Abstract

Laser surface texturing based on ablation has been widely used, but hardly any reports can be found on non-ablative laser surface texturing. Silicon is highly transparent to the infrared wavelength of fiber laser (λ = 1090 nm) and thus regarded as an unsuitable tool for the purpose of surface texturing. However, we succeeded in using a continuous wave fiber laser to produce regular arrays of sub-micron bumps on silicon surface. The approach is shown to be based on laser-induced oxidation of silicon.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T.-H. Her, R. J. Finlay, C. Wu, S. Deliwala, and E. Mazur, “Microstructuring of silicon with femtosecond laser pulses,” Appl. Phys. Lett.73(12), 1673–1675 (1998).
    [CrossRef]
  2. V. Zorba, I. Alexandrou, I. Zergioti, A. Manousaki, C. Ducati, A. Neumeister, C. Fotakis, and G. A. J. Amaratunga, “Laser microstructuring of Si surfaces for low-threshold field-electron emission,” Thin Solid Films453–454, 492–495 (2004).
    [CrossRef]
  3. V. Zorba, P. Tzanetakis, C. Fotakis, E. Spanakis, E. Stratakis, D. G. Papazoglou, and I. Zergioti, “Silicon electron emitters fabricated by ultraviolet laser pulses,” Appl. Phys. Lett.88(8), 081103 (2006).
    [CrossRef]
  4. P. Simon and J. Ihlemann, “Ablation of submicron structures on metals and semiconductors by femtosecond UV-laser pulses,” Appl. Surf. Sci.109–110, 25–29 (1997).
    [CrossRef]
  5. B. Borchers, J. Bekesi, P. Simon, and J. Ihlemann, “Submicron surface patterning by laser ablation with short UV pulses using a proximity phase mask setup,” J. Appl. Phys.107(6), 063106 (2010).
    [CrossRef]
  6. J. C. Zolper, S. Narayanan, S. R. Wenham, and M. A. Green, “16.7% efficient, laser textured, buried contact polycrystalline silicon solar cell,” Appl. Phys. Lett.55(22), 2363–2365 (1989).
    [CrossRef]
  7. M. Abbott and J. Cotter, “Optical and electrical properties of laser texturing for high-efficiency solar cells,” Prog. Photovolt. Res. Appl.14(3), 225–235 (2006).
    [CrossRef]
  8. B. K. Nayak, M. C. Gupta, and K. W. Kolasinski,“Spontaneous formation of nanospiked microstructures in germanium by femtosecond laser irradiation,” Nanotechnology18(19), 195302 (2007).
    [CrossRef]
  9. B. K. Nayak, M. C. Gupta, and K. W. Kolasinski, “Formation of nano-textured conical microstructures in titanium metal surface by femtosecond laser irradiation,” Appl. Phys. A-Mater.90, 399–402 (2008).
  10. Z. L. Li, T. Liu, C. C. Khin, A. C. Tan, L. E. Khoong, H. Y. Zheng, and W. Zhou, “Direct patterning in sub-surface of stainless steel using laser pulses,” Opt. Express18(15), 15990–15997 (2010).
    [CrossRef] [PubMed]
  11. B. K. Nayak and M. C. Gupta, “Femtosecond-laser-induced-crystallization and simultaneous formation of light trapping microstructures in thin a-Si:H films,” Appl. Phys. A-Mater.89, 663–666 (2007).
  12. H. Y. Zheng, H. X. Qian, and W. Zhou, “Analyses of surface coloration on TiO2 film irradiated with excimer laser,” Appl. Surf. Sci.254(7), 2174–2178 (2008).
    [CrossRef]
  13. X. C. Wang, H. Y. Zheng, C. W. Tan, F. Wang, H. Y. Yu, and K. L. Pey, “Fabrication of silicon nanobump arrays by near-field enhanced laser irradiation,” Appl. Phys. Lett.96(8), 084101–084103 (2010).
    [CrossRef]
  14. G. Wysocki, R. Denk, K. Piglmayer, N. Arnold, and D. Bauerle, “Single-step fabrication of silicon-cone arrays,” Appl. Phys. Lett.82(5), 692–693 (2003).
    [CrossRef]
  15. A. Soni, V. M. Sundaram, and S.-B. Wen, “The generation of nano-patterns on a pure silicon wafer in air and argon with sub-diffraction limit nanosecond laser pulses,” J. Phys. D Appl. Phys.43(14), 145301 (2010).
    [CrossRef]
  16. S.-B. Wen, R. Greif, and R. E. Russo, “Background gas effects on the generation of nanopatterns on a pure silicon wafer with multiple femtosecond near field laser ablation,” Appl. Phys. Lett.91(25), 251113 (2007).
    [CrossRef]
  17. D. Bäuerle, Laser Processing and Chemistry (Springer, 2000).

2010 (4)

B. Borchers, J. Bekesi, P. Simon, and J. Ihlemann, “Submicron surface patterning by laser ablation with short UV pulses using a proximity phase mask setup,” J. Appl. Phys.107(6), 063106 (2010).
[CrossRef]

X. C. Wang, H. Y. Zheng, C. W. Tan, F. Wang, H. Y. Yu, and K. L. Pey, “Fabrication of silicon nanobump arrays by near-field enhanced laser irradiation,” Appl. Phys. Lett.96(8), 084101–084103 (2010).
[CrossRef]

A. Soni, V. M. Sundaram, and S.-B. Wen, “The generation of nano-patterns on a pure silicon wafer in air and argon with sub-diffraction limit nanosecond laser pulses,” J. Phys. D Appl. Phys.43(14), 145301 (2010).
[CrossRef]

Z. L. Li, T. Liu, C. C. Khin, A. C. Tan, L. E. Khoong, H. Y. Zheng, and W. Zhou, “Direct patterning in sub-surface of stainless steel using laser pulses,” Opt. Express18(15), 15990–15997 (2010).
[CrossRef] [PubMed]

2008 (2)

H. Y. Zheng, H. X. Qian, and W. Zhou, “Analyses of surface coloration on TiO2 film irradiated with excimer laser,” Appl. Surf. Sci.254(7), 2174–2178 (2008).
[CrossRef]

B. K. Nayak, M. C. Gupta, and K. W. Kolasinski, “Formation of nano-textured conical microstructures in titanium metal surface by femtosecond laser irradiation,” Appl. Phys. A-Mater.90, 399–402 (2008).

2007 (3)

B. K. Nayak and M. C. Gupta, “Femtosecond-laser-induced-crystallization and simultaneous formation of light trapping microstructures in thin a-Si:H films,” Appl. Phys. A-Mater.89, 663–666 (2007).

S.-B. Wen, R. Greif, and R. E. Russo, “Background gas effects on the generation of nanopatterns on a pure silicon wafer with multiple femtosecond near field laser ablation,” Appl. Phys. Lett.91(25), 251113 (2007).
[CrossRef]

B. K. Nayak, M. C. Gupta, and K. W. Kolasinski,“Spontaneous formation of nanospiked microstructures in germanium by femtosecond laser irradiation,” Nanotechnology18(19), 195302 (2007).
[CrossRef]

2006 (2)

M. Abbott and J. Cotter, “Optical and electrical properties of laser texturing for high-efficiency solar cells,” Prog. Photovolt. Res. Appl.14(3), 225–235 (2006).
[CrossRef]

V. Zorba, P. Tzanetakis, C. Fotakis, E. Spanakis, E. Stratakis, D. G. Papazoglou, and I. Zergioti, “Silicon electron emitters fabricated by ultraviolet laser pulses,” Appl. Phys. Lett.88(8), 081103 (2006).
[CrossRef]

2004 (1)

V. Zorba, I. Alexandrou, I. Zergioti, A. Manousaki, C. Ducati, A. Neumeister, C. Fotakis, and G. A. J. Amaratunga, “Laser microstructuring of Si surfaces for low-threshold field-electron emission,” Thin Solid Films453–454, 492–495 (2004).
[CrossRef]

2003 (1)

G. Wysocki, R. Denk, K. Piglmayer, N. Arnold, and D. Bauerle, “Single-step fabrication of silicon-cone arrays,” Appl. Phys. Lett.82(5), 692–693 (2003).
[CrossRef]

1998 (1)

T.-H. Her, R. J. Finlay, C. Wu, S. Deliwala, and E. Mazur, “Microstructuring of silicon with femtosecond laser pulses,” Appl. Phys. Lett.73(12), 1673–1675 (1998).
[CrossRef]

1997 (1)

P. Simon and J. Ihlemann, “Ablation of submicron structures on metals and semiconductors by femtosecond UV-laser pulses,” Appl. Surf. Sci.109–110, 25–29 (1997).
[CrossRef]

1989 (1)

J. C. Zolper, S. Narayanan, S. R. Wenham, and M. A. Green, “16.7% efficient, laser textured, buried contact polycrystalline silicon solar cell,” Appl. Phys. Lett.55(22), 2363–2365 (1989).
[CrossRef]

Abbott, M.

M. Abbott and J. Cotter, “Optical and electrical properties of laser texturing for high-efficiency solar cells,” Prog. Photovolt. Res. Appl.14(3), 225–235 (2006).
[CrossRef]

Alexandrou, I.

V. Zorba, I. Alexandrou, I. Zergioti, A. Manousaki, C. Ducati, A. Neumeister, C. Fotakis, and G. A. J. Amaratunga, “Laser microstructuring of Si surfaces for low-threshold field-electron emission,” Thin Solid Films453–454, 492–495 (2004).
[CrossRef]

Amaratunga, G. A. J.

V. Zorba, I. Alexandrou, I. Zergioti, A. Manousaki, C. Ducati, A. Neumeister, C. Fotakis, and G. A. J. Amaratunga, “Laser microstructuring of Si surfaces for low-threshold field-electron emission,” Thin Solid Films453–454, 492–495 (2004).
[CrossRef]

Arnold, N.

G. Wysocki, R. Denk, K. Piglmayer, N. Arnold, and D. Bauerle, “Single-step fabrication of silicon-cone arrays,” Appl. Phys. Lett.82(5), 692–693 (2003).
[CrossRef]

Bauerle, D.

G. Wysocki, R. Denk, K. Piglmayer, N. Arnold, and D. Bauerle, “Single-step fabrication of silicon-cone arrays,” Appl. Phys. Lett.82(5), 692–693 (2003).
[CrossRef]

Bekesi, J.

B. Borchers, J. Bekesi, P. Simon, and J. Ihlemann, “Submicron surface patterning by laser ablation with short UV pulses using a proximity phase mask setup,” J. Appl. Phys.107(6), 063106 (2010).
[CrossRef]

Borchers, B.

B. Borchers, J. Bekesi, P. Simon, and J. Ihlemann, “Submicron surface patterning by laser ablation with short UV pulses using a proximity phase mask setup,” J. Appl. Phys.107(6), 063106 (2010).
[CrossRef]

Cotter, J.

M. Abbott and J. Cotter, “Optical and electrical properties of laser texturing for high-efficiency solar cells,” Prog. Photovolt. Res. Appl.14(3), 225–235 (2006).
[CrossRef]

Deliwala, S.

T.-H. Her, R. J. Finlay, C. Wu, S. Deliwala, and E. Mazur, “Microstructuring of silicon with femtosecond laser pulses,” Appl. Phys. Lett.73(12), 1673–1675 (1998).
[CrossRef]

Denk, R.

G. Wysocki, R. Denk, K. Piglmayer, N. Arnold, and D. Bauerle, “Single-step fabrication of silicon-cone arrays,” Appl. Phys. Lett.82(5), 692–693 (2003).
[CrossRef]

Ducati, C.

V. Zorba, I. Alexandrou, I. Zergioti, A. Manousaki, C. Ducati, A. Neumeister, C. Fotakis, and G. A. J. Amaratunga, “Laser microstructuring of Si surfaces for low-threshold field-electron emission,” Thin Solid Films453–454, 492–495 (2004).
[CrossRef]

Finlay, R. J.

T.-H. Her, R. J. Finlay, C. Wu, S. Deliwala, and E. Mazur, “Microstructuring of silicon with femtosecond laser pulses,” Appl. Phys. Lett.73(12), 1673–1675 (1998).
[CrossRef]

Fotakis, C.

V. Zorba, P. Tzanetakis, C. Fotakis, E. Spanakis, E. Stratakis, D. G. Papazoglou, and I. Zergioti, “Silicon electron emitters fabricated by ultraviolet laser pulses,” Appl. Phys. Lett.88(8), 081103 (2006).
[CrossRef]

V. Zorba, I. Alexandrou, I. Zergioti, A. Manousaki, C. Ducati, A. Neumeister, C. Fotakis, and G. A. J. Amaratunga, “Laser microstructuring of Si surfaces for low-threshold field-electron emission,” Thin Solid Films453–454, 492–495 (2004).
[CrossRef]

Green, M. A.

J. C. Zolper, S. Narayanan, S. R. Wenham, and M. A. Green, “16.7% efficient, laser textured, buried contact polycrystalline silicon solar cell,” Appl. Phys. Lett.55(22), 2363–2365 (1989).
[CrossRef]

Greif, R.

S.-B. Wen, R. Greif, and R. E. Russo, “Background gas effects on the generation of nanopatterns on a pure silicon wafer with multiple femtosecond near field laser ablation,” Appl. Phys. Lett.91(25), 251113 (2007).
[CrossRef]

Gupta, M. C.

B. K. Nayak, M. C. Gupta, and K. W. Kolasinski, “Formation of nano-textured conical microstructures in titanium metal surface by femtosecond laser irradiation,” Appl. Phys. A-Mater.90, 399–402 (2008).

B. K. Nayak and M. C. Gupta, “Femtosecond-laser-induced-crystallization and simultaneous formation of light trapping microstructures in thin a-Si:H films,” Appl. Phys. A-Mater.89, 663–666 (2007).

B. K. Nayak, M. C. Gupta, and K. W. Kolasinski,“Spontaneous formation of nanospiked microstructures in germanium by femtosecond laser irradiation,” Nanotechnology18(19), 195302 (2007).
[CrossRef]

Her, T.-H.

T.-H. Her, R. J. Finlay, C. Wu, S. Deliwala, and E. Mazur, “Microstructuring of silicon with femtosecond laser pulses,” Appl. Phys. Lett.73(12), 1673–1675 (1998).
[CrossRef]

Ihlemann, J.

B. Borchers, J. Bekesi, P. Simon, and J. Ihlemann, “Submicron surface patterning by laser ablation with short UV pulses using a proximity phase mask setup,” J. Appl. Phys.107(6), 063106 (2010).
[CrossRef]

P. Simon and J. Ihlemann, “Ablation of submicron structures on metals and semiconductors by femtosecond UV-laser pulses,” Appl. Surf. Sci.109–110, 25–29 (1997).
[CrossRef]

Khin, C. C.

Khoong, L. E.

Kolasinski, K. W.

B. K. Nayak, M. C. Gupta, and K. W. Kolasinski, “Formation of nano-textured conical microstructures in titanium metal surface by femtosecond laser irradiation,” Appl. Phys. A-Mater.90, 399–402 (2008).

B. K. Nayak, M. C. Gupta, and K. W. Kolasinski,“Spontaneous formation of nanospiked microstructures in germanium by femtosecond laser irradiation,” Nanotechnology18(19), 195302 (2007).
[CrossRef]

Li, Z. L.

Liu, T.

Manousaki, A.

V. Zorba, I. Alexandrou, I. Zergioti, A. Manousaki, C. Ducati, A. Neumeister, C. Fotakis, and G. A. J. Amaratunga, “Laser microstructuring of Si surfaces for low-threshold field-electron emission,” Thin Solid Films453–454, 492–495 (2004).
[CrossRef]

Mazur, E.

T.-H. Her, R. J. Finlay, C. Wu, S. Deliwala, and E. Mazur, “Microstructuring of silicon with femtosecond laser pulses,” Appl. Phys. Lett.73(12), 1673–1675 (1998).
[CrossRef]

Narayanan, S.

J. C. Zolper, S. Narayanan, S. R. Wenham, and M. A. Green, “16.7% efficient, laser textured, buried contact polycrystalline silicon solar cell,” Appl. Phys. Lett.55(22), 2363–2365 (1989).
[CrossRef]

Nayak, B. K.

B. K. Nayak, M. C. Gupta, and K. W. Kolasinski, “Formation of nano-textured conical microstructures in titanium metal surface by femtosecond laser irradiation,” Appl. Phys. A-Mater.90, 399–402 (2008).

B. K. Nayak and M. C. Gupta, “Femtosecond-laser-induced-crystallization and simultaneous formation of light trapping microstructures in thin a-Si:H films,” Appl. Phys. A-Mater.89, 663–666 (2007).

B. K. Nayak, M. C. Gupta, and K. W. Kolasinski,“Spontaneous formation of nanospiked microstructures in germanium by femtosecond laser irradiation,” Nanotechnology18(19), 195302 (2007).
[CrossRef]

Neumeister, A.

V. Zorba, I. Alexandrou, I. Zergioti, A. Manousaki, C. Ducati, A. Neumeister, C. Fotakis, and G. A. J. Amaratunga, “Laser microstructuring of Si surfaces for low-threshold field-electron emission,” Thin Solid Films453–454, 492–495 (2004).
[CrossRef]

Papazoglou, D. G.

V. Zorba, P. Tzanetakis, C. Fotakis, E. Spanakis, E. Stratakis, D. G. Papazoglou, and I. Zergioti, “Silicon electron emitters fabricated by ultraviolet laser pulses,” Appl. Phys. Lett.88(8), 081103 (2006).
[CrossRef]

Pey, K. L.

X. C. Wang, H. Y. Zheng, C. W. Tan, F. Wang, H. Y. Yu, and K. L. Pey, “Fabrication of silicon nanobump arrays by near-field enhanced laser irradiation,” Appl. Phys. Lett.96(8), 084101–084103 (2010).
[CrossRef]

Piglmayer, K.

G. Wysocki, R. Denk, K. Piglmayer, N. Arnold, and D. Bauerle, “Single-step fabrication of silicon-cone arrays,” Appl. Phys. Lett.82(5), 692–693 (2003).
[CrossRef]

Qian, H. X.

H. Y. Zheng, H. X. Qian, and W. Zhou, “Analyses of surface coloration on TiO2 film irradiated with excimer laser,” Appl. Surf. Sci.254(7), 2174–2178 (2008).
[CrossRef]

Russo, R. E.

S.-B. Wen, R. Greif, and R. E. Russo, “Background gas effects on the generation of nanopatterns on a pure silicon wafer with multiple femtosecond near field laser ablation,” Appl. Phys. Lett.91(25), 251113 (2007).
[CrossRef]

Simon, P.

B. Borchers, J. Bekesi, P. Simon, and J. Ihlemann, “Submicron surface patterning by laser ablation with short UV pulses using a proximity phase mask setup,” J. Appl. Phys.107(6), 063106 (2010).
[CrossRef]

P. Simon and J. Ihlemann, “Ablation of submicron structures on metals and semiconductors by femtosecond UV-laser pulses,” Appl. Surf. Sci.109–110, 25–29 (1997).
[CrossRef]

Soni, A.

A. Soni, V. M. Sundaram, and S.-B. Wen, “The generation of nano-patterns on a pure silicon wafer in air and argon with sub-diffraction limit nanosecond laser pulses,” J. Phys. D Appl. Phys.43(14), 145301 (2010).
[CrossRef]

Spanakis, E.

V. Zorba, P. Tzanetakis, C. Fotakis, E. Spanakis, E. Stratakis, D. G. Papazoglou, and I. Zergioti, “Silicon electron emitters fabricated by ultraviolet laser pulses,” Appl. Phys. Lett.88(8), 081103 (2006).
[CrossRef]

Stratakis, E.

V. Zorba, P. Tzanetakis, C. Fotakis, E. Spanakis, E. Stratakis, D. G. Papazoglou, and I. Zergioti, “Silicon electron emitters fabricated by ultraviolet laser pulses,” Appl. Phys. Lett.88(8), 081103 (2006).
[CrossRef]

Sundaram, V. M.

A. Soni, V. M. Sundaram, and S.-B. Wen, “The generation of nano-patterns on a pure silicon wafer in air and argon with sub-diffraction limit nanosecond laser pulses,” J. Phys. D Appl. Phys.43(14), 145301 (2010).
[CrossRef]

Tan, A. C.

Tan, C. W.

X. C. Wang, H. Y. Zheng, C. W. Tan, F. Wang, H. Y. Yu, and K. L. Pey, “Fabrication of silicon nanobump arrays by near-field enhanced laser irradiation,” Appl. Phys. Lett.96(8), 084101–084103 (2010).
[CrossRef]

Tzanetakis, P.

V. Zorba, P. Tzanetakis, C. Fotakis, E. Spanakis, E. Stratakis, D. G. Papazoglou, and I. Zergioti, “Silicon electron emitters fabricated by ultraviolet laser pulses,” Appl. Phys. Lett.88(8), 081103 (2006).
[CrossRef]

Wang, F.

X. C. Wang, H. Y. Zheng, C. W. Tan, F. Wang, H. Y. Yu, and K. L. Pey, “Fabrication of silicon nanobump arrays by near-field enhanced laser irradiation,” Appl. Phys. Lett.96(8), 084101–084103 (2010).
[CrossRef]

Wang, X. C.

X. C. Wang, H. Y. Zheng, C. W. Tan, F. Wang, H. Y. Yu, and K. L. Pey, “Fabrication of silicon nanobump arrays by near-field enhanced laser irradiation,” Appl. Phys. Lett.96(8), 084101–084103 (2010).
[CrossRef]

Wen, S.-B.

A. Soni, V. M. Sundaram, and S.-B. Wen, “The generation of nano-patterns on a pure silicon wafer in air and argon with sub-diffraction limit nanosecond laser pulses,” J. Phys. D Appl. Phys.43(14), 145301 (2010).
[CrossRef]

S.-B. Wen, R. Greif, and R. E. Russo, “Background gas effects on the generation of nanopatterns on a pure silicon wafer with multiple femtosecond near field laser ablation,” Appl. Phys. Lett.91(25), 251113 (2007).
[CrossRef]

Wenham, S. R.

J. C. Zolper, S. Narayanan, S. R. Wenham, and M. A. Green, “16.7% efficient, laser textured, buried contact polycrystalline silicon solar cell,” Appl. Phys. Lett.55(22), 2363–2365 (1989).
[CrossRef]

Wu, C.

T.-H. Her, R. J. Finlay, C. Wu, S. Deliwala, and E. Mazur, “Microstructuring of silicon with femtosecond laser pulses,” Appl. Phys. Lett.73(12), 1673–1675 (1998).
[CrossRef]

Wysocki, G.

G. Wysocki, R. Denk, K. Piglmayer, N. Arnold, and D. Bauerle, “Single-step fabrication of silicon-cone arrays,” Appl. Phys. Lett.82(5), 692–693 (2003).
[CrossRef]

Yu, H. Y.

X. C. Wang, H. Y. Zheng, C. W. Tan, F. Wang, H. Y. Yu, and K. L. Pey, “Fabrication of silicon nanobump arrays by near-field enhanced laser irradiation,” Appl. Phys. Lett.96(8), 084101–084103 (2010).
[CrossRef]

Zergioti, I.

V. Zorba, P. Tzanetakis, C. Fotakis, E. Spanakis, E. Stratakis, D. G. Papazoglou, and I. Zergioti, “Silicon electron emitters fabricated by ultraviolet laser pulses,” Appl. Phys. Lett.88(8), 081103 (2006).
[CrossRef]

V. Zorba, I. Alexandrou, I. Zergioti, A. Manousaki, C. Ducati, A. Neumeister, C. Fotakis, and G. A. J. Amaratunga, “Laser microstructuring of Si surfaces for low-threshold field-electron emission,” Thin Solid Films453–454, 492–495 (2004).
[CrossRef]

Zheng, H. Y.

X. C. Wang, H. Y. Zheng, C. W. Tan, F. Wang, H. Y. Yu, and K. L. Pey, “Fabrication of silicon nanobump arrays by near-field enhanced laser irradiation,” Appl. Phys. Lett.96(8), 084101–084103 (2010).
[CrossRef]

Z. L. Li, T. Liu, C. C. Khin, A. C. Tan, L. E. Khoong, H. Y. Zheng, and W. Zhou, “Direct patterning in sub-surface of stainless steel using laser pulses,” Opt. Express18(15), 15990–15997 (2010).
[CrossRef] [PubMed]

H. Y. Zheng, H. X. Qian, and W. Zhou, “Analyses of surface coloration on TiO2 film irradiated with excimer laser,” Appl. Surf. Sci.254(7), 2174–2178 (2008).
[CrossRef]

Zhou, W.

Z. L. Li, T. Liu, C. C. Khin, A. C. Tan, L. E. Khoong, H. Y. Zheng, and W. Zhou, “Direct patterning in sub-surface of stainless steel using laser pulses,” Opt. Express18(15), 15990–15997 (2010).
[CrossRef] [PubMed]

H. Y. Zheng, H. X. Qian, and W. Zhou, “Analyses of surface coloration on TiO2 film irradiated with excimer laser,” Appl. Surf. Sci.254(7), 2174–2178 (2008).
[CrossRef]

Zolper, J. C.

J. C. Zolper, S. Narayanan, S. R. Wenham, and M. A. Green, “16.7% efficient, laser textured, buried contact polycrystalline silicon solar cell,” Appl. Phys. Lett.55(22), 2363–2365 (1989).
[CrossRef]

Zorba, V.

V. Zorba, P. Tzanetakis, C. Fotakis, E. Spanakis, E. Stratakis, D. G. Papazoglou, and I. Zergioti, “Silicon electron emitters fabricated by ultraviolet laser pulses,” Appl. Phys. Lett.88(8), 081103 (2006).
[CrossRef]

V. Zorba, I. Alexandrou, I. Zergioti, A. Manousaki, C. Ducati, A. Neumeister, C. Fotakis, and G. A. J. Amaratunga, “Laser microstructuring of Si surfaces for low-threshold field-electron emission,” Thin Solid Films453–454, 492–495 (2004).
[CrossRef]

Appl. Phys. A-Mater. (2)

B. K. Nayak, M. C. Gupta, and K. W. Kolasinski, “Formation of nano-textured conical microstructures in titanium metal surface by femtosecond laser irradiation,” Appl. Phys. A-Mater.90, 399–402 (2008).

B. K. Nayak and M. C. Gupta, “Femtosecond-laser-induced-crystallization and simultaneous formation of light trapping microstructures in thin a-Si:H films,” Appl. Phys. A-Mater.89, 663–666 (2007).

Appl. Phys. Lett. (6)

J. C. Zolper, S. Narayanan, S. R. Wenham, and M. A. Green, “16.7% efficient, laser textured, buried contact polycrystalline silicon solar cell,” Appl. Phys. Lett.55(22), 2363–2365 (1989).
[CrossRef]

T.-H. Her, R. J. Finlay, C. Wu, S. Deliwala, and E. Mazur, “Microstructuring of silicon with femtosecond laser pulses,” Appl. Phys. Lett.73(12), 1673–1675 (1998).
[CrossRef]

V. Zorba, P. Tzanetakis, C. Fotakis, E. Spanakis, E. Stratakis, D. G. Papazoglou, and I. Zergioti, “Silicon electron emitters fabricated by ultraviolet laser pulses,” Appl. Phys. Lett.88(8), 081103 (2006).
[CrossRef]

X. C. Wang, H. Y. Zheng, C. W. Tan, F. Wang, H. Y. Yu, and K. L. Pey, “Fabrication of silicon nanobump arrays by near-field enhanced laser irradiation,” Appl. Phys. Lett.96(8), 084101–084103 (2010).
[CrossRef]

G. Wysocki, R. Denk, K. Piglmayer, N. Arnold, and D. Bauerle, “Single-step fabrication of silicon-cone arrays,” Appl. Phys. Lett.82(5), 692–693 (2003).
[CrossRef]

S.-B. Wen, R. Greif, and R. E. Russo, “Background gas effects on the generation of nanopatterns on a pure silicon wafer with multiple femtosecond near field laser ablation,” Appl. Phys. Lett.91(25), 251113 (2007).
[CrossRef]

Appl. Surf. Sci. (2)

P. Simon and J. Ihlemann, “Ablation of submicron structures on metals and semiconductors by femtosecond UV-laser pulses,” Appl. Surf. Sci.109–110, 25–29 (1997).
[CrossRef]

H. Y. Zheng, H. X. Qian, and W. Zhou, “Analyses of surface coloration on TiO2 film irradiated with excimer laser,” Appl. Surf. Sci.254(7), 2174–2178 (2008).
[CrossRef]

J. Appl. Phys. (1)

B. Borchers, J. Bekesi, P. Simon, and J. Ihlemann, “Submicron surface patterning by laser ablation with short UV pulses using a proximity phase mask setup,” J. Appl. Phys.107(6), 063106 (2010).
[CrossRef]

J. Phys. D Appl. Phys. (1)

A. Soni, V. M. Sundaram, and S.-B. Wen, “The generation of nano-patterns on a pure silicon wafer in air and argon with sub-diffraction limit nanosecond laser pulses,” J. Phys. D Appl. Phys.43(14), 145301 (2010).
[CrossRef]

Nanotechnology (1)

B. K. Nayak, M. C. Gupta, and K. W. Kolasinski,“Spontaneous formation of nanospiked microstructures in germanium by femtosecond laser irradiation,” Nanotechnology18(19), 195302 (2007).
[CrossRef]

Opt. Express (1)

Prog. Photovolt. Res. Appl. (1)

M. Abbott and J. Cotter, “Optical and electrical properties of laser texturing for high-efficiency solar cells,” Prog. Photovolt. Res. Appl.14(3), 225–235 (2006).
[CrossRef]

Thin Solid Films (1)

V. Zorba, I. Alexandrou, I. Zergioti, A. Manousaki, C. Ducati, A. Neumeister, C. Fotakis, and G. A. J. Amaratunga, “Laser microstructuring of Si surfaces for low-threshold field-electron emission,” Thin Solid Films453–454, 492–495 (2004).
[CrossRef]

Other (1)

D. Bäuerle, Laser Processing and Chemistry (Springer, 2000).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

(a) Dimension and point scanning pitch of laser irradiated area. (b) Fiber laser irradiation and coaxial nozzle to deliver gas onto the laser spot.

Fig. 2
Fig. 2

Confocal microscope images of the Si surface irradiated using laser power 19 W and dwell time 40 ms (a) in ambient, (b) in Ar (0.5 bar), (c) in O2 (0.25 bar), (d) in O2 (0.5 bar) and (e) in O2 (0.75 bar).

Fig. 3
Fig. 3

Profile of the Si surface irradiated using laser power 19 W and dwell time 40 ms (a) in ambient and Ar, (b) in O2 (0.25 bar), (c) in O2 (0.5 bar) and (d) in O2 (0.75 bar).

Fig. 4
Fig. 4

EDX spectrum of (a) Si surface irradiated in Ar and (b) Si surface irradiated in O2.

Fig. 5
Fig. 5

Schematic diagram of SiO2 growth on Si surface by uniform heating source, showing the changes in thickness (a) before oxidation, and (b) after thermal oxidation.

Fig. 6
Fig. 6

(a) Laser-induced SiO2 bumps by localized Gaussian heating source; (b) microscopic model for the laser-induced surface oxidation, and indicate increasing and decreasing concentrations, respectively.

Metrics