (2006).
[CrossRef]

V. P. Gusynin, S. G. Sharapov, and J. P. Carbotte, “Unusual microwave response of Dirac quasiparticles in graphene,” Phys. Rev. Lett.96(25), 256802 (2006).
[CrossRef] [PubMed]

2005 (1)

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V. Grigorieva, S. V. Dubonos, and A. A. Firsov, “Two-dimensional gas of massless Dirac fermions in graphene,” Nature438(7065), 197–200 (2005).
[CrossRef] [PubMed]

1992 (1)

J. J. O’Reilly, P. M. Lane, R. Heidemann, and R. Hofstetter, “Optical generation of very narrowlinewidth millimetrewave signals,” Electron. Lett.28, 2309–2311 (1992).

1974 (1)

L. Mertz, “Mode-locked maser theory of pulsars,” Astrophys. Space Sci.30(1), 43–55 (1974).
[CrossRef]

1969 (1)

R. N. Zitter, “Saturated optical absorption through band filling in semiconductors,” Appl. Phys. Lett.14(2), 73–74 (1969).
[CrossRef]

Avouris, P.

F. Xia, T. Mueller, Y. M. Lin, A. Valdes-Garcia, and P. Avouris, “Ultrafast graphene photodetector,” Nat. Nanotechnol.4(12), 839–843 (2009).
[CrossRef] [PubMed]

Bae, M. K.

Y. W. Song, S. Y. Jang, W. S. Han, and M. K. Bae, “Graphene mode-lockers for fiber lasers functioned with evanescent field interaction,” Appl. Phys. Lett.96(5), 051122 (2010).
[CrossRef]

Bae, S.

Baek, I. H.

Bao, Q.

H. Zhang, S. Virally, Q. Bao, L. Kian Ping, S. Massar, N. Godbout, and P. Kockaert, “Z-scan measurement of the nonlinear refractive index of graphene,” Opt. Lett.37(11), 1856–1858 (2012).
[CrossRef] [PubMed]

Q. Bao, H. Zhang, B. Wang, Z. Ni, C. H. Y. X. Lim, Y. Wang, D. Y. Tang, and K. P. Loh, “Broadband graphene polarizer,” Nat. Photonics5(7), 411–415 (2011).
[CrossRef]

H. Zhang, D. Tang, R. J. Knize, L. Zhao, Q. Bao, and K. P. Loh, “Graphene mode locked, wavelength-tunable, dissipative soliton fiber laser,” Appl. Phys. Lett.96(11), 111112 (2010).
[CrossRef]

L. M. Zhao, D. Y. Tang, H. Zhang, X. Wu, Q. Bao, and K. P. Loh, “Dissipative soliton operation of an ytterbium-doped fiber laser mode locked with atomic multilayer graphene,” Opt. Lett.35(21), 3622–3624 (2010).
[CrossRef] [PubMed]

Q. Bao, H. Zhang, Y. Wang, Z. Ni, Y. Yan, Z. X. Shen, K. P. Loh, and D. Y. Tang, “Atomic-layer graphene as a saturable absorber for ultrafast pulsed lasers,” Adv. Funct. Mater.19(19), 3077–3083 (2009).
[CrossRef]

Blighe, F. M.

M. Lotya, Y. Hernandez, P. J. King, R. J. Smith, V. Nicolosi, L. S. Karlsson, F. M. Blighe, S. De, Z. Wang, I. T. McGovern, G. S. Duesberg, and J. N. Coleman, “Liquid phase production of graphene by exfoliation of graphite in surfactant/water solutions,” J. Am. Chem. Soc.131(10), 3611–3620 (2009).
[CrossRef] [PubMed]

Y. Hernandez, V. Nicolosi, M. Lotya, F. M. Blighe, Z. Sun, S. De, I. T. McGovern, B. Holland, M. Byrne, Y. K. Gun’Ko, J. J. Boland, P. Niraj, G. Duesberg, S. Krishnamurthy, R. Goodhue, J. Hutchison, V. Scardaci, A. C. Ferrari, and J. N. Coleman, “High-yield production of graphene by liquid-phase exfoliation of graphite,” Nat. Nanotechnol.3(9), 563–568 (2008).
[CrossRef] [PubMed]

Boland, J. J.

Y. Hernandez, V. Nicolosi, M. Lotya, F. M. Blighe, Z. Sun, S. De, I. T. McGovern, B. Holland, M. Byrne, Y. K. Gun’Ko, J. J. Boland, P. Niraj, G. Duesberg, S. Krishnamurthy, R. Goodhue, J. Hutchison, V. Scardaci, A. C. Ferrari, and J. N. Coleman, “High-yield production of graphene by liquid-phase exfoliation of graphite,” Nat. Nanotechnol.3(9), 563–568 (2008).
[CrossRef] [PubMed]

Byrne, M.

Y. Hernandez, V. Nicolosi, M. Lotya, F. M. Blighe, Z. Sun, S. De, I. T. McGovern, B. Holland, M. Byrne, Y. K. Gun’Ko, J. J. Boland, P. Niraj, G. Duesberg, S. Krishnamurthy, R. Goodhue, J. Hutchison, V. Scardaci, A. C. Ferrari, and J. N. Coleman, “High-yield production of graphene by liquid-phase exfoliation of graphite,” Nat. Nanotechnol.3(9), 563–568 (2008).
[CrossRef] [PubMed]

Cao, J. C.

A. R. Wright, X. G. Xu, J. C. Cao, and C. Zhang, “Strong nonlinear optical response of graphene in the terahertz regime,” Appl. Phys. Lett.95(7), 072101 (2009).
[CrossRef]

A. R. Wright, J. C. Cao, and C. Zhang, “Enhanced optical conductivity of bilayer graphene nanoribbons in the terahertz regime,” Phys. Rev. Lett.103(20), 207401 (2009).
[CrossRef] [PubMed]

Carbotte, J. P.

V. P. Gusynin, S. G. Sharapov, and J. P. Carbotte, “Unusual microwave response of Dirac quasiparticles in graphene,” Phys. Rev. Lett.96(25), 256802 (2006).
[CrossRef] [PubMed]

Castro Neto, A. H.

A. H. Castro Neto, N. M. R. Peres, K. S. Novoselov, and A. K. Geim, “The electronic properties of graphene,” Rev. Mod. Phys.81(1), 109–162 (2009).
[CrossRef]

Chang, G.-K.

Chang, Y. M.

Y. M. Chang, H. Kim, J. H. Lee, and Y. W. Song, “Multilayered graphene efficiently formed by mechanical exfoliation for nonlinear saturable absorbers in fiber mode-locked lasers,” Appl. Phys. Lett.97(21), 211102 (2010).
[CrossRef]

Chen, L.

Y. Li, Z. Zheng, L. Chen, S. Wen, and D. Fan, “Polarization-insensitive wavelength-division-multiplexing optical millimeter wave generation based on copolarized pump four wave mixing in a semiconductor optical amplifier,” Appl. Opt.48(16), 3008–3013 (2009).
[CrossRef] [PubMed]

L. Chen, H. Wen, and S. Wen, “A radio-over-fiber system with a novel scheme for millimeter-wave generation and wavelength reuse for up-link connection,” IEEE Photon. Technol. Lett.18(19), 2056–2058 (2006).
[CrossRef]

Chien, H.-C.

Cho, J.

H. Kim, J. Cho, S. Y. Jang, and Y. M. Song, “Deformation-immunized optical deposition of graphene for ultrafast pulsed lasers,” Appl. Phys. Lett.98(2), 021104 (2011).
[CrossRef]

Cho, W. B.

Choi, S. Y.

Chowdhury, A.

Cismaru, A.

G. Deligeorgis, M. Dragoman, D. Neculoiu, D. Dragoman, G. Konstantinidis, A. Cismaru, and R. Plana, “Microwave switching of graphene field effect transistor at and far from the Dirac point,” Appl. Phys. Lett.96(10), 103105 (2010).
[CrossRef]

G. Deligeorgis, M. Dragoman, D. Neculoiu, D. Dragoman, G. Konstantinidis, A. Cismaru, and R. Plana, “Microwave propagation in graphene,” Appl. Phys. Lett.95(7), 073107 (2009).
[CrossRef]

Coleman, J. N.

M. Lotya, Y. Hernandez, P. J. King, R. J. Smith, V. Nicolosi, L. S. Karlsson, F. M. Blighe, S. De, Z. Wang, I. T. McGovern, G. S. Duesberg, and J. N. Coleman, “Liquid phase production of graphene by exfoliation of graphite in surfactant/water solutions,” J. Am. Chem. Soc.131(10), 3611–3620 (2009).
[CrossRef] [PubMed]

Y. Hernandez, V. Nicolosi, M. Lotya, F. M. Blighe, Z. Sun, S. De, I. T. McGovern, B. Holland, M. Byrne, Y. K. Gun’Ko, J. J. Boland, P. Niraj, G. Duesberg, S. Krishnamurthy, R. Goodhue, J. Hutchison, V. Scardaci, A. C. Ferrari, and J. N. Coleman, “High-yield production of graphene by liquid-phase exfoliation of graphite,” Nat. Nanotechnol.3(9), 563–568 (2008).
[CrossRef] [PubMed]

De, S.

M. Lotya, Y. Hernandez, P. J. King, R. J. Smith, V. Nicolosi, L. S. Karlsson, F. M. Blighe, S. De, Z. Wang, I. T. McGovern, G. S. Duesberg, and J. N. Coleman, “Liquid phase production of graphene by exfoliation of graphite in surfactant/water solutions,” J. Am. Chem. Soc.131(10), 3611–3620 (2009).
[CrossRef] [PubMed]

Y. Hernandez, V. Nicolosi, M. Lotya, F. M. Blighe, Z. Sun, S. De, I. T. McGovern, B. Holland, M. Byrne, Y. K. Gun’Ko, J. J. Boland, P. Niraj, G. Duesberg, S. Krishnamurthy, R. Goodhue, J. Hutchison, V. Scardaci, A. C. Ferrari, and J. N. Coleman, “High-yield production of graphene by liquid-phase exfoliation of graphite,” Nat. Nanotechnol.3(9), 563–568 (2008).
[CrossRef] [PubMed]

Deligeorgis, G.

G. Deligeorgis, M. Dragoman, D. Neculoiu, D. Dragoman, G. Konstantinidis, A. Cismaru, and R. Plana, “Microwave switching of graphene field effect transistor at and far from the Dirac point,” Appl. Phys. Lett.96(10), 103105 (2010).
[CrossRef]

G. Deligeorgis, M. Dragoman, D. Neculoiu, D. Dragoman, G. Konstantinidis, A. Cismaru, and R. Plana, “Microwave propagation in graphene,” Appl. Phys. Lett.95(7), 073107 (2009).
[CrossRef]

Dong, Z.

Dragoman, D.

G. Deligeorgis, M. Dragoman, D. Neculoiu, D. Dragoman, G. Konstantinidis, A. Cismaru, and R. Plana, “Microwave switching of graphene field effect transistor at and far from the Dirac point,” Appl. Phys. Lett.96(10), 103105 (2010).
[CrossRef]

G. Deligeorgis, M. Dragoman, D. Neculoiu, D. Dragoman, G. Konstantinidis, A. Cismaru, and R. Plana, “Microwave propagation in graphene,” Appl. Phys. Lett.95(7), 073107 (2009).
[CrossRef]

Dragoman, M.

G. Deligeorgis, M. Dragoman, D. Neculoiu, D. Dragoman, G. Konstantinidis, A. Cismaru, and R. Plana, “Microwave switching of graphene field effect transistor at and far from the Dirac point,” Appl. Phys. Lett.96(10), 103105 (2010).
[CrossRef]

G. Deligeorgis, M. Dragoman, D. Neculoiu, D. Dragoman, G. Konstantinidis, A. Cismaru, and R. Plana, “Microwave propagation in graphene,” Appl. Phys. Lett.95(7), 073107 (2009).
[CrossRef]

Dubonos, S. V.

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V. Grigorieva, S. V. Dubonos, and A. A. Firsov, “Two-dimensional gas of massless Dirac fermions in graphene,” Nature438(7065), 197–200 (2005).
[CrossRef] [PubMed]

Duesberg, G.

Y. Hernandez, V. Nicolosi, M. Lotya, F. M. Blighe, Z. Sun, S. De, I. T. McGovern, B. Holland, M. Byrne, Y. K. Gun’Ko, J. J. Boland, P. Niraj, G. Duesberg, S. Krishnamurthy, R. Goodhue, J. Hutchison, V. Scardaci, A. C. Ferrari, and J. N. Coleman, “High-yield production of graphene by liquid-phase exfoliation of graphite,” Nat. Nanotechnol.3(9), 563–568 (2008).
[CrossRef] [PubMed]

Duesberg, G. S.

M. Lotya, Y. Hernandez, P. J. King, R. J. Smith, V. Nicolosi, L. S. Karlsson, F. M. Blighe, S. De, Z. Wang, I. T. McGovern, G. S. Duesberg, and J. N. Coleman, “Liquid phase production of graphene by exfoliation of graphite in surfactant/water solutions,” J. Am. Chem. Soc.131(10), 3611–3620 (2009).
[CrossRef] [PubMed]

Fan, D.

Ferrari, A. C.

D. Popa, Z. Sun, F. Torrisi, T. Hasan, F. Wang, and A. C. Ferrari, “Sub 200 fs pulse generation from a graphene mode-locked fiber laser,” Appl. Phys. Lett.97(20), 203106 (2010).
[CrossRef]

Y. Hernandez, V. Nicolosi, M. Lotya, F. M. Blighe, Z. Sun, S. De, I. T. McGovern, B. Holland, M. Byrne, Y. K. Gun’Ko, J. J. Boland, P. Niraj, G. Duesberg, S. Krishnamurthy, R. Goodhue, J. Hutchison, V. Scardaci, A. C. Ferrari, and J. N. Coleman, “High-yield production of graphene by liquid-phase exfoliation of graphite,” Nat. Nanotechnol.3(9), 563–568 (2008).
[CrossRef] [PubMed]

Firsov, A. A.

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V. Grigorieva, S. V. Dubonos, and A. A. Firsov, “Two-dimensional gas of massless Dirac fermions in graphene,” Nature438(7065), 197–200 (2005).
[CrossRef] [PubMed]

Fuse, K.

A. Martinez, K. Fuse, and S. Yamashita, “Mechanical exfoliation of graphene for the passive mode-locking of fiber lasers,” Appl. Phys. Lett.99(12), 121107 (2011).
[CrossRef]

Geim, A. K.

A. H. Castro Neto, N. M. R. Peres, K. S. Novoselov, and A. K. Geim, “The electronic properties of graphene,” Rev. Mod. Phys.81(1), 109–162 (2009).
[CrossRef]

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V. Grigorieva, S. V. Dubonos, and A. A. Firsov, “Two-dimensional gas of massless Dirac fermions in graphene,” Nature438(7065), 197–200 (2005).
[CrossRef] [PubMed]

Geng, B.

M. Liu, X. Yin, E. Ulin-Avila, B. Geng, T. Zentgraf, L. Ju, F. Wang, and X. Zhang, “A graphene-based broadband optical modulator,” Nature474(7349), 64–67 (2011).
[CrossRef] [PubMed]

Godbout, N.

Goodhue, R.

Y. Hernandez, V. Nicolosi, M. Lotya, F. M. Blighe, Z. Sun, S. De, I. T. McGovern, B. Holland, M. Byrne, Y. K. Gun’Ko, J. J. Boland, P. Niraj, G. Duesberg, S. Krishnamurthy, R. Goodhue, J. Hutchison, V. Scardaci, A. C. Ferrari, and J. N. Coleman, “High-yield production of graphene by liquid-phase exfoliation of graphite,” Nat. Nanotechnol.3(9), 563–568 (2008).
[CrossRef] [PubMed]

Grigorieva, I. V.

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V. Grigorieva, S. V. Dubonos, and A. A. Firsov, “Two-dimensional gas of massless Dirac fermions in graphene,” Nature438(7065), 197–200 (2005).
[CrossRef] [PubMed]

Gun’Ko, Y. K.

Y. Hernandez, V. Nicolosi, M. Lotya, F. M. Blighe, Z. Sun, S. De, I. T. McGovern, B. Holland, M. Byrne, Y. K. Gun’Ko, J. J. Boland, P. Niraj, G. Duesberg, S. Krishnamurthy, R. Goodhue, J. Hutchison, V. Scardaci, A. C. Ferrari, and J. N. Coleman, “High-yield production of graphene by liquid-phase exfoliation of graphite,” Nat. Nanotechnol.3(9), 563–568 (2008).
[CrossRef] [PubMed]

Gusynin, V. P.

V. P. Gusynin, S. G. Sharapov, and J. P. Carbotte, “Unusual microwave response of Dirac quasiparticles in graphene,” Phys. Rev. Lett.96(25), 256802 (2006).
[CrossRef] [PubMed]

Hale, P. J.

E. Hendry, P. J. Hale, J. Moger, A. K. Savchenko, and S. A. Mikhailov, “Coherent nonlinear optical response of graphene,” Phys. Rev. Lett.105(9), 097401 (2010).
[CrossRef] [PubMed]

Han, W. S.

Y. W. Song, S. Y. Jang, W. S. Han, and M. K. Bae, “Graphene mode-lockers for fiber lasers functioned with evanescent field interaction,” Appl. Phys. Lett.96(5), 051122 (2010).
[CrossRef]

Hasan, T.

D. Popa, Z. Sun, F. Torrisi, T. Hasan, F. Wang, and A. C. Ferrari, “Sub 200 fs pulse generation from a graphene mode-locked fiber laser,” Appl. Phys. Lett.97(20), 203106 (2010).
[CrossRef]

Heidemann, R.

J. J. O’Reilly, P. M. Lane, R. Heidemann, and R. Hofstetter, “Optical generation of very narrowlinewidth millimetrewave signals,” Electron. Lett.28, 2309–2311 (1992).

Hendry, E.

E. Hendry, P. J. Hale, J. Moger, A. K. Savchenko, and S. A. Mikhailov, “Coherent nonlinear optical response of graphene,” Phys. Rev. Lett.105(9), 097401 (2010).
[CrossRef] [PubMed]

Hernandez, Y.

M. Lotya, Y. Hernandez, P. J. King, R. J. Smith, V. Nicolosi, L. S. Karlsson, F. M. Blighe, S. De, Z. Wang, I. T. McGovern, G. S. Duesberg, and J. N. Coleman, “Liquid phase production of graphene by exfoliation of graphite in surfactant/water solutions,” J. Am. Chem. Soc.131(10), 3611–3620 (2009).
[CrossRef] [PubMed]

Y. Hernandez, V. Nicolosi, M. Lotya, F. M. Blighe, Z. Sun, S. De, I. T. McGovern, B. Holland, M. Byrne, Y. K. Gun’Ko, J. J. Boland, P. Niraj, G. Duesberg, S. Krishnamurthy, R. Goodhue, J. Hutchison, V. Scardaci, A. C. Ferrari, and J. N. Coleman, “High-yield production of graphene by liquid-phase exfoliation of graphite,” Nat. Nanotechnol.3(9), 563–568 (2008).
[CrossRef] [PubMed]

Hofstetter, R.

J. J. O’Reilly, P. M. Lane, R. Heidemann, and R. Hofstetter, “Optical generation of very narrowlinewidth millimetrewave signals,” Electron. Lett.28, 2309–2311 (1992).

Holland, B.

Y. Hernandez, V. Nicolosi, M. Lotya, F. M. Blighe, Z. Sun, S. De, I. T. McGovern, B. Holland, M. Byrne, Y. K. Gun’Ko, J. J. Boland, P. Niraj, G. Duesberg, S. Krishnamurthy, R. Goodhue, J. Hutchison, V. Scardaci, A. C. Ferrari, and J. N. Coleman, “High-yield production of graphene by liquid-phase exfoliation of graphite,” Nat. Nanotechnol.3(9), 563–568 (2008).
[CrossRef] [PubMed]

Hong, B. H.

Hsueh, Y.-T.

Huang, M.-F.

Hutchison, J.

Y. Hernandez, V. Nicolosi, M. Lotya, F. M. Blighe, Z. Sun, S. De, I. T. McGovern, B. Holland, M. Byrne, Y. K. Gun’Ko, J. J. Boland, P. Niraj, G. Duesberg, S. Krishnamurthy, R. Goodhue, J. Hutchison, V. Scardaci, A. C. Ferrari, and J. N. Coleman, “High-yield production of graphene by liquid-phase exfoliation of graphite,” Nat. Nanotechnol.3(9), 563–568 (2008).
[CrossRef] [PubMed]

Jang, S. Y.

H. Kim, J. Cho, S. Y. Jang, and Y. M. Song, “Deformation-immunized optical deposition of graphene for ultrafast pulsed lasers,” Appl. Phys. Lett.98(2), 021104 (2011).
[CrossRef]

Y. W. Song, S. Y. Jang, W. S. Han, and M. K. Bae, “Graphene mode-lockers for fiber lasers functioned with evanescent field interaction,” Appl. Phys. Lett.96(5), 051122 (2010).
[CrossRef]

Jia, Z.

Jian, W.

Jiang, D.

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V. Grigorieva, S. V. Dubonos, and A. A. Firsov, “Two-dimensional gas of massless Dirac fermions in graphene,” Nature438(7065), 197–200 (2005).
[CrossRef] [PubMed]

Ju, L.

M. Liu, X. Yin, E. Ulin-Avila, B. Geng, T. Zentgraf, L. Ju, F. Wang, and X. Zhang, “A graphene-based broadband optical modulator,” Nature474(7349), 64–67 (2011).
[CrossRef] [PubMed]

Karlsson, L. S.

M. Lotya, Y. Hernandez, P. J. King, R. J. Smith, V. Nicolosi, L. S. Karlsson, F. M. Blighe, S. De, Z. Wang, I. T. McGovern, G. S. Duesberg, and J. N. Coleman, “Liquid phase production of graphene by exfoliation of graphite in surfactant/water solutions,” J. Am. Chem. Soc.131(10), 3611–3620 (2009).
[CrossRef] [PubMed]

Katsnelson, M. I.

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V. Grigorieva, S. V. Dubonos, and A. A. Firsov, “Two-dimensional gas of massless Dirac fermions in graphene,” Nature438(7065), 197–200 (2005).
[CrossRef] [PubMed]

Kian Ping, L.

Kim, H.

H. Kim, J. Cho, S. Y. Jang, and Y. M. Song, “Deformation-immunized optical deposition of graphene for ultrafast pulsed lasers,” Appl. Phys. Lett.98(2), 021104 (2011).
[CrossRef]

Y. M. Chang, H. Kim, J. H. Lee, and Y. W. Song, “Multilayered graphene efficiently formed by mechanical exfoliation for nonlinear saturable absorbers in fiber mode-locked lasers,” Appl. Phys. Lett.97(21), 211102 (2010).
[CrossRef]

Kim, J. W.

Kim, K.

King, P. J.

M. Lotya, Y. Hernandez, P. J. King, R. J. Smith, V. Nicolosi, L. S. Karlsson, F. M. Blighe, S. De, Z. Wang, I. T. McGovern, G. S. Duesberg, and J. N. Coleman, “Liquid phase production of graphene by exfoliation of graphite in surfactant/water solutions,” J. Am. Chem. Soc.131(10), 3611–3620 (2009).
[CrossRef] [PubMed]

Knize, R. J.

H. Zhang, D. Tang, R. J. Knize, L. Zhao, Q. Bao, and K. P. Loh, “Graphene mode locked, wavelength-tunable, dissipative soliton fiber laser,” Appl. Phys. Lett.96(11), 111112 (2010).
[CrossRef]

W. D. Tan, C. Y. Su, R. J. Knize, G. Q. Xie, L. J. Li, and D. Y. Tang, “Mode locking of ceramic Nd:yttrium aluminum garnet with graphene as a saturable absorber,” Appl. Phys. Lett.96(3), 031106 (2010).
[CrossRef]

Kockaert, P.

Kong, J.

H. Wang, D. Nezich, J. Kong, and T. Palacios, “Graphene frequency multipliers,” IEEE Electron Device Lett.30(5), 547–549 (2009).
[CrossRef]

Konstantinidis, G.

G. Deligeorgis, M. Dragoman, D. Neculoiu, D. Dragoman, G. Konstantinidis, A. Cismaru, and R. Plana, “Microwave switching of graphene field effect transistor at and far from the Dirac point,” Appl. Phys. Lett.96(10), 103105 (2010).
[CrossRef]

G. Deligeorgis, M. Dragoman, D. Neculoiu, D. Dragoman, G. Konstantinidis, A. Cismaru, and R. Plana, “Microwave propagation in graphene,” Appl. Phys. Lett.95(7), 073107 (2009).
[CrossRef]

Krishnamurthy, S.

Y. Hernandez, V. Nicolosi, M. Lotya, F. M. Blighe, Z. Sun, S. De, I. T. McGovern, B. Holland, M. Byrne, Y. K. Gun’Ko, J. J. Boland, P. Niraj, G. Duesberg, S. Krishnamurthy, R. Goodhue, J. Hutchison, V. Scardaci, A. C. Ferrari, and J. N. Coleman, “High-yield production of graphene by liquid-phase exfoliation of graphite,” Nat. Nanotechnol.3(9), 563–568 (2008).
[CrossRef] [PubMed]

Lane, P. M.

J. J. O’Reilly, P. M. Lane, R. Heidemann, and R. Hofstetter, “Optical generation of very narrowlinewidth millimetrewave signals,” Electron. Lett.28, 2309–2311 (1992).

Lee, H. W.

Lee, J. H.

Y. M. Chang, H. Kim, J. H. Lee, and Y. W. Song, “Multilayered graphene efficiently formed by mechanical exfoliation for nonlinear saturable absorbers in fiber mode-locked lasers,” Appl. Phys. Lett.97(21), 211102 (2010).
[CrossRef]

Li, L. J.

W. D. Tan, C. Y. Su, R. J. Knize, G. Q. Xie, L. J. Li, and D. Y. Tang, “Mode locking of ceramic Nd:yttrium aluminum garnet with graphene as a saturable absorber,” Appl. Phys. Lett.96(3), 031106 (2010).
[CrossRef]

Li, W.

W. Li and J. Yao, “Investigation of photonically assisted microwave frequency multiplication based on external modulation,” IEEE Trans. Microw. Theory Tech.58(11), 3259–3268 (2010).
[CrossRef]

Li, Y.

Lim, C. H. Y. X.

Q. Bao, H. Zhang, B. Wang, Z. Ni, C. H. Y. X. Lim, Y. Wang, D. Y. Tang, and K. P. Loh, “Broadband graphene polarizer,” Nat. Photonics5(7), 411–415 (2011).
[CrossRef]

Lin, Y. M.

F. Xia, T. Mueller, Y. M. Lin, A. Valdes-Garcia, and P. Avouris, “Ultrafast graphene photodetector,” Nat. Nanotechnol.4(12), 839–843 (2009).
[CrossRef] [PubMed]

Liu, C.

Liu, J.

J. Liu, Y. G. Wang, Z. S. Qu, L. H. Zheng, L. B. Su, and J. Xu, “Graphene oxide absorber for 2 μm passive mode-locking Tm: YAlO3 laser,” Laser Phys. Lett.9(1), 15–19 (2012).
[CrossRef]

Liu, M.

M. Liu, X. Yin, E. Ulin-Avila, B. Geng, T. Zentgraf, L. Ju, F. Wang, and X. Zhang, “A graphene-based broadband optical modulator,” Nature474(7349), 64–67 (2011).
[CrossRef] [PubMed]

Loh, K. P.

Q. Bao, H. Zhang, B. Wang, Z. Ni, C. H. Y. X. Lim, Y. Wang, D. Y. Tang, and K. P. Loh, “Broadband graphene polarizer,” Nat. Photonics5(7), 411–415 (2011).
[CrossRef]

H. Zhang, D. Tang, R. J. Knize, L. Zhao, Q. Bao, and K. P. Loh, “Graphene mode locked, wavelength-tunable, dissipative soliton fiber laser,” Appl. Phys. Lett.96(11), 111112 (2010).
[CrossRef]

L. M. Zhao, D. Y. Tang, H. Zhang, X. Wu, Q. Bao, and K. P. Loh, “Dissipative soliton operation of an ytterbium-doped fiber laser mode locked with atomic multilayer graphene,” Opt. Lett.35(21), 3622–3624 (2010).
[CrossRef] [PubMed]

Q. Bao, H. Zhang, Y. Wang, Z. Ni, Y. Yan, Z. X. Shen, K. P. Loh, and D. Y. Tang, “Atomic-layer graphene as a saturable absorber for ultrafast pulsed lasers,” Adv. Funct. Mater.19(19), 3077–3083 (2009).
[CrossRef]

Lotya, M.

M. Lotya, Y. Hernandez, P. J. King, R. J. Smith, V. Nicolosi, L. S. Karlsson, F. M. Blighe, S. De, Z. Wang, I. T. McGovern, G. S. Duesberg, and J. N. Coleman, “Liquid phase production of graphene by exfoliation of graphite in surfactant/water solutions,” J. Am. Chem. Soc.131(10), 3611–3620 (2009).
[CrossRef] [PubMed]

Y. Hernandez, V. Nicolosi, M. Lotya, F. M. Blighe, Z. Sun, S. De, I. T. McGovern, B. Holland, M. Byrne, Y. K. Gun’Ko, J. J. Boland, P. Niraj, G. Duesberg, S. Krishnamurthy, R. Goodhue, J. Hutchison, V. Scardaci, A. C. Ferrari, and J. N. Coleman, “High-yield production of graphene by liquid-phase exfoliation of graphite,” Nat. Nanotechnol.3(9), 563–568 (2008).
[CrossRef] [PubMed]

Martinez, A.

A. Martinez, K. Fuse, and S. Yamashita, “Mechanical exfoliation of graphene for the passive mode-locking of fiber lasers,” Appl. Phys. Lett.99(12), 121107 (2011).
[CrossRef]

Massar, S.

McCann, E.

E. McCann, “Asymmetry gap in the electronic band structure of bilayer graphene,” Phys. Rev. B74(16), 161403 (2006).
[CrossRef]

McGovern, I. T.

M. Lotya, Y. Hernandez, P. J. King, R. J. Smith, V. Nicolosi, L. S. Karlsson, F. M. Blighe, S. De, Z. Wang, I. T. McGovern, G. S. Duesberg, and J. N. Coleman, “Liquid phase production of graphene by exfoliation of graphite in surfactant/water solutions,” J. Am. Chem. Soc.131(10), 3611–3620 (2009).
[CrossRef] [PubMed]

Y. Hernandez, V. Nicolosi, M. Lotya, F. M. Blighe, Z. Sun, S. De, I. T. McGovern, B. Holland, M. Byrne, Y. K. Gun’Ko, J. J. Boland, P. Niraj, G. Duesberg, S. Krishnamurthy, R. Goodhue, J. Hutchison, V. Scardaci, A. C. Ferrari, and J. N. Coleman, “High-yield production of graphene by liquid-phase exfoliation of graphite,” Nat. Nanotechnol.3(9), 563–568 (2008).
[CrossRef] [PubMed]

Mertz, L.

L. Mertz, “Mode-locked maser theory of pulsars,” Astrophys. Space Sci.30(1), 43–55 (1974).
[CrossRef]

Mikhailov, S. A.

E. Hendry, P. J. Hale, J. Moger, A. K. Savchenko, and S. A. Mikhailov, “Coherent nonlinear optical response of graphene,” Phys. Rev. Lett.105(9), 097401 (2010).
[CrossRef] [PubMed]

S. A. Mikhailov and K. Ziegler, “Nonlinear electromagnetic response of graphene: frequency multiplication and the self-consistent-field effects,” J. Phys. Condens. Matter20(38), 384204 (2008).
[CrossRef] [PubMed]

Moger, J.

E. Hendry, P. J. Hale, J. Moger, A. K. Savchenko, and S. A. Mikhailov, “Coherent nonlinear optical response of graphene,” Phys. Rev. Lett.105(9), 097401 (2010).
[CrossRef] [PubMed]

Morozov, S. V.

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V. Grigorieva, S. V. Dubonos, and A. A. Firsov, “Two-dimensional gas of massless Dirac fermions in graphene,” Nature438(7065), 197–200 (2005).
[CrossRef] [PubMed]

Mueller, T.

F. Xia, T. Mueller, Y. M. Lin, A. Valdes-Garcia, and P. Avouris, “Ultrafast graphene photodetector,” Nat. Nanotechnol.4(12), 839–843 (2009).
[CrossRef] [PubMed]

Neculoiu, D.

G. Deligeorgis, M. Dragoman, D. Neculoiu, D. Dragoman, G. Konstantinidis, A. Cismaru, and R. Plana, “Microwave switching of graphene field effect transistor at and far from the Dirac point,” Appl. Phys. Lett.96(10), 103105 (2010).
[CrossRef]

G. Deligeorgis, M. Dragoman, D. Neculoiu, D. Dragoman, G. Konstantinidis, A. Cismaru, and R. Plana, “Microwave propagation in graphene,” Appl. Phys. Lett.95(7), 073107 (2009).
[CrossRef]

Nezich, D.

H. Wang, D. Nezich, J. Kong, and T. Palacios, “Graphene frequency multipliers,” IEEE Electron Device Lett.30(5), 547–549 (2009).
[CrossRef]

Ni, Z.

Q. Bao, H. Zhang, B. Wang, Z. Ni, C. H. Y. X. Lim, Y. Wang, D. Y. Tang, and K. P. Loh, “Broadband graphene polarizer,” Nat. Photonics5(7), 411–415 (2011).
[CrossRef]

Q. Bao, H. Zhang, Y. Wang, Z. Ni, Y. Yan, Z. X. Shen, K. P. Loh, and D. Y. Tang, “Atomic-layer graphene as a saturable absorber for ultrafast pulsed lasers,” Adv. Funct. Mater.19(19), 3077–3083 (2009).
[CrossRef]

Nicolosi, V.

M. Lotya, Y. Hernandez, P. J. King, R. J. Smith, V. Nicolosi, L. S. Karlsson, F. M. Blighe, S. De, Z. Wang, I. T. McGovern, G. S. Duesberg, and J. N. Coleman, “Liquid phase production of graphene by exfoliation of graphite in surfactant/water solutions,” J. Am. Chem. Soc.131(10), 3611–3620 (2009).
[CrossRef] [PubMed]

Y. Hernandez, V. Nicolosi, M. Lotya, F. M. Blighe, Z. Sun, S. De, I. T. McGovern, B. Holland, M. Byrne, Y. K. Gun’Ko, J. J. Boland, P. Niraj, G. Duesberg, S. Krishnamurthy, R. Goodhue, J. Hutchison, V. Scardaci, A. C. Ferrari, and J. N. Coleman, “High-yield production of graphene by liquid-phase exfoliation of graphite,” Nat. Nanotechnol.3(9), 563–568 (2008).
[CrossRef] [PubMed]

Niraj, P.

Y. Hernandez, V. Nicolosi, M. Lotya, F. M. Blighe, Z. Sun, S. De, I. T. McGovern, B. Holland, M. Byrne, Y. K. Gun’Ko, J. J. Boland, P. Niraj, G. Duesberg, S. Krishnamurthy, R. Goodhue, J. Hutchison, V. Scardaci, A. C. Ferrari, and J. N. Coleman, “High-yield production of graphene by liquid-phase exfoliation of graphite,” Nat. Nanotechnol.3(9), 563–568 (2008).
[CrossRef] [PubMed]

Novoselov, K. S.

A. H. Castro Neto, N. M. R. Peres, K. S. Novoselov, and A. K. Geim, “The electronic properties of graphene,” Rev. Mod. Phys.81(1), 109–162 (2009).
[CrossRef]

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V. Grigorieva, S. V. Dubonos, and A. A. Firsov, “Two-dimensional gas of massless Dirac fermions in graphene,” Nature438(7065), 197–200 (2005).
[CrossRef] [PubMed]

O’Reilly, J. J.

J. J. O’Reilly, P. M. Lane, R. Heidemann, and R. Hofstetter, “Optical generation of very narrowlinewidth millimetrewave signals,” Electron. Lett.28, 2309–2311 (1992).

Palacios, T.

H. Wang, D. Nezich, J. Kong, and T. Palacios, “Graphene frequency multipliers,” IEEE Electron Device Lett.30(5), 547–549 (2009).
[CrossRef]

Peres, N. M. R.

A. H. Castro Neto, N. M. R. Peres, K. S. Novoselov, and A. K. Geim, “The electronic properties of graphene,” Rev. Mod. Phys.81(1), 109–162 (2009).
[CrossRef]

Plana, R.

G. Deligeorgis, M. Dragoman, D. Neculoiu, D. Dragoman, G. Konstantinidis, A. Cismaru, and R. Plana, “Microwave switching of graphene field effect transistor at and far from the Dirac point,” Appl. Phys. Lett.96(10), 103105 (2010).
[CrossRef]

G. Deligeorgis, M. Dragoman, D. Neculoiu, D. Dragoman, G. Konstantinidis, A. Cismaru, and R. Plana, “Microwave propagation in graphene,” Appl. Phys. Lett.95(7), 073107 (2009).
[CrossRef]

Popa, D.

D. Popa, Z. Sun, F. Torrisi, T. Hasan, F. Wang, and A. C. Ferrari, “Sub 200 fs pulse generation from a graphene mode-locked fiber laser,” Appl. Phys. Lett.97(20), 203106 (2010).
[CrossRef]

Qu, Z. S.

J. Liu, Y. G. Wang, Z. S. Qu, L. H. Zheng, L. B. Su, and J. Xu, “Graphene oxide absorber for 2 μm passive mode-locking Tm: YAlO3 laser,” Laser Phys. Lett.9(1), 15–19 (2012).
[CrossRef]

Rotermund, F.

Savchenko, A. K.

E. Hendry, P. J. Hale, J. Moger, A. K. Savchenko, and S. A. Mikhailov, “Coherent nonlinear optical response of graphene,” Phys. Rev. Lett.105(9), 097401 (2010).
[CrossRef] [PubMed]

Scardaci, V.

Y. Hernandez, V. Nicolosi, M. Lotya, F. M. Blighe, Z. Sun, S. De, I. T. McGovern, B. Holland, M. Byrne, Y. K. Gun’Ko, J. J. Boland, P. Niraj, G. Duesberg, S. Krishnamurthy, R. Goodhue, J. Hutchison, V. Scardaci, A. C. Ferrari, and J. N. Coleman, “High-yield production of graphene by liquid-phase exfoliation of graphite,” Nat. Nanotechnol.3(9), 563–568 (2008).
[CrossRef] [PubMed]

Sharapov, S. G.

V. P. Gusynin, S. G. Sharapov, and J. P. Carbotte, “Unusual microwave response of Dirac quasiparticles in graphene,” Phys. Rev. Lett.96(25), 256802 (2006).
[CrossRef] [PubMed]

Shen, Z. X.

Q. Bao, H. Zhang, Y. Wang, Z. Ni, Y. Yan, Z. X. Shen, K. P. Loh, and D. Y. Tang, “Atomic-layer graphene as a saturable absorber for ultrafast pulsed lasers,” Adv. Funct. Mater.19(19), 3077–3083 (2009).
[CrossRef]

Smith, R. J.

M. Lotya, Y. Hernandez, P. J. King, R. J. Smith, V. Nicolosi, L. S. Karlsson, F. M. Blighe, S. De, Z. Wang, I. T. McGovern, G. S. Duesberg, and J. N. Coleman, “Liquid phase production of graphene by exfoliation of graphite in surfactant/water solutions,” J. Am. Chem. Soc.131(10), 3611–3620 (2009).
[CrossRef] [PubMed]

Song, Y. M.

H. Kim, J. Cho, S. Y. Jang, and Y. M. Song, “Deformation-immunized optical deposition of graphene for ultrafast pulsed lasers,” Appl. Phys. Lett.98(2), 021104 (2011).
[CrossRef]

Song, Y. W.

Y. W. Song, S. Y. Jang, W. S. Han, and M. K. Bae, “Graphene mode-lockers for fiber lasers functioned with evanescent field interaction,” Appl. Phys. Lett.96(5), 051122 (2010).
[CrossRef]

Y. M. Chang, H. Kim, J. H. Lee, and Y. W. Song, “Multilayered graphene efficiently formed by mechanical exfoliation for nonlinear saturable absorbers in fiber mode-locked lasers,” Appl. Phys. Lett.97(21), 211102 (2010).
[CrossRef]

Su, C. Y.

W. D. Tan, C. Y. Su, R. J. Knize, G. Q. Xie, L. J. Li, and D. Y. Tang, “Mode locking of ceramic Nd:yttrium aluminum garnet with graphene as a saturable absorber,” Appl. Phys. Lett.96(3), 031106 (2010).
[CrossRef]

Su, L. B.

J. Liu, Y. G. Wang, Z. S. Qu, L. H. Zheng, L. B. Su, and J. Xu, “Graphene oxide absorber for 2 μm passive mode-locking Tm: YAlO3 laser,” Laser Phys. Lett.9(1), 15–19 (2012).
[CrossRef]

Sun, Z.

D. Popa, Z. Sun, F. Torrisi, T. Hasan, F. Wang, and A. C. Ferrari, “Sub 200 fs pulse generation from a graphene mode-locked fiber laser,” Appl. Phys. Lett.97(20), 203106 (2010).
[CrossRef]

Y. Hernandez, V. Nicolosi, M. Lotya, F. M. Blighe, Z. Sun, S. De, I. T. McGovern, B. Holland, M. Byrne, Y. K. Gun’Ko, J. J. Boland, P. Niraj, G. Duesberg, S. Krishnamurthy, R. Goodhue, J. Hutchison, V. Scardaci, A. C. Ferrari, and J. N. Coleman, “High-yield production of graphene by liquid-phase exfoliation of graphite,” Nat. Nanotechnol.3(9), 563–568 (2008).
[CrossRef] [PubMed]

Tan, W. D.

W. D. Tan, C. Y. Su, R. J. Knize, G. Q. Xie, L. J. Li, and D. Y. Tang, “Mode locking of ceramic Nd:yttrium aluminum garnet with graphene as a saturable absorber,” Appl. Phys. Lett.96(3), 031106 (2010).
[CrossRef]

Tang, D.

H. Zhang, D. Tang, R. J. Knize, L. Zhao, Q. Bao, and K. P. Loh, “Graphene mode locked, wavelength-tunable, dissipative soliton fiber laser,” Appl. Phys. Lett.96(11), 111112 (2010).
[CrossRef]

Tang, D. Y.

Q. Bao, H. Zhang, B. Wang, Z. Ni, C. H. Y. X. Lim, Y. Wang, D. Y. Tang, and K. P. Loh, “Broadband graphene polarizer,” Nat. Photonics5(7), 411–415 (2011).
[CrossRef]

W. D. Tan, C. Y. Su, R. J. Knize, G. Q. Xie, L. J. Li, and D. Y. Tang, “Mode locking of ceramic Nd:yttrium aluminum garnet with graphene as a saturable absorber,” Appl. Phys. Lett.96(3), 031106 (2010).
[CrossRef]

L. M. Zhao, D. Y. Tang, H. Zhang, X. Wu, Q. Bao, and K. P. Loh, “Dissipative soliton operation of an ytterbium-doped fiber laser mode locked with atomic multilayer graphene,” Opt. Lett.35(21), 3622–3624 (2010).
[CrossRef] [PubMed]

Q. Bao, H. Zhang, Y. Wang, Z. Ni, Y. Yan, Z. X. Shen, K. P. Loh, and D. Y. Tang, “Atomic-layer graphene as a saturable absorber for ultrafast pulsed lasers,” Adv. Funct. Mater.19(19), 3077–3083 (2009).
[CrossRef]

Torrisi, F.

D. Popa, Z. Sun, F. Torrisi, T. Hasan, F. Wang, and A. C. Ferrari, “Sub 200 fs pulse generation from a graphene mode-locked fiber laser,” Appl. Phys. Lett.97(20), 203106 (2010).
[CrossRef]

Ulin-Avila, E.

M. Liu, X. Yin, E. Ulin-Avila, B. Geng, T. Zentgraf, L. Ju, F. Wang, and X. Zhang, “A graphene-based broadband optical modulator,” Nature474(7349), 64–67 (2011).
[CrossRef] [PubMed]

Valdes-Garcia, A.

F. Xia, T. Mueller, Y. M. Lin, A. Valdes-Garcia, and P. Avouris, “Ultrafast graphene photodetector,” Nat. Nanotechnol.4(12), 839–843 (2009).
[CrossRef] [PubMed]

Virally, S.

Wang, B.

Q. Bao, H. Zhang, B. Wang, Z. Ni, C. H. Y. X. Lim, Y. Wang, D. Y. Tang, and K. P. Loh, “Broadband graphene polarizer,” Nat. Photonics5(7), 411–415 (2011).
[CrossRef]

Wang, F.

M. Liu, X. Yin, E. Ulin-Avila, B. Geng, T. Zentgraf, L. Ju, F. Wang, and X. Zhang, “A graphene-based broadband optical modulator,” Nature474(7349), 64–67 (2011).
[CrossRef] [PubMed]

D. Popa, Z. Sun, F. Torrisi, T. Hasan, F. Wang, and A. C. Ferrari, “Sub 200 fs pulse generation from a graphene mode-locked fiber laser,” Appl. Phys. Lett.97(20), 203106 (2010).
[CrossRef]

Wang, H.

H. Wang, D. Nezich, J. Kong, and T. Palacios, “Graphene frequency multipliers,” IEEE Electron Device Lett.30(5), 547–549 (2009).
[CrossRef]

Wang, Y.

Q. Bao, H. Zhang, B. Wang, Z. Ni, C. H. Y. X. Lim, Y. Wang, D. Y. Tang, and K. P. Loh, “Broadband graphene polarizer,” Nat. Photonics5(7), 411–415 (2011).
[CrossRef]

Q. Bao, H. Zhang, Y. Wang, Z. Ni, Y. Yan, Z. X. Shen, K. P. Loh, and D. Y. Tang, “Atomic-layer graphene as a saturable absorber for ultrafast pulsed lasers,” Adv. Funct. Mater.19(19), 3077–3083 (2009).
[CrossRef]

Wang, Y. G.

J. Liu, Y. G. Wang, Z. S. Qu, L. H. Zheng, L. B. Su, and J. Xu, “Graphene oxide absorber for 2 μm passive mode-locking Tm: YAlO3 laser,” Laser Phys. Lett.9(1), 15–19 (2012).
[CrossRef]

Wang, Z.

M. Lotya, Y. Hernandez, P. J. King, R. J. Smith, V. Nicolosi, L. S. Karlsson, F. M. Blighe, S. De, Z. Wang, I. T. McGovern, G. S. Duesberg, and J. N. Coleman, “Liquid phase production of graphene by exfoliation of graphite in surfactant/water solutions,” J. Am. Chem. Soc.131(10), 3611–3620 (2009).
[CrossRef] [PubMed]

Wen, H.

L. Chen, H. Wen, and S. Wen, “A radio-over-fiber system with a novel scheme for millimeter-wave generation and wavelength reuse for up-link connection,” IEEE Photon. Technol. Lett.18(19), 2056–2058 (2006).
[CrossRef]

Wen, S.

Y. Li, Z. Zheng, L. Chen, S. Wen, and D. Fan, “Polarization-insensitive wavelength-division-multiplexing optical millimeter wave generation based on copolarized pump four wave mixing in a semiconductor optical amplifier,” Appl. Opt.48(16), 3008–3013 (2009).
[CrossRef] [PubMed]

L. Chen, H. Wen, and S. Wen, “A radio-over-fiber system with a novel scheme for millimeter-wave generation and wavelength reuse for up-link connection,” IEEE Photon. Technol. Lett.18(19), 2056–2058 (2006).
[CrossRef]

Wright, A. R.

A. R. Wright, X. G. Xu, J. C. Cao, and C. Zhang, “Strong nonlinear optical response of graphene in the terahertz regime,” Appl. Phys. Lett.95(7), 072101 (2009).
[CrossRef]

A. R. Wright, J. C. Cao, and C. Zhang, “Enhanced optical conductivity of bilayer graphene nanoribbons in the terahertz regime,” Phys. Rev. Lett.103(20), 207401 (2009).
[CrossRef] [PubMed]

Wu, X.

Xia, F.

F. Xia, T. Mueller, Y. M. Lin, A. Valdes-Garcia, and P. Avouris, “Ultrafast graphene photodetector,” Nat. Nanotechnol.4(12), 839–843 (2009).
[CrossRef] [PubMed]

Xie, G. Q.

W. D. Tan, C. Y. Su, R. J. Knize, G. Q. Xie, L. J. Li, and D. Y. Tang, “Mode locking of ceramic Nd:yttrium aluminum garnet with graphene as a saturable absorber,” Appl. Phys. Lett.96(3), 031106 (2010).
[CrossRef]

Xu, J.

J. Liu, Y. G. Wang, Z. S. Qu, L. H. Zheng, L. B. Su, and J. Xu, “Graphene oxide absorber for 2 μm passive mode-locking Tm: YAlO3 laser,” Laser Phys. Lett.9(1), 15–19 (2012).
[CrossRef]

Xu, X. G.

A. R. Wright, X. G. Xu, J. C. Cao, and C. Zhang, “Strong nonlinear optical response of graphene in the terahertz regime,” Appl. Phys. Lett.95(7), 072101 (2009).
[CrossRef]

Yamashita, S.

A. Martinez, K. Fuse, and S. Yamashita, “Mechanical exfoliation of graphene for the passive mode-locking of fiber lasers,” Appl. Phys. Lett.99(12), 121107 (2011).
[CrossRef]

Yan, Y.

Q. Bao, H. Zhang, Y. Wang, Z. Ni, Y. Yan, Z. X. Shen, K. P. Loh, and D. Y. Tang, “Atomic-layer graphene as a saturable absorber for ultrafast pulsed lasers,” Adv. Funct. Mater.19(19), 3077–3083 (2009).
[CrossRef]

Yao, J.

W. Li and J. Yao, “Investigation of photonically assisted microwave frequency multiplication based on external modulation,” IEEE Trans. Microw. Theory Tech.58(11), 3259–3268 (2010).
[CrossRef]

Yeom, D.-I.

Yin, X.

M. Liu, X. Yin, E. Ulin-Avila, B. Geng, T. Zentgraf, L. Ju, F. Wang, and X. Zhang, “A graphene-based broadband optical modulator,” Nature474(7349), 64–67 (2011).
[CrossRef] [PubMed]

Yu, J.

Zentgraf, T.

M. Liu, X. Yin, E. Ulin-Avila, B. Geng, T. Zentgraf, L. Ju, F. Wang, and X. Zhang, “A graphene-based broadband optical modulator,” Nature474(7349), 64–67 (2011).
[CrossRef] [PubMed]

Zhang, C.

A. R. Wright, J. C. Cao, and C. Zhang, “Enhanced optical conductivity of bilayer graphene nanoribbons in the terahertz regime,” Phys. Rev. Lett.103(20), 207401 (2009).
[CrossRef] [PubMed]

A. R. Wright, X. G. Xu, J. C. Cao, and C. Zhang, “Strong nonlinear optical response of graphene in the terahertz regime,” Appl. Phys. Lett.95(7), 072101 (2009).
[CrossRef]

Zhang, H.

H. Zhang, S. Virally, Q. Bao, L. Kian Ping, S. Massar, N. Godbout, and P. Kockaert, “Z-scan measurement of the nonlinear refractive index of graphene,” Opt. Lett.37(11), 1856–1858 (2012).
[CrossRef] [PubMed]

Q. Bao, H. Zhang, B. Wang, Z. Ni, C. H. Y. X. Lim, Y. Wang, D. Y. Tang, and K. P. Loh, “Broadband graphene polarizer,” Nat. Photonics5(7), 411–415 (2011).
[CrossRef]

H. Zhang, D. Tang, R. J. Knize, L. Zhao, Q. Bao, and K. P. Loh, “Graphene mode locked, wavelength-tunable, dissipative soliton fiber laser,” Appl. Phys. Lett.96(11), 111112 (2010).
[CrossRef]

L. M. Zhao, D. Y. Tang, H. Zhang, X. Wu, Q. Bao, and K. P. Loh, “Dissipative soliton operation of an ytterbium-doped fiber laser mode locked with atomic multilayer graphene,” Opt. Lett.35(21), 3622–3624 (2010).
[CrossRef] [PubMed]

Q. Bao, H. Zhang, Y. Wang, Z. Ni, Y. Yan, Z. X. Shen, K. P. Loh, and D. Y. Tang, “Atomic-layer graphene as a saturable absorber for ultrafast pulsed lasers,” Adv. Funct. Mater.19(19), 3077–3083 (2009).
[CrossRef]

Zhang, X.

M. Liu, X. Yin, E. Ulin-Avila, B. Geng, T. Zentgraf, L. Ju, F. Wang, and X. Zhang, “A graphene-based broadband optical modulator,” Nature474(7349), 64–67 (2011).
[CrossRef] [PubMed]

Zhao, L.

H. Zhang, D. Tang, R. J. Knize, L. Zhao, Q. Bao, and K. P. Loh, “Graphene mode locked, wavelength-tunable, dissipative soliton fiber laser,” Appl. Phys. Lett.96(11), 111112 (2010).
[CrossRef]

Zhao, L. M.

Zheng, L. H.

J. Liu, Y. G. Wang, Z. S. Qu, L. H. Zheng, L. B. Su, and J. Xu, “Graphene oxide absorber for 2 μm passive mode-locking Tm: YAlO3 laser,” Laser Phys. Lett.9(1), 15–19 (2012).
[CrossRef]

Zheng, Z.

Ziegler, K.

S. A. Mikhailov and K. Ziegler, “Nonlinear electromagnetic response of graphene: frequency multiplication and the self-consistent-field effects,” J. Phys. Condens. Matter20(38), 384204 (2008).
[CrossRef] [PubMed]

Zitter, R. N.

R. N. Zitter, “Saturated optical absorption through band filling in semiconductors,” Appl. Phys. Lett.14(2), 73–74 (1969).
[CrossRef]

Adv. Funct. Mater. (1)

Q. Bao, H. Zhang, Y. Wang, Z. Ni, Y. Yan, Z. X. Shen, K. P. Loh, and D. Y. Tang, “Atomic-layer graphene as a saturable absorber for ultrafast pulsed lasers,” Adv. Funct. Mater.19(19), 3077–3083 (2009).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. Lett. (11)

R. N. Zitter, “Saturated optical absorption through band filling in semiconductors,” Appl. Phys. Lett.14(2), 73–74 (1969).
[CrossRef]

W. D. Tan, C. Y. Su, R. J. Knize, G. Q. Xie, L. J. Li, and D. Y. Tang, “Mode locking of ceramic Nd:yttrium aluminum garnet with graphene as a saturable absorber,” Appl. Phys. Lett.96(3), 031106 (2010).
[CrossRef]

Y. M. Chang, H. Kim, J. H. Lee, and Y. W. Song, “Multilayered graphene efficiently formed by mechanical exfoliation for nonlinear saturable absorbers in fiber mode-locked lasers,” Appl. Phys. Lett.97(21), 211102 (2010).
[CrossRef]

A. Martinez, K. Fuse, and S. Yamashita, “Mechanical exfoliation of graphene for the passive mode-locking of fiber lasers,” Appl. Phys. Lett.99(12), 121107 (2011).
[CrossRef]

Y. W. Song, S. Y. Jang, W. S. Han, and M. K. Bae, “Graphene mode-lockers for fiber lasers functioned with evanescent field interaction,” Appl. Phys. Lett.96(5), 051122 (2010).
[CrossRef]

H. Kim, J. Cho, S. Y. Jang, and Y. M. Song, “Deformation-immunized optical deposition of graphene for ultrafast pulsed lasers,” Appl. Phys. Lett.98(2), 021104 (2011).
[CrossRef]

D. Popa, Z. Sun, F. Torrisi, T. Hasan, F. Wang, and A. C. Ferrari, “Sub 200 fs pulse generation from a graphene mode-locked fiber laser,” Appl. Phys. Lett.97(20), 203106 (2010).
[CrossRef]

G. Deligeorgis, M. Dragoman, D. Neculoiu, D. Dragoman, G. Konstantinidis, A. Cismaru, and R. Plana, “Microwave propagation in graphene,” Appl. Phys. Lett.95(7), 073107 (2009).
[CrossRef]

G. Deligeorgis, M. Dragoman, D. Neculoiu, D. Dragoman, G. Konstantinidis, A. Cismaru, and R. Plana, “Microwave switching of graphene field effect transistor at and far from the Dirac point,” Appl. Phys. Lett.96(10), 103105 (2010).
[CrossRef]

H. Zhang, D. Tang, R. J. Knize, L. Zhao, Q. Bao, and K. P. Loh, “Graphene mode locked, wavelength-tunable, dissipative soliton fiber laser,” Appl. Phys. Lett.96(11), 111112 (2010).
[CrossRef]

A. R. Wright, X. G. Xu, J. C. Cao, and C. Zhang, “Strong nonlinear optical response of graphene in the terahertz regime,” Appl. Phys. Lett.95(7), 072101 (2009).
[CrossRef]

Astrophys. Space Sci. (1)

L. Mertz, “Mode-locked maser theory of pulsars,” Astrophys. Space Sci.30(1), 43–55 (1974).
[CrossRef]

Electron. Lett. (1)

J. J. O’Reilly, P. M. Lane, R. Heidemann, and R. Hofstetter, “Optical generation of very narrowlinewidth millimetrewave signals,” Electron. Lett.28, 2309–2311 (1992).

IEEE Electron Device Lett. (1)

H. Wang, D. Nezich, J. Kong, and T. Palacios, “Graphene frequency multipliers,” IEEE Electron Device Lett.30(5), 547–549 (2009).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

L. Chen, H. Wen, and S. Wen, “A radio-over-fiber system with a novel scheme for millimeter-wave generation and wavelength reuse for up-link connection,” IEEE Photon. Technol. Lett.18(19), 2056–2058 (2006).
[CrossRef]

IEEE Trans. Microw. Theory Tech. (1)

W. Li and J. Yao, “Investigation of photonically assisted microwave frequency multiplication based on external modulation,” IEEE Trans. Microw. Theory Tech.58(11), 3259–3268 (2010).
[CrossRef]

J. Am. Chem. Soc. (1)

M. Lotya, Y. Hernandez, P. J. King, R. J. Smith, V. Nicolosi, L. S. Karlsson, F. M. Blighe, S. De, Z. Wang, I. T. McGovern, G. S. Duesberg, and J. N. Coleman, “Liquid phase production of graphene by exfoliation of graphite in surfactant/water solutions,” J. Am. Chem. Soc.131(10), 3611–3620 (2009).
[CrossRef] [PubMed]

J. Lightwave Technol. (1)

J. Phys. Condens. Matter (1)

S. A. Mikhailov and K. Ziegler, “Nonlinear electromagnetic response of graphene: frequency multiplication and the self-consistent-field effects,” J. Phys. Condens. Matter20(38), 384204 (2008).
[CrossRef] [PubMed]

Laser Phys. Lett. (1)

J. Liu, Y. G. Wang, Z. S. Qu, L. H. Zheng, L. B. Su, and J. Xu, “Graphene oxide absorber for 2 μm passive mode-locking Tm: YAlO3 laser,” Laser Phys. Lett.9(1), 15–19 (2012).
[CrossRef]

Nat. Nanotechnol. (2)

Y. Hernandez, V. Nicolosi, M. Lotya, F. M. Blighe, Z. Sun, S. De, I. T. McGovern, B. Holland, M. Byrne, Y. K. Gun’Ko, J. J. Boland, P. Niraj, G. Duesberg, S. Krishnamurthy, R. Goodhue, J. Hutchison, V. Scardaci, A. C. Ferrari, and J. N. Coleman, “High-yield production of graphene by liquid-phase exfoliation of graphite,” Nat. Nanotechnol.3(9), 563–568 (2008).
[CrossRef] [PubMed]

F. Xia, T. Mueller, Y. M. Lin, A. Valdes-Garcia, and P. Avouris, “Ultrafast graphene photodetector,” Nat. Nanotechnol.4(12), 839–843 (2009).
[CrossRef] [PubMed]

Nat. Photonics (1)

Q. Bao, H. Zhang, B. Wang, Z. Ni, C. H. Y. X. Lim, Y. Wang, D. Y. Tang, and K. P. Loh, “Broadband graphene polarizer,” Nat. Photonics5(7), 411–415 (2011).
[CrossRef]

Nature (2)

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V. Grigorieva, S. V. Dubonos, and A. A. Firsov, “Two-dimensional gas of massless Dirac fermions in graphene,” Nature438(7065), 197–200 (2005).
[CrossRef] [PubMed]

M. Liu, X. Yin, E. Ulin-Avila, B. Geng, T. Zentgraf, L. Ju, F. Wang, and X. Zhang, “A graphene-based broadband optical modulator,” Nature474(7349), 64–67 (2011).
[CrossRef] [PubMed]

Opt. Lett. (3)

Phys. Rev. B (1)

E. McCann, “Asymmetry gap in the electronic band structure of bilayer graphene,” Phys. Rev. B74(16), 161403 (2006).
[CrossRef]

Phys. Rev. Lett. (3)

A. R. Wright, J. C. Cao, and C. Zhang, “Enhanced optical conductivity of bilayer graphene nanoribbons in the terahertz regime,” Phys. Rev. Lett.103(20), 207401 (2009).
[CrossRef] [PubMed]

E. Hendry, P. J. Hale, J. Moger, A. K. Savchenko, and S. A. Mikhailov, “Coherent nonlinear optical response of graphene,” Phys. Rev. Lett.105(9), 097401 (2010).
[CrossRef] [PubMed]

V. P. Gusynin, S. G. Sharapov, and J. P. Carbotte, “Unusual microwave response of Dirac quasiparticles in graphene,” Phys. Rev. Lett.96(25), 256802 (2006).
[CrossRef] [PubMed]

Rev. Mod. Phys. (1)

A. H. Castro Neto, N. M. R. Peres, K. S. Novoselov, and A. K. Geim, “The electronic properties of graphene,” Rev. Mod. Phys.81(1), 109–162 (2009).
[CrossRef]

Other (1)

E. D. Obraztsova, M. G. Rybin, A. V. Tausenev, V. A. Shotniev, V. R. Sorochenko, P. S. Rusakov, and I. I. Kondrashov, “Graphene for laser applications,” presented at the Graphene 2012 International Conference, Brussels, Belgium, 10–13 Apr. 2012.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1

(a) The graphene sample on quartz plate for microwave and optical saturable absorption measurement. (a) Raman spectra of the graphene sample. (b) The SEM image of the graphene sample.

Fig. 2
Fig. 2

Experimental setup for 100 GHz microwave generation and microwave saturable absorption characterization system. ECL: external cavity laser, LN-MZM: LiNbO3 Mach–Zehnder modulator. IL: 50/100 GHz optical interleaver. EDFA: erbium-doped fiber amplifier. ATT: optical attenuator. PD: photodiode. EA: electrical amplifier. Sample: graphene. The resolution for all optical spectra is 0.01 nm.

Fig. 3
Fig. 3

The minimum and maximum power curves of 96~100 GHz microwave sources, with respect to different time.

Fig. 4
Fig. 4

Power dependent microwave saturable absorption in graphene at different frequencies. Circles: experimental results; solid curve: fitting results.

Fig. 5
Fig. 5

Relations between the inferred microwave frequency and (a) saturation intensity, (b) modulation depth.

Fig. 6
Fig. 6

(a) Schematic of the Z-scan setup. EDFA: Erbium doped fiber amplifier; BS: beam splitter; D1 and D2: power meters. (b) A Z-scan curve at 1550 nm. (c) The corresponding saturable absorption curve at 1550 nm. (d) Wavelength dependent saturable absorption curve. (e) Wavelength dependent saturable intensity curve.

Fig. 7
Fig. 7

(a) Schematic experimental setup for measuring nonlinear power dependent absorption of graphene samples. (b) Power-dependent nonlinear absorption properties at 1053 nm.

Fig. 8
Fig. 8

Schematic of microwave saturable absorption in graphene under different incident frequencies.

Fig. 9
Fig. 9

(a) The setup for detecting the generated microwave signal. (b) The spectrum of IF signal. ESA: electrical spectrum analyzer.

Fig. 10
Fig. 10

(a) Typical laser optical spectrum. (b) Relation between the laser beam waist and the relative position with respect to the focusing objective. (c) Beam intensity profile near the focus point. (d) Relation between laser beam intensity and the relative position of the focusing objective for an optical input power of about 3 mW.

Fig. 11
Fig. 11

(a) The optical spectrum of 1053 nm laser. (b) The image of the focal spot by CCD.

Fig. 12
Fig. 12

(a) Schematic of the experimental setup. (b) soliton spectra. (c) Oscilloscope trace of the soliton. (d) An autocorrelation trace of the laser emission.

Tables (1)

Tables Icon

Table 1 Saturable absorption properties of graphene

Equations (20)

Equations on this page are rendered with MathJax. Learn more.

α(I)= α s 1+I/I s + α ns
T(I)=1( α s 1+I/I s + α ns )
E out1 (t)= E 0 (t)cos(2π f 0 t) 10 α/20 γexp[ jπ V RF V π cos( 2π2 f RF t+θ ) ]+                  E 0 (t)cos(2π f 0 t) 10 α/20 (1γ)exp[ jπ V RF V π cos( 2π2 f RF t )+jπ V bias V π ]
E out1 = E 0 2 { cos[ 2π f 0 t+βcos(4π f RF t+θ) ]+cos[ 2π f 0 t+βcos(4π f RF t)+φ) ] }
E out1 = E 0 [ cos(2π f 0 t) J 0 (β)+2cos(2π f 0 t) n=1 (1) n J 2n (β)cos(8nπ f RF t) ]
E out2 (t) E 0 J 2 (β)[cos(2π f 0 t+8π f RF t)+cos(2π f 0 t8π f RF t)]
I microwave =μ | E out2 (t) | 2 μ E 0 2 J 2 2 (β)cos[ (2π(8 f RF t) ]
f microwave = f IF +2 f LO
α( P )= α s 1+P/ P s = α s exp(P/ P s )
T( P )=1α α ns =1 α s exp(P/ P s ) α ns
dI dζ = α 0 1+I/ I S I β 0 I 0 2 σΔNI
dI dζ = α 0 1+I/ I S I
I(z,0,r,t)= I 0 [ w 0 w(z) ] 2 exp[ 2 r 2 w (z) 2 ]exp[ t 2 τ 0 2 ]
I(ς=0) I(ς=L) dI I = ς=0 ς=L α 0 1+I/ I s dς
ln[ I(ς=L) I(ς=0) ]= α 0 L 1+I/ I s
T real =exp( α 0 L 1+I/ I s )1 α 0 L 1+I/ I s
T= T real T real (I=0) =( 1 α 0 L 1+I/ I s ) 1 1 α 0 L
I(z)= I 0 1+ z 2 / z 0 2
T(z)=[ 1 α 0 L(1+ z 2 / z 0 2 ) 1+ z 2 / z 0 2 + I 0 / I s ] 1 1 α 0 L
T(z)={ 1 α 0 L I s [ z 0 2 + (z z c ) 2 ] I s [ z 0 2 + (z z c ) 2 ]+ I 0 z 0 2 } 1 1 α 0 L

Metrics