Abstract

Laser surface texturing based on ablation has been widely used, but hardly any reports can be found on non-ablative laser surface texturing. Silicon is highly transparent to the infrared wavelength of fiber laser (λ = 1090 nm) and thus regarded as an unsuitable tool for the purpose of surface texturing. However, we succeeded in using a continuous wave fiber laser to produce regular arrays of sub-micron bumps on silicon surface. The approach is shown to be based on laser-induced oxidation of silicon.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T.-H. Her, R. J. Finlay, C. Wu, S. Deliwala, and E. Mazur, “Microstructuring of silicon with femtosecond laser pulses,” Appl. Phys. Lett.73(12), 1673–1675 (1998).
    [CrossRef]
  2. V. Zorba, I. Alexandrou, I. Zergioti, A. Manousaki, C. Ducati, A. Neumeister, C. Fotakis, and G. A. J. Amaratunga, “Laser microstructuring of Si surfaces for low-threshold field-electron emission,” Thin Solid Films453–454, 492–495 (2004).
    [CrossRef]
  3. V. Zorba, P. Tzanetakis, C. Fotakis, E. Spanakis, E. Stratakis, D. G. Papazoglou, and I. Zergioti, “Silicon electron emitters fabricated by ultraviolet laser pulses,” Appl. Phys. Lett.88(8), 081103 (2006).
    [CrossRef]
  4. P. Simon and J. Ihlemann, “Ablation of submicron structures on metals and semiconductors by femtosecond UV-laser pulses,” Appl. Surf. Sci.109–110, 25–29 (1997).
    [CrossRef]
  5. B. Borchers, J. Bekesi, P. Simon, and J. Ihlemann, “Submicron surface patterning by laser ablation with short UV pulses using a proximity phase mask setup,” J. Appl. Phys.107(6), 063106 (2010).
    [CrossRef]
  6. J. C. Zolper, S. Narayanan, S. R. Wenham, and M. A. Green, “16.7% efficient, laser textured, buried contact polycrystalline silicon solar cell,” Appl. Phys. Lett.55(22), 2363–2365 (1989).
    [CrossRef]
  7. M. Abbott and J. Cotter, “Optical and electrical properties of laser texturing for high-efficiency solar cells,” Prog. Photovolt. Res. Appl.14(3), 225–235 (2006).
    [CrossRef]
  8. B. K. Nayak, M. C. Gupta, and K. W. Kolasinski,“Spontaneous formation of nanospiked microstructures in germanium by femtosecond laser irradiation,” Nanotechnology18(19), 195302 (2007).
    [CrossRef]
  9. B. K. Nayak, M. C. Gupta, and K. W. Kolasinski, “Formation of nano-textured conical microstructures in titanium metal surface by femtosecond laser irradiation,” Appl. Phys. A-Mater.90, 399–402 (2008).
  10. Z. L. Li, T. Liu, C. C. Khin, A. C. Tan, L. E. Khoong, H. Y. Zheng, and W. Zhou, “Direct patterning in sub-surface of stainless steel using laser pulses,” Opt. Express18(15), 15990–15997 (2010).
    [CrossRef] [PubMed]
  11. B. K. Nayak and M. C. Gupta, “Femtosecond-laser-induced-crystallization and simultaneous formation of light trapping microstructures in thin a-Si:H films,” Appl. Phys. A-Mater.89, 663–666 (2007).
  12. H. Y. Zheng, H. X. Qian, and W. Zhou, “Analyses of surface coloration on TiO2 film irradiated with excimer laser,” Appl. Surf. Sci.254(7), 2174–2178 (2008).
    [CrossRef]
  13. X. C. Wang, H. Y. Zheng, C. W. Tan, F. Wang, H. Y. Yu, and K. L. Pey, “Fabrication of silicon nanobump arrays by near-field enhanced laser irradiation,” Appl. Phys. Lett.96(8), 084101–084103 (2010).
    [CrossRef]
  14. G. Wysocki, R. Denk, K. Piglmayer, N. Arnold, and D. Bauerle, “Single-step fabrication of silicon-cone arrays,” Appl. Phys. Lett.82(5), 692–693 (2003).
    [CrossRef]
  15. A. Soni, V. M. Sundaram, and S.-B. Wen, “The generation of nano-patterns on a pure silicon wafer in air and argon with sub-diffraction limit nanosecond laser pulses,” J. Phys. D Appl. Phys.43(14), 145301 (2010).
    [CrossRef]
  16. S.-B. Wen, R. Greif, and R. E. Russo, “Background gas effects on the generation of nanopatterns on a pure silicon wafer with multiple femtosecond near field laser ablation,” Appl. Phys. Lett.91(25), 251113 (2007).
    [CrossRef]
  17. D. Bäuerle, Laser Processing and Chemistry (Springer, 2000).

2010 (4)

B. Borchers, J. Bekesi, P. Simon, and J. Ihlemann, “Submicron surface patterning by laser ablation with short UV pulses using a proximity phase mask setup,” J. Appl. Phys.107(6), 063106 (2010).
[CrossRef]

Z. L. Li, T. Liu, C. C. Khin, A. C. Tan, L. E. Khoong, H. Y. Zheng, and W. Zhou, “Direct patterning in sub-surface of stainless steel using laser pulses,” Opt. Express18(15), 15990–15997 (2010).
[CrossRef] [PubMed]

X. C. Wang, H. Y. Zheng, C. W. Tan, F. Wang, H. Y. Yu, and K. L. Pey, “Fabrication of silicon nanobump arrays by near-field enhanced laser irradiation,” Appl. Phys. Lett.96(8), 084101–084103 (2010).
[CrossRef]

A. Soni, V. M. Sundaram, and S.-B. Wen, “The generation of nano-patterns on a pure silicon wafer in air and argon with sub-diffraction limit nanosecond laser pulses,” J. Phys. D Appl. Phys.43(14), 145301 (2010).
[CrossRef]

2008 (2)

B. K. Nayak, M. C. Gupta, and K. W. Kolasinski, “Formation of nano-textured conical microstructures in titanium metal surface by femtosecond laser irradiation,” Appl. Phys. A-Mater.90, 399–402 (2008).

H. Y. Zheng, H. X. Qian, and W. Zhou, “Analyses of surface coloration on TiO2 film irradiated with excimer laser,” Appl. Surf. Sci.254(7), 2174–2178 (2008).
[CrossRef]

2007 (3)

B. K. Nayak and M. C. Gupta, “Femtosecond-laser-induced-crystallization and simultaneous formation of light trapping microstructures in thin a-Si:H films,” Appl. Phys. A-Mater.89, 663–666 (2007).

S.-B. Wen, R. Greif, and R. E. Russo, “Background gas effects on the generation of nanopatterns on a pure silicon wafer with multiple femtosecond near field laser ablation,” Appl. Phys. Lett.91(25), 251113 (2007).
[CrossRef]

B. K. Nayak, M. C. Gupta, and K. W. Kolasinski,“Spontaneous formation of nanospiked microstructures in germanium by femtosecond laser irradiation,” Nanotechnology18(19), 195302 (2007).
[CrossRef]

2006 (2)

M. Abbott and J. Cotter, “Optical and electrical properties of laser texturing for high-efficiency solar cells,” Prog. Photovolt. Res. Appl.14(3), 225–235 (2006).
[CrossRef]

V. Zorba, P. Tzanetakis, C. Fotakis, E. Spanakis, E. Stratakis, D. G. Papazoglou, and I. Zergioti, “Silicon electron emitters fabricated by ultraviolet laser pulses,” Appl. Phys. Lett.88(8), 081103 (2006).
[CrossRef]

2004 (1)

V. Zorba, I. Alexandrou, I. Zergioti, A. Manousaki, C. Ducati, A. Neumeister, C. Fotakis, and G. A. J. Amaratunga, “Laser microstructuring of Si surfaces for low-threshold field-electron emission,” Thin Solid Films453–454, 492–495 (2004).
[CrossRef]

2003 (1)

G. Wysocki, R. Denk, K. Piglmayer, N. Arnold, and D. Bauerle, “Single-step fabrication of silicon-cone arrays,” Appl. Phys. Lett.82(5), 692–693 (2003).
[CrossRef]

1998 (1)

T.-H. Her, R. J. Finlay, C. Wu, S. Deliwala, and E. Mazur, “Microstructuring of silicon with femtosecond laser pulses,” Appl. Phys. Lett.73(12), 1673–1675 (1998).
[CrossRef]

1997 (1)

P. Simon and J. Ihlemann, “Ablation of submicron structures on metals and semiconductors by femtosecond UV-laser pulses,” Appl. Surf. Sci.109–110, 25–29 (1997).
[CrossRef]

1989 (1)

J. C. Zolper, S. Narayanan, S. R. Wenham, and M. A. Green, “16.7% efficient, laser textured, buried contact polycrystalline silicon solar cell,” Appl. Phys. Lett.55(22), 2363–2365 (1989).
[CrossRef]

Abbott, M.

M. Abbott and J. Cotter, “Optical and electrical properties of laser texturing for high-efficiency solar cells,” Prog. Photovolt. Res. Appl.14(3), 225–235 (2006).
[CrossRef]

Alexandrou, I.

V. Zorba, I. Alexandrou, I. Zergioti, A. Manousaki, C. Ducati, A. Neumeister, C. Fotakis, and G. A. J. Amaratunga, “Laser microstructuring of Si surfaces for low-threshold field-electron emission,” Thin Solid Films453–454, 492–495 (2004).
[CrossRef]

Amaratunga, G. A. J.

V. Zorba, I. Alexandrou, I. Zergioti, A. Manousaki, C. Ducati, A. Neumeister, C. Fotakis, and G. A. J. Amaratunga, “Laser microstructuring of Si surfaces for low-threshold field-electron emission,” Thin Solid Films453–454, 492–495 (2004).
[CrossRef]

Arnold, N.

G. Wysocki, R. Denk, K. Piglmayer, N. Arnold, and D. Bauerle, “Single-step fabrication of silicon-cone arrays,” Appl. Phys. Lett.82(5), 692–693 (2003).
[CrossRef]

Bauerle, D.

G. Wysocki, R. Denk, K. Piglmayer, N. Arnold, and D. Bauerle, “Single-step fabrication of silicon-cone arrays,” Appl. Phys. Lett.82(5), 692–693 (2003).
[CrossRef]

Bekesi, J.

B. Borchers, J. Bekesi, P. Simon, and J. Ihlemann, “Submicron surface patterning by laser ablation with short UV pulses using a proximity phase mask setup,” J. Appl. Phys.107(6), 063106 (2010).
[CrossRef]

Borchers, B.

B. Borchers, J. Bekesi, P. Simon, and J. Ihlemann, “Submicron surface patterning by laser ablation with short UV pulses using a proximity phase mask setup,” J. Appl. Phys.107(6), 063106 (2010).
[CrossRef]

Cotter, J.

M. Abbott and J. Cotter, “Optical and electrical properties of laser texturing for high-efficiency solar cells,” Prog. Photovolt. Res. Appl.14(3), 225–235 (2006).
[CrossRef]

Deliwala, S.

T.-H. Her, R. J. Finlay, C. Wu, S. Deliwala, and E. Mazur, “Microstructuring of silicon with femtosecond laser pulses,” Appl. Phys. Lett.73(12), 1673–1675 (1998).
[CrossRef]

Denk, R.

G. Wysocki, R. Denk, K. Piglmayer, N. Arnold, and D. Bauerle, “Single-step fabrication of silicon-cone arrays,” Appl. Phys. Lett.82(5), 692–693 (2003).
[CrossRef]

Ducati, C.

V. Zorba, I. Alexandrou, I. Zergioti, A. Manousaki, C. Ducati, A. Neumeister, C. Fotakis, and G. A. J. Amaratunga, “Laser microstructuring of Si surfaces for low-threshold field-electron emission,” Thin Solid Films453–454, 492–495 (2004).
[CrossRef]

Finlay, R. J.

T.-H. Her, R. J. Finlay, C. Wu, S. Deliwala, and E. Mazur, “Microstructuring of silicon with femtosecond laser pulses,” Appl. Phys. Lett.73(12), 1673–1675 (1998).
[CrossRef]

Fotakis, C.

V. Zorba, P. Tzanetakis, C. Fotakis, E. Spanakis, E. Stratakis, D. G. Papazoglou, and I. Zergioti, “Silicon electron emitters fabricated by ultraviolet laser pulses,” Appl. Phys. Lett.88(8), 081103 (2006).
[CrossRef]

V. Zorba, I. Alexandrou, I. Zergioti, A. Manousaki, C. Ducati, A. Neumeister, C. Fotakis, and G. A. J. Amaratunga, “Laser microstructuring of Si surfaces for low-threshold field-electron emission,” Thin Solid Films453–454, 492–495 (2004).
[CrossRef]

Green, M. A.

J. C. Zolper, S. Narayanan, S. R. Wenham, and M. A. Green, “16.7% efficient, laser textured, buried contact polycrystalline silicon solar cell,” Appl. Phys. Lett.55(22), 2363–2365 (1989).
[CrossRef]

Greif, R.

S.-B. Wen, R. Greif, and R. E. Russo, “Background gas effects on the generation of nanopatterns on a pure silicon wafer with multiple femtosecond near field laser ablation,” Appl. Phys. Lett.91(25), 251113 (2007).
[CrossRef]

Gupta, M. C.

B. K. Nayak, M. C. Gupta, and K. W. Kolasinski, “Formation of nano-textured conical microstructures in titanium metal surface by femtosecond laser irradiation,” Appl. Phys. A-Mater.90, 399–402 (2008).

B. K. Nayak and M. C. Gupta, “Femtosecond-laser-induced-crystallization and simultaneous formation of light trapping microstructures in thin a-Si:H films,” Appl. Phys. A-Mater.89, 663–666 (2007).

B. K. Nayak, M. C. Gupta, and K. W. Kolasinski,“Spontaneous formation of nanospiked microstructures in germanium by femtosecond laser irradiation,” Nanotechnology18(19), 195302 (2007).
[CrossRef]

Her, T.-H.

T.-H. Her, R. J. Finlay, C. Wu, S. Deliwala, and E. Mazur, “Microstructuring of silicon with femtosecond laser pulses,” Appl. Phys. Lett.73(12), 1673–1675 (1998).
[CrossRef]

Ihlemann, J.

B. Borchers, J. Bekesi, P. Simon, and J. Ihlemann, “Submicron surface patterning by laser ablation with short UV pulses using a proximity phase mask setup,” J. Appl. Phys.107(6), 063106 (2010).
[CrossRef]

P. Simon and J. Ihlemann, “Ablation of submicron structures on metals and semiconductors by femtosecond UV-laser pulses,” Appl. Surf. Sci.109–110, 25–29 (1997).
[CrossRef]

Khin, C. C.

Khoong, L. E.

Kolasinski, K. W.

B. K. Nayak, M. C. Gupta, and K. W. Kolasinski, “Formation of nano-textured conical microstructures in titanium metal surface by femtosecond laser irradiation,” Appl. Phys. A-Mater.90, 399–402 (2008).

B. K. Nayak, M. C. Gupta, and K. W. Kolasinski,“Spontaneous formation of nanospiked microstructures in germanium by femtosecond laser irradiation,” Nanotechnology18(19), 195302 (2007).
[CrossRef]

Li, Z. L.

Liu, T.

Manousaki, A.

V. Zorba, I. Alexandrou, I. Zergioti, A. Manousaki, C. Ducati, A. Neumeister, C. Fotakis, and G. A. J. Amaratunga, “Laser microstructuring of Si surfaces for low-threshold field-electron emission,” Thin Solid Films453–454, 492–495 (2004).
[CrossRef]

Mazur, E.

T.-H. Her, R. J. Finlay, C. Wu, S. Deliwala, and E. Mazur, “Microstructuring of silicon with femtosecond laser pulses,” Appl. Phys. Lett.73(12), 1673–1675 (1998).
[CrossRef]

Narayanan, S.

J. C. Zolper, S. Narayanan, S. R. Wenham, and M. A. Green, “16.7% efficient, laser textured, buried contact polycrystalline silicon solar cell,” Appl. Phys. Lett.55(22), 2363–2365 (1989).
[CrossRef]

Nayak, B. K.

B. K. Nayak, M. C. Gupta, and K. W. Kolasinski, “Formation of nano-textured conical microstructures in titanium metal surface by femtosecond laser irradiation,” Appl. Phys. A-Mater.90, 399–402 (2008).

B. K. Nayak, M. C. Gupta, and K. W. Kolasinski,“Spontaneous formation of nanospiked microstructures in germanium by femtosecond laser irradiation,” Nanotechnology18(19), 195302 (2007).
[CrossRef]

B. K. Nayak and M. C. Gupta, “Femtosecond-laser-induced-crystallization and simultaneous formation of light trapping microstructures in thin a-Si:H films,” Appl. Phys. A-Mater.89, 663–666 (2007).

Neumeister, A.

V. Zorba, I. Alexandrou, I. Zergioti, A. Manousaki, C. Ducati, A. Neumeister, C. Fotakis, and G. A. J. Amaratunga, “Laser microstructuring of Si surfaces for low-threshold field-electron emission,” Thin Solid Films453–454, 492–495 (2004).
[CrossRef]

Papazoglou, D. G.

V. Zorba, P. Tzanetakis, C. Fotakis, E. Spanakis, E. Stratakis, D. G. Papazoglou, and I. Zergioti, “Silicon electron emitters fabricated by ultraviolet laser pulses,” Appl. Phys. Lett.88(8), 081103 (2006).
[CrossRef]

Pey, K. L.

X. C. Wang, H. Y. Zheng, C. W. Tan, F. Wang, H. Y. Yu, and K. L. Pey, “Fabrication of silicon nanobump arrays by near-field enhanced laser irradiation,” Appl. Phys. Lett.96(8), 084101–084103 (2010).
[CrossRef]

Piglmayer, K.

G. Wysocki, R. Denk, K. Piglmayer, N. Arnold, and D. Bauerle, “Single-step fabrication of silicon-cone arrays,” Appl. Phys. Lett.82(5), 692–693 (2003).
[CrossRef]

Qian, H. X.

H. Y. Zheng, H. X. Qian, and W. Zhou, “Analyses of surface coloration on TiO2 film irradiated with excimer laser,” Appl. Surf. Sci.254(7), 2174–2178 (2008).
[CrossRef]

Russo, R. E.

S.-B. Wen, R. Greif, and R. E. Russo, “Background gas effects on the generation of nanopatterns on a pure silicon wafer with multiple femtosecond near field laser ablation,” Appl. Phys. Lett.91(25), 251113 (2007).
[CrossRef]

Simon, P.

B. Borchers, J. Bekesi, P. Simon, and J. Ihlemann, “Submicron surface patterning by laser ablation with short UV pulses using a proximity phase mask setup,” J. Appl. Phys.107(6), 063106 (2010).
[CrossRef]

P. Simon and J. Ihlemann, “Ablation of submicron structures on metals and semiconductors by femtosecond UV-laser pulses,” Appl. Surf. Sci.109–110, 25–29 (1997).
[CrossRef]

Soni, A.

A. Soni, V. M. Sundaram, and S.-B. Wen, “The generation of nano-patterns on a pure silicon wafer in air and argon with sub-diffraction limit nanosecond laser pulses,” J. Phys. D Appl. Phys.43(14), 145301 (2010).
[CrossRef]

Spanakis, E.

V. Zorba, P. Tzanetakis, C. Fotakis, E. Spanakis, E. Stratakis, D. G. Papazoglou, and I. Zergioti, “Silicon electron emitters fabricated by ultraviolet laser pulses,” Appl. Phys. Lett.88(8), 081103 (2006).
[CrossRef]

Stratakis, E.

V. Zorba, P. Tzanetakis, C. Fotakis, E. Spanakis, E. Stratakis, D. G. Papazoglou, and I. Zergioti, “Silicon electron emitters fabricated by ultraviolet laser pulses,” Appl. Phys. Lett.88(8), 081103 (2006).
[CrossRef]

Sundaram, V. M.

A. Soni, V. M. Sundaram, and S.-B. Wen, “The generation of nano-patterns on a pure silicon wafer in air and argon with sub-diffraction limit nanosecond laser pulses,” J. Phys. D Appl. Phys.43(14), 145301 (2010).
[CrossRef]

Tan, A. C.

Tan, C. W.

X. C. Wang, H. Y. Zheng, C. W. Tan, F. Wang, H. Y. Yu, and K. L. Pey, “Fabrication of silicon nanobump arrays by near-field enhanced laser irradiation,” Appl. Phys. Lett.96(8), 084101–084103 (2010).
[CrossRef]

Tzanetakis, P.

V. Zorba, P. Tzanetakis, C. Fotakis, E. Spanakis, E. Stratakis, D. G. Papazoglou, and I. Zergioti, “Silicon electron emitters fabricated by ultraviolet laser pulses,” Appl. Phys. Lett.88(8), 081103 (2006).
[CrossRef]

Wang, F.

X. C. Wang, H. Y. Zheng, C. W. Tan, F. Wang, H. Y. Yu, and K. L. Pey, “Fabrication of silicon nanobump arrays by near-field enhanced laser irradiation,” Appl. Phys. Lett.96(8), 084101–084103 (2010).
[CrossRef]

Wang, X. C.

X. C. Wang, H. Y. Zheng, C. W. Tan, F. Wang, H. Y. Yu, and K. L. Pey, “Fabrication of silicon nanobump arrays by near-field enhanced laser irradiation,” Appl. Phys. Lett.96(8), 084101–084103 (2010).
[CrossRef]

Wen, S.-B.

A. Soni, V. M. Sundaram, and S.-B. Wen, “The generation of nano-patterns on a pure silicon wafer in air and argon with sub-diffraction limit nanosecond laser pulses,” J. Phys. D Appl. Phys.43(14), 145301 (2010).
[CrossRef]

S.-B. Wen, R. Greif, and R. E. Russo, “Background gas effects on the generation of nanopatterns on a pure silicon wafer with multiple femtosecond near field laser ablation,” Appl. Phys. Lett.91(25), 251113 (2007).
[CrossRef]

Wenham, S. R.

J. C. Zolper, S. Narayanan, S. R. Wenham, and M. A. Green, “16.7% efficient, laser textured, buried contact polycrystalline silicon solar cell,” Appl. Phys. Lett.55(22), 2363–2365 (1989).
[CrossRef]

Wu, C.

T.-H. Her, R. J. Finlay, C. Wu, S. Deliwala, and E. Mazur, “Microstructuring of silicon with femtosecond laser pulses,” Appl. Phys. Lett.73(12), 1673–1675 (1998).
[CrossRef]

Wysocki, G.

G. Wysocki, R. Denk, K. Piglmayer, N. Arnold, and D. Bauerle, “Single-step fabrication of silicon-cone arrays,” Appl. Phys. Lett.82(5), 692–693 (2003).
[CrossRef]

Yu, H. Y.

X. C. Wang, H. Y. Zheng, C. W. Tan, F. Wang, H. Y. Yu, and K. L. Pey, “Fabrication of silicon nanobump arrays by near-field enhanced laser irradiation,” Appl. Phys. Lett.96(8), 084101–084103 (2010).
[CrossRef]

Zergioti, I.

V. Zorba, P. Tzanetakis, C. Fotakis, E. Spanakis, E. Stratakis, D. G. Papazoglou, and I. Zergioti, “Silicon electron emitters fabricated by ultraviolet laser pulses,” Appl. Phys. Lett.88(8), 081103 (2006).
[CrossRef]

V. Zorba, I. Alexandrou, I. Zergioti, A. Manousaki, C. Ducati, A. Neumeister, C. Fotakis, and G. A. J. Amaratunga, “Laser microstructuring of Si surfaces for low-threshold field-electron emission,” Thin Solid Films453–454, 492–495 (2004).
[CrossRef]

Zheng, H. Y.

X. C. Wang, H. Y. Zheng, C. W. Tan, F. Wang, H. Y. Yu, and K. L. Pey, “Fabrication of silicon nanobump arrays by near-field enhanced laser irradiation,” Appl. Phys. Lett.96(8), 084101–084103 (2010).
[CrossRef]

Z. L. Li, T. Liu, C. C. Khin, A. C. Tan, L. E. Khoong, H. Y. Zheng, and W. Zhou, “Direct patterning in sub-surface of stainless steel using laser pulses,” Opt. Express18(15), 15990–15997 (2010).
[CrossRef] [PubMed]

H. Y. Zheng, H. X. Qian, and W. Zhou, “Analyses of surface coloration on TiO2 film irradiated with excimer laser,” Appl. Surf. Sci.254(7), 2174–2178 (2008).
[CrossRef]

Zhou, W.

Z. L. Li, T. Liu, C. C. Khin, A. C. Tan, L. E. Khoong, H. Y. Zheng, and W. Zhou, “Direct patterning in sub-surface of stainless steel using laser pulses,” Opt. Express18(15), 15990–15997 (2010).
[CrossRef] [PubMed]

H. Y. Zheng, H. X. Qian, and W. Zhou, “Analyses of surface coloration on TiO2 film irradiated with excimer laser,” Appl. Surf. Sci.254(7), 2174–2178 (2008).
[CrossRef]

Zolper, J. C.

J. C. Zolper, S. Narayanan, S. R. Wenham, and M. A. Green, “16.7% efficient, laser textured, buried contact polycrystalline silicon solar cell,” Appl. Phys. Lett.55(22), 2363–2365 (1989).
[CrossRef]

Zorba, V.

V. Zorba, P. Tzanetakis, C. Fotakis, E. Spanakis, E. Stratakis, D. G. Papazoglou, and I. Zergioti, “Silicon electron emitters fabricated by ultraviolet laser pulses,” Appl. Phys. Lett.88(8), 081103 (2006).
[CrossRef]

V. Zorba, I. Alexandrou, I. Zergioti, A. Manousaki, C. Ducati, A. Neumeister, C. Fotakis, and G. A. J. Amaratunga, “Laser microstructuring of Si surfaces for low-threshold field-electron emission,” Thin Solid Films453–454, 492–495 (2004).
[CrossRef]

Appl. Phys. A-Mater. (2)

B. K. Nayak, M. C. Gupta, and K. W. Kolasinski, “Formation of nano-textured conical microstructures in titanium metal surface by femtosecond laser irradiation,” Appl. Phys. A-Mater.90, 399–402 (2008).

B. K. Nayak and M. C. Gupta, “Femtosecond-laser-induced-crystallization and simultaneous formation of light trapping microstructures in thin a-Si:H films,” Appl. Phys. A-Mater.89, 663–666 (2007).

Appl. Phys. Lett. (6)

X. C. Wang, H. Y. Zheng, C. W. Tan, F. Wang, H. Y. Yu, and K. L. Pey, “Fabrication of silicon nanobump arrays by near-field enhanced laser irradiation,” Appl. Phys. Lett.96(8), 084101–084103 (2010).
[CrossRef]

G. Wysocki, R. Denk, K. Piglmayer, N. Arnold, and D. Bauerle, “Single-step fabrication of silicon-cone arrays,” Appl. Phys. Lett.82(5), 692–693 (2003).
[CrossRef]

S.-B. Wen, R. Greif, and R. E. Russo, “Background gas effects on the generation of nanopatterns on a pure silicon wafer with multiple femtosecond near field laser ablation,” Appl. Phys. Lett.91(25), 251113 (2007).
[CrossRef]

J. C. Zolper, S. Narayanan, S. R. Wenham, and M. A. Green, “16.7% efficient, laser textured, buried contact polycrystalline silicon solar cell,” Appl. Phys. Lett.55(22), 2363–2365 (1989).
[CrossRef]

T.-H. Her, R. J. Finlay, C. Wu, S. Deliwala, and E. Mazur, “Microstructuring of silicon with femtosecond laser pulses,” Appl. Phys. Lett.73(12), 1673–1675 (1998).
[CrossRef]

V. Zorba, P. Tzanetakis, C. Fotakis, E. Spanakis, E. Stratakis, D. G. Papazoglou, and I. Zergioti, “Silicon electron emitters fabricated by ultraviolet laser pulses,” Appl. Phys. Lett.88(8), 081103 (2006).
[CrossRef]

Appl. Surf. Sci. (2)

P. Simon and J. Ihlemann, “Ablation of submicron structures on metals and semiconductors by femtosecond UV-laser pulses,” Appl. Surf. Sci.109–110, 25–29 (1997).
[CrossRef]

H. Y. Zheng, H. X. Qian, and W. Zhou, “Analyses of surface coloration on TiO2 film irradiated with excimer laser,” Appl. Surf. Sci.254(7), 2174–2178 (2008).
[CrossRef]

J. Appl. Phys. (1)

B. Borchers, J. Bekesi, P. Simon, and J. Ihlemann, “Submicron surface patterning by laser ablation with short UV pulses using a proximity phase mask setup,” J. Appl. Phys.107(6), 063106 (2010).
[CrossRef]

J. Phys. D Appl. Phys. (1)

A. Soni, V. M. Sundaram, and S.-B. Wen, “The generation of nano-patterns on a pure silicon wafer in air and argon with sub-diffraction limit nanosecond laser pulses,” J. Phys. D Appl. Phys.43(14), 145301 (2010).
[CrossRef]

Nanotechnology (1)

B. K. Nayak, M. C. Gupta, and K. W. Kolasinski,“Spontaneous formation of nanospiked microstructures in germanium by femtosecond laser irradiation,” Nanotechnology18(19), 195302 (2007).
[CrossRef]

Opt. Express (1)

Prog. Photovolt. Res. Appl. (1)

M. Abbott and J. Cotter, “Optical and electrical properties of laser texturing for high-efficiency solar cells,” Prog. Photovolt. Res. Appl.14(3), 225–235 (2006).
[CrossRef]

Thin Solid Films (1)

V. Zorba, I. Alexandrou, I. Zergioti, A. Manousaki, C. Ducati, A. Neumeister, C. Fotakis, and G. A. J. Amaratunga, “Laser microstructuring of Si surfaces for low-threshold field-electron emission,” Thin Solid Films453–454, 492–495 (2004).
[CrossRef]

Other (1)

D. Bäuerle, Laser Processing and Chemistry (Springer, 2000).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

(a) Dimension and point scanning pitch of laser irradiated area. (b) Fiber laser irradiation and coaxial nozzle to deliver gas onto the laser spot.

Fig. 2
Fig. 2

Confocal microscope images of the Si surface irradiated using laser power 19 W and dwell time 40 ms (a) in ambient, (b) in Ar (0.5 bar), (c) in O2 (0.25 bar), (d) in O2 (0.5 bar) and (e) in O2 (0.75 bar).

Fig. 3
Fig. 3

Profile of the Si surface irradiated using laser power 19 W and dwell time 40 ms (a) in ambient and Ar, (b) in O2 (0.25 bar), (c) in O2 (0.5 bar) and (d) in O2 (0.75 bar).

Fig. 4
Fig. 4

EDX spectrum of (a) Si surface irradiated in Ar and (b) Si surface irradiated in O2.

Fig. 5
Fig. 5

Schematic diagram of SiO2 growth on Si surface by uniform heating source, showing the changes in thickness (a) before oxidation, and (b) after thermal oxidation.

Fig. 6
Fig. 6

(a) Laser-induced SiO2 bumps by localized Gaussian heating source; (b) microscopic model for the laser-induced surface oxidation, and indicate increasing and decreasing concentrations, respectively.

Metrics