Abstract

Grating Coupled Interferometry (GCI) using high quality waveguides with two incoupling and one outcoupling grating areas is introduced to increase and precisely control the sensing length of the device; and to make the sensor design suitable for plate-based multiplexing. In contrast to other interferometric arrangements, the sensor chips are interrogated with a single expanded laser beam illuminating both incoupling gratings simultaneously. In order to obtain the interference signal, only half of the beam is phase modulated using a laterally divided two-cell liquid crystal modulator. The developed highly symmetrical arrangement of the interferometric arms increases the stability and at the same time offers straightforward integration of parallel sensing channels. The device characteristics are demonstrated for both TE and TM polarized modes.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. J. Ramsden, Biomedical Surfaces (Artech House, 2007).
  2. M. Malmsten, Biopolymers at Interfaces (Taylor & Francis, 2003).
  3. J. M. Coles, D. P. Chang, and S. Zauscher, “Molecular mechanisms of aqueous boundary lubrication by mucinous glycoproteins,” Curr. Opin. Coll. Int. Sci.15(6), 406–416 (2010).
    [CrossRef]
  4. M. A. Cooper, “Optical biosensors in drug discovery,” Nat. Rev. Drug Discov.1(7), 515–528 (2002).
    [CrossRef] [PubMed]
  5. Y. Fang, “Label-free receptor assays,” Drug Discov. Today. Technol.7(1), 5–11 (2010).
    [CrossRef] [PubMed]
  6. C. Calonder and P. R. Van Tassel, “Kinetic regimes of protein adsorption,” Langmuir17(14), 4392–4395 (2001).
    [CrossRef]
  7. J. J. Ramsden, “Review of new experimental methods for investigating random sequential adsorption,” J. Stat. Phys.73(5-6), 853–877 (1993).
    [CrossRef]
  8. E. K. Mann, L. Heinrich, and P. Schaaf, “Validation of the uniform thin-film approximation for the optical analysis of particulate films,” Langmuir13(18), 4906–4909 (1997).
    [CrossRef]
  9. X. Fan, I. M. White, S. I. Shopova, H. Zhu, J. D. Suter, and Y. Sun, “Sensitive optical biosensors for unlabeled targets: a review,” Anal. Chim. Acta620(1-2), 8–26 (2008).
    [CrossRef] [PubMed]
  10. H. K. Hunt and A. M. Armani, “Label-free biological and chemical sensors,” Nanoscale2(9), 1544–1559 (2010).
    [CrossRef] [PubMed]
  11. Y. Fang, A. M. Ferrie, N. H. Fontaine, J. Mauro, and J. Balakrishnan, “Resonant waveguide grating biosensor for living cell sensing,” Biophys. J.91(5), 1925–1940 (2006).
    [CrossRef] [PubMed]
  12. J. J. Ramsden and R. Horvath, “Optical biosensors for cell adhesion,” J. Recept. Signal Transduct. Res.29(3-4), 211–223 (2009).
    [CrossRef] [PubMed]
  13. R. Horvath, K. Cottier, H. C. Pedersen, and J. J. Ramsden, “Multidepth screening of living cells using optical waveguides,” Biosens. Bioelectron.24(4), 799–810 (2008).
    [CrossRef] [PubMed]
  14. J. Homola, S. S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors: review,” Sens. Actuators B Chem.54(1-2), 3–15 (1999).
    [CrossRef]
  15. V. B. Braginsky, M. L. Gorodetsky, and V. S. Ilchenko, “Quality factor and nonlinear properties of optical whispering Gallery modes,” Phys. Lett. A137(7-8), 393–397 (1989).
    [CrossRef]
  16. N. Skivesen, A. Têtu, M. Kristensen, J. Kjems, L. H. Frandsen, and P. I. Borel, “Photonic-crystal waveguide biosensor,” Opt. Express15(6), 3169–3176 (2007).
    [CrossRef] [PubMed]
  17. V. N. Konopsky and E. V. Alieva, “A biosensor based on photonic crystal surface waves with an independent registration of the liquid refractive index,” Biosens. Bioelectron.25(5), 1212–1216 (2010).
    [CrossRef] [PubMed]
  18. N. Skivesen, R. Horvath, and H. C. Pedersen, “Optimization of metal-clad waveguide sensors,” Sens. Actuators B Chem.106(2), 668–676 (2005).
    [CrossRef]
  19. N. Skivesen, R. Horvath, S. Thinggaard, N. B. Larsen, and H. C. Pedersen, “Deep-probe metal-clad waveguide biosensors,” Biosens. Bioelectron.22(7), 1282–1288 (2007).
    [CrossRef] [PubMed]
  20. W. Lukosz, “Integrated optical chemical and direct biochemical sensors,” Sens. Actuators B Chem.29(1-3), 37–50 (1995).
    [CrossRef]
  21. K. Tiefenthaler and W. Lukosz, “Sensitivity of grating couplers as integrated-optical chemical sensors,” J. Opt. Soc. Am. B6(2), 209–220 (1989).
    [CrossRef]
  22. J. Vörös, J. J. Ramsden, G. Csúcs, I. Szendro, S. M. De Paul, M. Textor, and N. D. Spencer, “Optical grating coupler biosensors,” Biomaterials23(17), 3699–3710 (2002).
    [CrossRef] [PubMed]
  23. C. Picart, C. Gergely, Y. Arntz, J. C. Voegel, P. Schaaf, F. J. G. Cuisinier, and B. Senger, “Measurement of film thickness up to several hundreds of nanometers using optical waveguide lightmode spectroscopy,” Biosens. Bioelectron.20, 553–561 (2004).
    [CrossRef] [PubMed]
  24. M. M. Abadla, M. M. Shabat, and D. Jäger, “Simulation of sensing characteristics in optical nonlinear waveguide sensors,” Laser Phys.14, 1231–1237 (2004).
  25. S. A. Taya, M. M. Shabat, and H. M. Khalil, “Nonlinear planar asymmetrical optical waveguides for sensing applications,” Optik (Stuttg.)121(9), 860–865 (2010).
    [CrossRef]
  26. B. A. Forbes, D. F. Sahm, and A. S. Weissfeld, Diagnostic Microbiology (Mosby, 1998), Chap. 15.
  27. W. Lukosz, P. M. Nellen, C. Stamm, and P. Weiss, “Output grating couplers on planar wave-guides as integrated optical chemical sensors,” Sens. Actuators B Chem.1(1-6), 585–588 (1990).
    [CrossRef]
  28. K. Schmitt, B. Schirmer, C. Hoffmann, A. Brandenburg, and P. Meyrueis, “Interferometric biosensor based on planar optical waveguide sensor chips for label-free detection of surface bound bioreactions,” Biosens. Bioelectron.22(11), 2591–2597 (2007).
    [CrossRef] [PubMed]
  29. P. K. Tien, “Integrated optics and new wave phenomena,” Rev. Mod. Phys.49(2), 361–420 (1977).
    [CrossRef]
  30. N. Aggarwal, K. Lawson, M. Kershaw, R. Horvath, and J. J. Ramsden, “Protein adsorption on heterogeneous surfaces,” Appl. Phys. Lett.94(8), 083110 (2009).
    [CrossRef]
  31. J. Dübendorfer and R. E. Kunz, “Compact integrated optical immunosensor using replicated chirped grating coupler sensor chips,” Appl. Opt.37(10), 1890–1894 (1998).
    [CrossRef] [PubMed]
  32. B. Agnarsson, A. B. Jonsdottir, N. B. Arnfinnsdottir, and K. Leosson, “On-chip modulation of evanescent illumination and live-cell imaging with polymer waveguides,” Opt. Express19(23), 22929–22935 (2011).
    [CrossRef] [PubMed]
  33. R. Horvath, L. R. Lindvold, and N. B. Larsen, “Fabrication of all-polymer freestanding waveguides,” J. Micromech. Microeng.13(3), 419–424 (2003).
    [CrossRef]
  34. R. Horvath, H. C. Pedersen, N. Skivesen, C. Svanberg, and N. B. Larsen, “Fabrication of reverse symmetry polymer waveguide sensor chips on nanoporous substrates using dip-floating,” J. Micromech. Microeng.15(6), 1260–1264 (2005).
    [CrossRef]
  35. R. Horvath, H. C. Pedersen, and N. B. Larsen, “Demonstration of reverse symmetry waveguide sensing in aqueous solutions,” Appl. Phys. Lett.81(12), 2166–2168 (2002).
    [CrossRef]
  36. R. Horváth, H. C. Pedersen, N. Skivesen, D. Selmeczi, and N. B. Larsen, “Optical waveguide sensor for on-line monitoring of bacteria,” Opt. Lett.28(14), 1233–1235 (2003).
    [CrossRef] [PubMed]
  37. R. Horvath, H. C. Pedersen, N. Skivesen, D. Selmeczi, and N. B. Larsen, “Monitoring of living cell attachment and spreading using reverse symmetry waveguide sensing,” Appl. Phys. Lett.86(7), 071101 (2005).
    [CrossRef]
  38. R. Horvath, H. C. Pedersen, and F. J. G. Cuisinier, “Guided wave sensing of polyelectrolyte multilayers,” Appl. Phys. Lett.88(11), 111102 (2006).
    [CrossRef]
  39. R. E. Kunz and K. Cottier, “Optimizing integrated optical chips for label-free (bio-)chemical sensing,” Anal. Bioanal. Chem.384(1), 180–190 (2006).
    [CrossRef] [PubMed]
  40. E. K. Mann, “Evaluating optical techniques for determining film structure: Optical invariants for anisotropic dielectric thin films,” Langmuir17(19), 5872–5881 (2001).
    [CrossRef]
  41. R. Horvath, J. McColl, G. E. Yakubov, and J. J. Ramsden, “Structural hysteresis and hierarchy in adsorbed glycoproteins,” J. Chem. Phys.129(7), 071102 (2008).
    [CrossRef] [PubMed]
  42. The home page of the Microvacuum (Microvacuum 2012) http://www.microvacuum.com
  43. The home page of the Corning (Corning 2012) http://www.corning.com/lifesciences/us_canada/en/whats_new/epic_system.aspx
  44. The home page of the SRU Biosystems. (SRU Biosystems 2012) http://www.srubiosystems.com/
  45. C. J. Choi and B. T. Cunningham, “Single-step fabrication and characterization of photonic crystal biosensors with polymer microfluidic channels,” Lab Chip6(10), 1373–1380 (2006).
    [CrossRef] [PubMed]
  46. A. Mashaghi, M. Swann, J. Popplewell, M. Textor, and E. Reimhult, “Optical anisotropy of supported lipid structures probed by waveguide spectroscopy and its application to study of supported lipid bilayer formation kinetics,” Anal. Chem.80(10), 3666–3676 (2008).
    [CrossRef] [PubMed]
  47. The home page of the Farfield Group. (Farfield Group 2012) http://www.farfield-group.com/
  48. P. Kozma, A. Hamori, K. Cottier, S. Kurunczi, and R. Horvath, “Grating coupled interferometry for optical sensing,” Appl. Phys. B97(1), 5–8 (2009).
    [CrossRef]
  49. P. Kozma, A. Hamori, S. Kurunczi, K. Cottier, and R. Horvath, “Grating coupled optical waveguide interferometer for label-free biosensing,” Sens. Actuators B Chem.155(2), 446–450 (2011).
    [CrossRef]
  50. The home page of the Creoptix GmbH. (Creoptix GmbH 2012) http://www.creoptix.com/
  51. S. Grego, K. H. Gilchrist, J. B. Carlson, and B. R. Stoner, “A compact and multichannel optical biosensor based on a wavelength interrogated input grating coupler,” Sens. Actuators B Chem.161(1), 721–727 (2012).
    [CrossRef]

2012

S. Grego, K. H. Gilchrist, J. B. Carlson, and B. R. Stoner, “A compact and multichannel optical biosensor based on a wavelength interrogated input grating coupler,” Sens. Actuators B Chem.161(1), 721–727 (2012).
[CrossRef]

2011

P. Kozma, A. Hamori, S. Kurunczi, K. Cottier, and R. Horvath, “Grating coupled optical waveguide interferometer for label-free biosensing,” Sens. Actuators B Chem.155(2), 446–450 (2011).
[CrossRef]

B. Agnarsson, A. B. Jonsdottir, N. B. Arnfinnsdottir, and K. Leosson, “On-chip modulation of evanescent illumination and live-cell imaging with polymer waveguides,” Opt. Express19(23), 22929–22935 (2011).
[CrossRef] [PubMed]

2010

S. A. Taya, M. M. Shabat, and H. M. Khalil, “Nonlinear planar asymmetrical optical waveguides for sensing applications,” Optik (Stuttg.)121(9), 860–865 (2010).
[CrossRef]

J. M. Coles, D. P. Chang, and S. Zauscher, “Molecular mechanisms of aqueous boundary lubrication by mucinous glycoproteins,” Curr. Opin. Coll. Int. Sci.15(6), 406–416 (2010).
[CrossRef]

Y. Fang, “Label-free receptor assays,” Drug Discov. Today. Technol.7(1), 5–11 (2010).
[CrossRef] [PubMed]

H. K. Hunt and A. M. Armani, “Label-free biological and chemical sensors,” Nanoscale2(9), 1544–1559 (2010).
[CrossRef] [PubMed]

V. N. Konopsky and E. V. Alieva, “A biosensor based on photonic crystal surface waves with an independent registration of the liquid refractive index,” Biosens. Bioelectron.25(5), 1212–1216 (2010).
[CrossRef] [PubMed]

2009

J. J. Ramsden and R. Horvath, “Optical biosensors for cell adhesion,” J. Recept. Signal Transduct. Res.29(3-4), 211–223 (2009).
[CrossRef] [PubMed]

N. Aggarwal, K. Lawson, M. Kershaw, R. Horvath, and J. J. Ramsden, “Protein adsorption on heterogeneous surfaces,” Appl. Phys. Lett.94(8), 083110 (2009).
[CrossRef]

P. Kozma, A. Hamori, K. Cottier, S. Kurunczi, and R. Horvath, “Grating coupled interferometry for optical sensing,” Appl. Phys. B97(1), 5–8 (2009).
[CrossRef]

2008

A. Mashaghi, M. Swann, J. Popplewell, M. Textor, and E. Reimhult, “Optical anisotropy of supported lipid structures probed by waveguide spectroscopy and its application to study of supported lipid bilayer formation kinetics,” Anal. Chem.80(10), 3666–3676 (2008).
[CrossRef] [PubMed]

R. Horvath, J. McColl, G. E. Yakubov, and J. J. Ramsden, “Structural hysteresis and hierarchy in adsorbed glycoproteins,” J. Chem. Phys.129(7), 071102 (2008).
[CrossRef] [PubMed]

R. Horvath, K. Cottier, H. C. Pedersen, and J. J. Ramsden, “Multidepth screening of living cells using optical waveguides,” Biosens. Bioelectron.24(4), 799–810 (2008).
[CrossRef] [PubMed]

X. Fan, I. M. White, S. I. Shopova, H. Zhu, J. D. Suter, and Y. Sun, “Sensitive optical biosensors for unlabeled targets: a review,” Anal. Chim. Acta620(1-2), 8–26 (2008).
[CrossRef] [PubMed]

2007

N. Skivesen, R. Horvath, S. Thinggaard, N. B. Larsen, and H. C. Pedersen, “Deep-probe metal-clad waveguide biosensors,” Biosens. Bioelectron.22(7), 1282–1288 (2007).
[CrossRef] [PubMed]

K. Schmitt, B. Schirmer, C. Hoffmann, A. Brandenburg, and P. Meyrueis, “Interferometric biosensor based on planar optical waveguide sensor chips for label-free detection of surface bound bioreactions,” Biosens. Bioelectron.22(11), 2591–2597 (2007).
[CrossRef] [PubMed]

N. Skivesen, A. Têtu, M. Kristensen, J. Kjems, L. H. Frandsen, and P. I. Borel, “Photonic-crystal waveguide biosensor,” Opt. Express15(6), 3169–3176 (2007).
[CrossRef] [PubMed]

2006

Y. Fang, A. M. Ferrie, N. H. Fontaine, J. Mauro, and J. Balakrishnan, “Resonant waveguide grating biosensor for living cell sensing,” Biophys. J.91(5), 1925–1940 (2006).
[CrossRef] [PubMed]

C. J. Choi and B. T. Cunningham, “Single-step fabrication and characterization of photonic crystal biosensors with polymer microfluidic channels,” Lab Chip6(10), 1373–1380 (2006).
[CrossRef] [PubMed]

R. Horvath, H. C. Pedersen, and F. J. G. Cuisinier, “Guided wave sensing of polyelectrolyte multilayers,” Appl. Phys. Lett.88(11), 111102 (2006).
[CrossRef]

R. E. Kunz and K. Cottier, “Optimizing integrated optical chips for label-free (bio-)chemical sensing,” Anal. Bioanal. Chem.384(1), 180–190 (2006).
[CrossRef] [PubMed]

2005

N. Skivesen, R. Horvath, and H. C. Pedersen, “Optimization of metal-clad waveguide sensors,” Sens. Actuators B Chem.106(2), 668–676 (2005).
[CrossRef]

R. Horvath, H. C. Pedersen, N. Skivesen, C. Svanberg, and N. B. Larsen, “Fabrication of reverse symmetry polymer waveguide sensor chips on nanoporous substrates using dip-floating,” J. Micromech. Microeng.15(6), 1260–1264 (2005).
[CrossRef]

R. Horvath, H. C. Pedersen, N. Skivesen, D. Selmeczi, and N. B. Larsen, “Monitoring of living cell attachment and spreading using reverse symmetry waveguide sensing,” Appl. Phys. Lett.86(7), 071101 (2005).
[CrossRef]

2004

C. Picart, C. Gergely, Y. Arntz, J. C. Voegel, P. Schaaf, F. J. G. Cuisinier, and B. Senger, “Measurement of film thickness up to several hundreds of nanometers using optical waveguide lightmode spectroscopy,” Biosens. Bioelectron.20, 553–561 (2004).
[CrossRef] [PubMed]

M. M. Abadla, M. M. Shabat, and D. Jäger, “Simulation of sensing characteristics in optical nonlinear waveguide sensors,” Laser Phys.14, 1231–1237 (2004).

2003

R. Horváth, H. C. Pedersen, N. Skivesen, D. Selmeczi, and N. B. Larsen, “Optical waveguide sensor for on-line monitoring of bacteria,” Opt. Lett.28(14), 1233–1235 (2003).
[CrossRef] [PubMed]

R. Horvath, L. R. Lindvold, and N. B. Larsen, “Fabrication of all-polymer freestanding waveguides,” J. Micromech. Microeng.13(3), 419–424 (2003).
[CrossRef]

2002

R. Horvath, H. C. Pedersen, and N. B. Larsen, “Demonstration of reverse symmetry waveguide sensing in aqueous solutions,” Appl. Phys. Lett.81(12), 2166–2168 (2002).
[CrossRef]

J. Vörös, J. J. Ramsden, G. Csúcs, I. Szendro, S. M. De Paul, M. Textor, and N. D. Spencer, “Optical grating coupler biosensors,” Biomaterials23(17), 3699–3710 (2002).
[CrossRef] [PubMed]

M. A. Cooper, “Optical biosensors in drug discovery,” Nat. Rev. Drug Discov.1(7), 515–528 (2002).
[CrossRef] [PubMed]

2001

C. Calonder and P. R. Van Tassel, “Kinetic regimes of protein adsorption,” Langmuir17(14), 4392–4395 (2001).
[CrossRef]

E. K. Mann, “Evaluating optical techniques for determining film structure: Optical invariants for anisotropic dielectric thin films,” Langmuir17(19), 5872–5881 (2001).
[CrossRef]

1999

J. Homola, S. S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors: review,” Sens. Actuators B Chem.54(1-2), 3–15 (1999).
[CrossRef]

1998

1997

E. K. Mann, L. Heinrich, and P. Schaaf, “Validation of the uniform thin-film approximation for the optical analysis of particulate films,” Langmuir13(18), 4906–4909 (1997).
[CrossRef]

1995

W. Lukosz, “Integrated optical chemical and direct biochemical sensors,” Sens. Actuators B Chem.29(1-3), 37–50 (1995).
[CrossRef]

1993

J. J. Ramsden, “Review of new experimental methods for investigating random sequential adsorption,” J. Stat. Phys.73(5-6), 853–877 (1993).
[CrossRef]

1990

W. Lukosz, P. M. Nellen, C. Stamm, and P. Weiss, “Output grating couplers on planar wave-guides as integrated optical chemical sensors,” Sens. Actuators B Chem.1(1-6), 585–588 (1990).
[CrossRef]

1989

K. Tiefenthaler and W. Lukosz, “Sensitivity of grating couplers as integrated-optical chemical sensors,” J. Opt. Soc. Am. B6(2), 209–220 (1989).
[CrossRef]

V. B. Braginsky, M. L. Gorodetsky, and V. S. Ilchenko, “Quality factor and nonlinear properties of optical whispering Gallery modes,” Phys. Lett. A137(7-8), 393–397 (1989).
[CrossRef]

1977

P. K. Tien, “Integrated optics and new wave phenomena,” Rev. Mod. Phys.49(2), 361–420 (1977).
[CrossRef]

Abadla, M. M.

M. M. Abadla, M. M. Shabat, and D. Jäger, “Simulation of sensing characteristics in optical nonlinear waveguide sensors,” Laser Phys.14, 1231–1237 (2004).

Aggarwal, N.

N. Aggarwal, K. Lawson, M. Kershaw, R. Horvath, and J. J. Ramsden, “Protein adsorption on heterogeneous surfaces,” Appl. Phys. Lett.94(8), 083110 (2009).
[CrossRef]

Agnarsson, B.

Alieva, E. V.

V. N. Konopsky and E. V. Alieva, “A biosensor based on photonic crystal surface waves with an independent registration of the liquid refractive index,” Biosens. Bioelectron.25(5), 1212–1216 (2010).
[CrossRef] [PubMed]

Armani, A. M.

H. K. Hunt and A. M. Armani, “Label-free biological and chemical sensors,” Nanoscale2(9), 1544–1559 (2010).
[CrossRef] [PubMed]

Arnfinnsdottir, N. B.

Arntz, Y.

C. Picart, C. Gergely, Y. Arntz, J. C. Voegel, P. Schaaf, F. J. G. Cuisinier, and B. Senger, “Measurement of film thickness up to several hundreds of nanometers using optical waveguide lightmode spectroscopy,” Biosens. Bioelectron.20, 553–561 (2004).
[CrossRef] [PubMed]

Balakrishnan, J.

Y. Fang, A. M. Ferrie, N. H. Fontaine, J. Mauro, and J. Balakrishnan, “Resonant waveguide grating biosensor for living cell sensing,” Biophys. J.91(5), 1925–1940 (2006).
[CrossRef] [PubMed]

Borel, P. I.

Braginsky, V. B.

V. B. Braginsky, M. L. Gorodetsky, and V. S. Ilchenko, “Quality factor and nonlinear properties of optical whispering Gallery modes,” Phys. Lett. A137(7-8), 393–397 (1989).
[CrossRef]

Brandenburg, A.

K. Schmitt, B. Schirmer, C. Hoffmann, A. Brandenburg, and P. Meyrueis, “Interferometric biosensor based on planar optical waveguide sensor chips for label-free detection of surface bound bioreactions,” Biosens. Bioelectron.22(11), 2591–2597 (2007).
[CrossRef] [PubMed]

Calonder, C.

C. Calonder and P. R. Van Tassel, “Kinetic regimes of protein adsorption,” Langmuir17(14), 4392–4395 (2001).
[CrossRef]

Carlson, J. B.

S. Grego, K. H. Gilchrist, J. B. Carlson, and B. R. Stoner, “A compact and multichannel optical biosensor based on a wavelength interrogated input grating coupler,” Sens. Actuators B Chem.161(1), 721–727 (2012).
[CrossRef]

Chang, D. P.

J. M. Coles, D. P. Chang, and S. Zauscher, “Molecular mechanisms of aqueous boundary lubrication by mucinous glycoproteins,” Curr. Opin. Coll. Int. Sci.15(6), 406–416 (2010).
[CrossRef]

Choi, C. J.

C. J. Choi and B. T. Cunningham, “Single-step fabrication and characterization of photonic crystal biosensors with polymer microfluidic channels,” Lab Chip6(10), 1373–1380 (2006).
[CrossRef] [PubMed]

Coles, J. M.

J. M. Coles, D. P. Chang, and S. Zauscher, “Molecular mechanisms of aqueous boundary lubrication by mucinous glycoproteins,” Curr. Opin. Coll. Int. Sci.15(6), 406–416 (2010).
[CrossRef]

Cooper, M. A.

M. A. Cooper, “Optical biosensors in drug discovery,” Nat. Rev. Drug Discov.1(7), 515–528 (2002).
[CrossRef] [PubMed]

Cottier, K.

P. Kozma, A. Hamori, S. Kurunczi, K. Cottier, and R. Horvath, “Grating coupled optical waveguide interferometer for label-free biosensing,” Sens. Actuators B Chem.155(2), 446–450 (2011).
[CrossRef]

P. Kozma, A. Hamori, K. Cottier, S. Kurunczi, and R. Horvath, “Grating coupled interferometry for optical sensing,” Appl. Phys. B97(1), 5–8 (2009).
[CrossRef]

R. Horvath, K. Cottier, H. C. Pedersen, and J. J. Ramsden, “Multidepth screening of living cells using optical waveguides,” Biosens. Bioelectron.24(4), 799–810 (2008).
[CrossRef] [PubMed]

R. E. Kunz and K. Cottier, “Optimizing integrated optical chips for label-free (bio-)chemical sensing,” Anal. Bioanal. Chem.384(1), 180–190 (2006).
[CrossRef] [PubMed]

Csúcs, G.

J. Vörös, J. J. Ramsden, G. Csúcs, I. Szendro, S. M. De Paul, M. Textor, and N. D. Spencer, “Optical grating coupler biosensors,” Biomaterials23(17), 3699–3710 (2002).
[CrossRef] [PubMed]

Cuisinier, F. J. G.

R. Horvath, H. C. Pedersen, and F. J. G. Cuisinier, “Guided wave sensing of polyelectrolyte multilayers,” Appl. Phys. Lett.88(11), 111102 (2006).
[CrossRef]

C. Picart, C. Gergely, Y. Arntz, J. C. Voegel, P. Schaaf, F. J. G. Cuisinier, and B. Senger, “Measurement of film thickness up to several hundreds of nanometers using optical waveguide lightmode spectroscopy,” Biosens. Bioelectron.20, 553–561 (2004).
[CrossRef] [PubMed]

Cunningham, B. T.

C. J. Choi and B. T. Cunningham, “Single-step fabrication and characterization of photonic crystal biosensors with polymer microfluidic channels,” Lab Chip6(10), 1373–1380 (2006).
[CrossRef] [PubMed]

De Paul, S. M.

J. Vörös, J. J. Ramsden, G. Csúcs, I. Szendro, S. M. De Paul, M. Textor, and N. D. Spencer, “Optical grating coupler biosensors,” Biomaterials23(17), 3699–3710 (2002).
[CrossRef] [PubMed]

Dübendorfer, J.

Fan, X.

X. Fan, I. M. White, S. I. Shopova, H. Zhu, J. D. Suter, and Y. Sun, “Sensitive optical biosensors for unlabeled targets: a review,” Anal. Chim. Acta620(1-2), 8–26 (2008).
[CrossRef] [PubMed]

Fang, Y.

Y. Fang, “Label-free receptor assays,” Drug Discov. Today. Technol.7(1), 5–11 (2010).
[CrossRef] [PubMed]

Y. Fang, A. M. Ferrie, N. H. Fontaine, J. Mauro, and J. Balakrishnan, “Resonant waveguide grating biosensor for living cell sensing,” Biophys. J.91(5), 1925–1940 (2006).
[CrossRef] [PubMed]

Ferrie, A. M.

Y. Fang, A. M. Ferrie, N. H. Fontaine, J. Mauro, and J. Balakrishnan, “Resonant waveguide grating biosensor for living cell sensing,” Biophys. J.91(5), 1925–1940 (2006).
[CrossRef] [PubMed]

Fontaine, N. H.

Y. Fang, A. M. Ferrie, N. H. Fontaine, J. Mauro, and J. Balakrishnan, “Resonant waveguide grating biosensor for living cell sensing,” Biophys. J.91(5), 1925–1940 (2006).
[CrossRef] [PubMed]

Frandsen, L. H.

Gauglitz, G.

J. Homola, S. S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors: review,” Sens. Actuators B Chem.54(1-2), 3–15 (1999).
[CrossRef]

Gergely, C.

C. Picart, C. Gergely, Y. Arntz, J. C. Voegel, P. Schaaf, F. J. G. Cuisinier, and B. Senger, “Measurement of film thickness up to several hundreds of nanometers using optical waveguide lightmode spectroscopy,” Biosens. Bioelectron.20, 553–561 (2004).
[CrossRef] [PubMed]

Gilchrist, K. H.

S. Grego, K. H. Gilchrist, J. B. Carlson, and B. R. Stoner, “A compact and multichannel optical biosensor based on a wavelength interrogated input grating coupler,” Sens. Actuators B Chem.161(1), 721–727 (2012).
[CrossRef]

Gorodetsky, M. L.

V. B. Braginsky, M. L. Gorodetsky, and V. S. Ilchenko, “Quality factor and nonlinear properties of optical whispering Gallery modes,” Phys. Lett. A137(7-8), 393–397 (1989).
[CrossRef]

Grego, S.

S. Grego, K. H. Gilchrist, J. B. Carlson, and B. R. Stoner, “A compact and multichannel optical biosensor based on a wavelength interrogated input grating coupler,” Sens. Actuators B Chem.161(1), 721–727 (2012).
[CrossRef]

Hamori, A.

P. Kozma, A. Hamori, S. Kurunczi, K. Cottier, and R. Horvath, “Grating coupled optical waveguide interferometer for label-free biosensing,” Sens. Actuators B Chem.155(2), 446–450 (2011).
[CrossRef]

P. Kozma, A. Hamori, K. Cottier, S. Kurunczi, and R. Horvath, “Grating coupled interferometry for optical sensing,” Appl. Phys. B97(1), 5–8 (2009).
[CrossRef]

Heinrich, L.

E. K. Mann, L. Heinrich, and P. Schaaf, “Validation of the uniform thin-film approximation for the optical analysis of particulate films,” Langmuir13(18), 4906–4909 (1997).
[CrossRef]

Hoffmann, C.

K. Schmitt, B. Schirmer, C. Hoffmann, A. Brandenburg, and P. Meyrueis, “Interferometric biosensor based on planar optical waveguide sensor chips for label-free detection of surface bound bioreactions,” Biosens. Bioelectron.22(11), 2591–2597 (2007).
[CrossRef] [PubMed]

Homola, J.

J. Homola, S. S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors: review,” Sens. Actuators B Chem.54(1-2), 3–15 (1999).
[CrossRef]

Horvath, R.

P. Kozma, A. Hamori, S. Kurunczi, K. Cottier, and R. Horvath, “Grating coupled optical waveguide interferometer for label-free biosensing,” Sens. Actuators B Chem.155(2), 446–450 (2011).
[CrossRef]

P. Kozma, A. Hamori, K. Cottier, S. Kurunczi, and R. Horvath, “Grating coupled interferometry for optical sensing,” Appl. Phys. B97(1), 5–8 (2009).
[CrossRef]

J. J. Ramsden and R. Horvath, “Optical biosensors for cell adhesion,” J. Recept. Signal Transduct. Res.29(3-4), 211–223 (2009).
[CrossRef] [PubMed]

N. Aggarwal, K. Lawson, M. Kershaw, R. Horvath, and J. J. Ramsden, “Protein adsorption on heterogeneous surfaces,” Appl. Phys. Lett.94(8), 083110 (2009).
[CrossRef]

R. Horvath, J. McColl, G. E. Yakubov, and J. J. Ramsden, “Structural hysteresis and hierarchy in adsorbed glycoproteins,” J. Chem. Phys.129(7), 071102 (2008).
[CrossRef] [PubMed]

R. Horvath, K. Cottier, H. C. Pedersen, and J. J. Ramsden, “Multidepth screening of living cells using optical waveguides,” Biosens. Bioelectron.24(4), 799–810 (2008).
[CrossRef] [PubMed]

N. Skivesen, R. Horvath, S. Thinggaard, N. B. Larsen, and H. C. Pedersen, “Deep-probe metal-clad waveguide biosensors,” Biosens. Bioelectron.22(7), 1282–1288 (2007).
[CrossRef] [PubMed]

R. Horvath, H. C. Pedersen, and F. J. G. Cuisinier, “Guided wave sensing of polyelectrolyte multilayers,” Appl. Phys. Lett.88(11), 111102 (2006).
[CrossRef]

R. Horvath, H. C. Pedersen, N. Skivesen, D. Selmeczi, and N. B. Larsen, “Monitoring of living cell attachment and spreading using reverse symmetry waveguide sensing,” Appl. Phys. Lett.86(7), 071101 (2005).
[CrossRef]

R. Horvath, H. C. Pedersen, N. Skivesen, C. Svanberg, and N. B. Larsen, “Fabrication of reverse symmetry polymer waveguide sensor chips on nanoporous substrates using dip-floating,” J. Micromech. Microeng.15(6), 1260–1264 (2005).
[CrossRef]

N. Skivesen, R. Horvath, and H. C. Pedersen, “Optimization of metal-clad waveguide sensors,” Sens. Actuators B Chem.106(2), 668–676 (2005).
[CrossRef]

R. Horvath, L. R. Lindvold, and N. B. Larsen, “Fabrication of all-polymer freestanding waveguides,” J. Micromech. Microeng.13(3), 419–424 (2003).
[CrossRef]

R. Horvath, H. C. Pedersen, and N. B. Larsen, “Demonstration of reverse symmetry waveguide sensing in aqueous solutions,” Appl. Phys. Lett.81(12), 2166–2168 (2002).
[CrossRef]

Horváth, R.

Hunt, H. K.

H. K. Hunt and A. M. Armani, “Label-free biological and chemical sensors,” Nanoscale2(9), 1544–1559 (2010).
[CrossRef] [PubMed]

Ilchenko, V. S.

V. B. Braginsky, M. L. Gorodetsky, and V. S. Ilchenko, “Quality factor and nonlinear properties of optical whispering Gallery modes,” Phys. Lett. A137(7-8), 393–397 (1989).
[CrossRef]

Jäger, D.

M. M. Abadla, M. M. Shabat, and D. Jäger, “Simulation of sensing characteristics in optical nonlinear waveguide sensors,” Laser Phys.14, 1231–1237 (2004).

Jonsdottir, A. B.

Kershaw, M.

N. Aggarwal, K. Lawson, M. Kershaw, R. Horvath, and J. J. Ramsden, “Protein adsorption on heterogeneous surfaces,” Appl. Phys. Lett.94(8), 083110 (2009).
[CrossRef]

Khalil, H. M.

S. A. Taya, M. M. Shabat, and H. M. Khalil, “Nonlinear planar asymmetrical optical waveguides for sensing applications,” Optik (Stuttg.)121(9), 860–865 (2010).
[CrossRef]

Kjems, J.

Konopsky, V. N.

V. N. Konopsky and E. V. Alieva, “A biosensor based on photonic crystal surface waves with an independent registration of the liquid refractive index,” Biosens. Bioelectron.25(5), 1212–1216 (2010).
[CrossRef] [PubMed]

Kozma, P.

P. Kozma, A. Hamori, S. Kurunczi, K. Cottier, and R. Horvath, “Grating coupled optical waveguide interferometer for label-free biosensing,” Sens. Actuators B Chem.155(2), 446–450 (2011).
[CrossRef]

P. Kozma, A. Hamori, K. Cottier, S. Kurunczi, and R. Horvath, “Grating coupled interferometry for optical sensing,” Appl. Phys. B97(1), 5–8 (2009).
[CrossRef]

Kristensen, M.

Kunz, R. E.

R. E. Kunz and K. Cottier, “Optimizing integrated optical chips for label-free (bio-)chemical sensing,” Anal. Bioanal. Chem.384(1), 180–190 (2006).
[CrossRef] [PubMed]

J. Dübendorfer and R. E. Kunz, “Compact integrated optical immunosensor using replicated chirped grating coupler sensor chips,” Appl. Opt.37(10), 1890–1894 (1998).
[CrossRef] [PubMed]

Kurunczi, S.

P. Kozma, A. Hamori, S. Kurunczi, K. Cottier, and R. Horvath, “Grating coupled optical waveguide interferometer for label-free biosensing,” Sens. Actuators B Chem.155(2), 446–450 (2011).
[CrossRef]

P. Kozma, A. Hamori, K. Cottier, S. Kurunczi, and R. Horvath, “Grating coupled interferometry for optical sensing,” Appl. Phys. B97(1), 5–8 (2009).
[CrossRef]

Larsen, N. B.

N. Skivesen, R. Horvath, S. Thinggaard, N. B. Larsen, and H. C. Pedersen, “Deep-probe metal-clad waveguide biosensors,” Biosens. Bioelectron.22(7), 1282–1288 (2007).
[CrossRef] [PubMed]

R. Horvath, H. C. Pedersen, N. Skivesen, D. Selmeczi, and N. B. Larsen, “Monitoring of living cell attachment and spreading using reverse symmetry waveguide sensing,” Appl. Phys. Lett.86(7), 071101 (2005).
[CrossRef]

R. Horvath, H. C. Pedersen, N. Skivesen, C. Svanberg, and N. B. Larsen, “Fabrication of reverse symmetry polymer waveguide sensor chips on nanoporous substrates using dip-floating,” J. Micromech. Microeng.15(6), 1260–1264 (2005).
[CrossRef]

R. Horvath, L. R. Lindvold, and N. B. Larsen, “Fabrication of all-polymer freestanding waveguides,” J. Micromech. Microeng.13(3), 419–424 (2003).
[CrossRef]

R. Horváth, H. C. Pedersen, N. Skivesen, D. Selmeczi, and N. B. Larsen, “Optical waveguide sensor for on-line monitoring of bacteria,” Opt. Lett.28(14), 1233–1235 (2003).
[CrossRef] [PubMed]

R. Horvath, H. C. Pedersen, and N. B. Larsen, “Demonstration of reverse symmetry waveguide sensing in aqueous solutions,” Appl. Phys. Lett.81(12), 2166–2168 (2002).
[CrossRef]

Lawson, K.

N. Aggarwal, K. Lawson, M. Kershaw, R. Horvath, and J. J. Ramsden, “Protein adsorption on heterogeneous surfaces,” Appl. Phys. Lett.94(8), 083110 (2009).
[CrossRef]

Leosson, K.

Lindvold, L. R.

R. Horvath, L. R. Lindvold, and N. B. Larsen, “Fabrication of all-polymer freestanding waveguides,” J. Micromech. Microeng.13(3), 419–424 (2003).
[CrossRef]

Lukosz, W.

W. Lukosz, “Integrated optical chemical and direct biochemical sensors,” Sens. Actuators B Chem.29(1-3), 37–50 (1995).
[CrossRef]

W. Lukosz, P. M. Nellen, C. Stamm, and P. Weiss, “Output grating couplers on planar wave-guides as integrated optical chemical sensors,” Sens. Actuators B Chem.1(1-6), 585–588 (1990).
[CrossRef]

K. Tiefenthaler and W. Lukosz, “Sensitivity of grating couplers as integrated-optical chemical sensors,” J. Opt. Soc. Am. B6(2), 209–220 (1989).
[CrossRef]

Mann, E. K.

E. K. Mann, “Evaluating optical techniques for determining film structure: Optical invariants for anisotropic dielectric thin films,” Langmuir17(19), 5872–5881 (2001).
[CrossRef]

E. K. Mann, L. Heinrich, and P. Schaaf, “Validation of the uniform thin-film approximation for the optical analysis of particulate films,” Langmuir13(18), 4906–4909 (1997).
[CrossRef]

Mashaghi, A.

A. Mashaghi, M. Swann, J. Popplewell, M. Textor, and E. Reimhult, “Optical anisotropy of supported lipid structures probed by waveguide spectroscopy and its application to study of supported lipid bilayer formation kinetics,” Anal. Chem.80(10), 3666–3676 (2008).
[CrossRef] [PubMed]

Mauro, J.

Y. Fang, A. M. Ferrie, N. H. Fontaine, J. Mauro, and J. Balakrishnan, “Resonant waveguide grating biosensor for living cell sensing,” Biophys. J.91(5), 1925–1940 (2006).
[CrossRef] [PubMed]

McColl, J.

R. Horvath, J. McColl, G. E. Yakubov, and J. J. Ramsden, “Structural hysteresis and hierarchy in adsorbed glycoproteins,” J. Chem. Phys.129(7), 071102 (2008).
[CrossRef] [PubMed]

Meyrueis, P.

K. Schmitt, B. Schirmer, C. Hoffmann, A. Brandenburg, and P. Meyrueis, “Interferometric biosensor based on planar optical waveguide sensor chips for label-free detection of surface bound bioreactions,” Biosens. Bioelectron.22(11), 2591–2597 (2007).
[CrossRef] [PubMed]

Nellen, P. M.

W. Lukosz, P. M. Nellen, C. Stamm, and P. Weiss, “Output grating couplers on planar wave-guides as integrated optical chemical sensors,” Sens. Actuators B Chem.1(1-6), 585–588 (1990).
[CrossRef]

Pedersen, H. C.

R. Horvath, K. Cottier, H. C. Pedersen, and J. J. Ramsden, “Multidepth screening of living cells using optical waveguides,” Biosens. Bioelectron.24(4), 799–810 (2008).
[CrossRef] [PubMed]

N. Skivesen, R. Horvath, S. Thinggaard, N. B. Larsen, and H. C. Pedersen, “Deep-probe metal-clad waveguide biosensors,” Biosens. Bioelectron.22(7), 1282–1288 (2007).
[CrossRef] [PubMed]

R. Horvath, H. C. Pedersen, and F. J. G. Cuisinier, “Guided wave sensing of polyelectrolyte multilayers,” Appl. Phys. Lett.88(11), 111102 (2006).
[CrossRef]

R. Horvath, H. C. Pedersen, N. Skivesen, D. Selmeczi, and N. B. Larsen, “Monitoring of living cell attachment and spreading using reverse symmetry waveguide sensing,” Appl. Phys. Lett.86(7), 071101 (2005).
[CrossRef]

R. Horvath, H. C. Pedersen, N. Skivesen, C. Svanberg, and N. B. Larsen, “Fabrication of reverse symmetry polymer waveguide sensor chips on nanoporous substrates using dip-floating,” J. Micromech. Microeng.15(6), 1260–1264 (2005).
[CrossRef]

N. Skivesen, R. Horvath, and H. C. Pedersen, “Optimization of metal-clad waveguide sensors,” Sens. Actuators B Chem.106(2), 668–676 (2005).
[CrossRef]

R. Horváth, H. C. Pedersen, N. Skivesen, D. Selmeczi, and N. B. Larsen, “Optical waveguide sensor for on-line monitoring of bacteria,” Opt. Lett.28(14), 1233–1235 (2003).
[CrossRef] [PubMed]

R. Horvath, H. C. Pedersen, and N. B. Larsen, “Demonstration of reverse symmetry waveguide sensing in aqueous solutions,” Appl. Phys. Lett.81(12), 2166–2168 (2002).
[CrossRef]

Picart, C.

C. Picart, C. Gergely, Y. Arntz, J. C. Voegel, P. Schaaf, F. J. G. Cuisinier, and B. Senger, “Measurement of film thickness up to several hundreds of nanometers using optical waveguide lightmode spectroscopy,” Biosens. Bioelectron.20, 553–561 (2004).
[CrossRef] [PubMed]

Popplewell, J.

A. Mashaghi, M. Swann, J. Popplewell, M. Textor, and E. Reimhult, “Optical anisotropy of supported lipid structures probed by waveguide spectroscopy and its application to study of supported lipid bilayer formation kinetics,” Anal. Chem.80(10), 3666–3676 (2008).
[CrossRef] [PubMed]

Ramsden, J. J.

N. Aggarwal, K. Lawson, M. Kershaw, R. Horvath, and J. J. Ramsden, “Protein adsorption on heterogeneous surfaces,” Appl. Phys. Lett.94(8), 083110 (2009).
[CrossRef]

J. J. Ramsden and R. Horvath, “Optical biosensors for cell adhesion,” J. Recept. Signal Transduct. Res.29(3-4), 211–223 (2009).
[CrossRef] [PubMed]

R. Horvath, K. Cottier, H. C. Pedersen, and J. J. Ramsden, “Multidepth screening of living cells using optical waveguides,” Biosens. Bioelectron.24(4), 799–810 (2008).
[CrossRef] [PubMed]

R. Horvath, J. McColl, G. E. Yakubov, and J. J. Ramsden, “Structural hysteresis and hierarchy in adsorbed glycoproteins,” J. Chem. Phys.129(7), 071102 (2008).
[CrossRef] [PubMed]

J. Vörös, J. J. Ramsden, G. Csúcs, I. Szendro, S. M. De Paul, M. Textor, and N. D. Spencer, “Optical grating coupler biosensors,” Biomaterials23(17), 3699–3710 (2002).
[CrossRef] [PubMed]

J. J. Ramsden, “Review of new experimental methods for investigating random sequential adsorption,” J. Stat. Phys.73(5-6), 853–877 (1993).
[CrossRef]

Reimhult, E.

A. Mashaghi, M. Swann, J. Popplewell, M. Textor, and E. Reimhult, “Optical anisotropy of supported lipid structures probed by waveguide spectroscopy and its application to study of supported lipid bilayer formation kinetics,” Anal. Chem.80(10), 3666–3676 (2008).
[CrossRef] [PubMed]

Schaaf, P.

C. Picart, C. Gergely, Y. Arntz, J. C. Voegel, P. Schaaf, F. J. G. Cuisinier, and B. Senger, “Measurement of film thickness up to several hundreds of nanometers using optical waveguide lightmode spectroscopy,” Biosens. Bioelectron.20, 553–561 (2004).
[CrossRef] [PubMed]

E. K. Mann, L. Heinrich, and P. Schaaf, “Validation of the uniform thin-film approximation for the optical analysis of particulate films,” Langmuir13(18), 4906–4909 (1997).
[CrossRef]

Schirmer, B.

K. Schmitt, B. Schirmer, C. Hoffmann, A. Brandenburg, and P. Meyrueis, “Interferometric biosensor based on planar optical waveguide sensor chips for label-free detection of surface bound bioreactions,” Biosens. Bioelectron.22(11), 2591–2597 (2007).
[CrossRef] [PubMed]

Schmitt, K.

K. Schmitt, B. Schirmer, C. Hoffmann, A. Brandenburg, and P. Meyrueis, “Interferometric biosensor based on planar optical waveguide sensor chips for label-free detection of surface bound bioreactions,” Biosens. Bioelectron.22(11), 2591–2597 (2007).
[CrossRef] [PubMed]

Selmeczi, D.

R. Horvath, H. C. Pedersen, N. Skivesen, D. Selmeczi, and N. B. Larsen, “Monitoring of living cell attachment and spreading using reverse symmetry waveguide sensing,” Appl. Phys. Lett.86(7), 071101 (2005).
[CrossRef]

R. Horváth, H. C. Pedersen, N. Skivesen, D. Selmeczi, and N. B. Larsen, “Optical waveguide sensor for on-line monitoring of bacteria,” Opt. Lett.28(14), 1233–1235 (2003).
[CrossRef] [PubMed]

Senger, B.

C. Picart, C. Gergely, Y. Arntz, J. C. Voegel, P. Schaaf, F. J. G. Cuisinier, and B. Senger, “Measurement of film thickness up to several hundreds of nanometers using optical waveguide lightmode spectroscopy,” Biosens. Bioelectron.20, 553–561 (2004).
[CrossRef] [PubMed]

Shabat, M. M.

S. A. Taya, M. M. Shabat, and H. M. Khalil, “Nonlinear planar asymmetrical optical waveguides for sensing applications,” Optik (Stuttg.)121(9), 860–865 (2010).
[CrossRef]

M. M. Abadla, M. M. Shabat, and D. Jäger, “Simulation of sensing characteristics in optical nonlinear waveguide sensors,” Laser Phys.14, 1231–1237 (2004).

Shopova, S. I.

X. Fan, I. M. White, S. I. Shopova, H. Zhu, J. D. Suter, and Y. Sun, “Sensitive optical biosensors for unlabeled targets: a review,” Anal. Chim. Acta620(1-2), 8–26 (2008).
[CrossRef] [PubMed]

Skivesen, N.

N. Skivesen, A. Têtu, M. Kristensen, J. Kjems, L. H. Frandsen, and P. I. Borel, “Photonic-crystal waveguide biosensor,” Opt. Express15(6), 3169–3176 (2007).
[CrossRef] [PubMed]

N. Skivesen, R. Horvath, S. Thinggaard, N. B. Larsen, and H. C. Pedersen, “Deep-probe metal-clad waveguide biosensors,” Biosens. Bioelectron.22(7), 1282–1288 (2007).
[CrossRef] [PubMed]

N. Skivesen, R. Horvath, and H. C. Pedersen, “Optimization of metal-clad waveguide sensors,” Sens. Actuators B Chem.106(2), 668–676 (2005).
[CrossRef]

R. Horvath, H. C. Pedersen, N. Skivesen, C. Svanberg, and N. B. Larsen, “Fabrication of reverse symmetry polymer waveguide sensor chips on nanoporous substrates using dip-floating,” J. Micromech. Microeng.15(6), 1260–1264 (2005).
[CrossRef]

R. Horvath, H. C. Pedersen, N. Skivesen, D. Selmeczi, and N. B. Larsen, “Monitoring of living cell attachment and spreading using reverse symmetry waveguide sensing,” Appl. Phys. Lett.86(7), 071101 (2005).
[CrossRef]

R. Horváth, H. C. Pedersen, N. Skivesen, D. Selmeczi, and N. B. Larsen, “Optical waveguide sensor for on-line monitoring of bacteria,” Opt. Lett.28(14), 1233–1235 (2003).
[CrossRef] [PubMed]

Spencer, N. D.

J. Vörös, J. J. Ramsden, G. Csúcs, I. Szendro, S. M. De Paul, M. Textor, and N. D. Spencer, “Optical grating coupler biosensors,” Biomaterials23(17), 3699–3710 (2002).
[CrossRef] [PubMed]

Stamm, C.

W. Lukosz, P. M. Nellen, C. Stamm, and P. Weiss, “Output grating couplers on planar wave-guides as integrated optical chemical sensors,” Sens. Actuators B Chem.1(1-6), 585–588 (1990).
[CrossRef]

Stoner, B. R.

S. Grego, K. H. Gilchrist, J. B. Carlson, and B. R. Stoner, “A compact and multichannel optical biosensor based on a wavelength interrogated input grating coupler,” Sens. Actuators B Chem.161(1), 721–727 (2012).
[CrossRef]

Sun, Y.

X. Fan, I. M. White, S. I. Shopova, H. Zhu, J. D. Suter, and Y. Sun, “Sensitive optical biosensors for unlabeled targets: a review,” Anal. Chim. Acta620(1-2), 8–26 (2008).
[CrossRef] [PubMed]

Suter, J. D.

X. Fan, I. M. White, S. I. Shopova, H. Zhu, J. D. Suter, and Y. Sun, “Sensitive optical biosensors for unlabeled targets: a review,” Anal. Chim. Acta620(1-2), 8–26 (2008).
[CrossRef] [PubMed]

Svanberg, C.

R. Horvath, H. C. Pedersen, N. Skivesen, C. Svanberg, and N. B. Larsen, “Fabrication of reverse symmetry polymer waveguide sensor chips on nanoporous substrates using dip-floating,” J. Micromech. Microeng.15(6), 1260–1264 (2005).
[CrossRef]

Swann, M.

A. Mashaghi, M. Swann, J. Popplewell, M. Textor, and E. Reimhult, “Optical anisotropy of supported lipid structures probed by waveguide spectroscopy and its application to study of supported lipid bilayer formation kinetics,” Anal. Chem.80(10), 3666–3676 (2008).
[CrossRef] [PubMed]

Szendro, I.

J. Vörös, J. J. Ramsden, G. Csúcs, I. Szendro, S. M. De Paul, M. Textor, and N. D. Spencer, “Optical grating coupler biosensors,” Biomaterials23(17), 3699–3710 (2002).
[CrossRef] [PubMed]

Taya, S. A.

S. A. Taya, M. M. Shabat, and H. M. Khalil, “Nonlinear planar asymmetrical optical waveguides for sensing applications,” Optik (Stuttg.)121(9), 860–865 (2010).
[CrossRef]

Têtu, A.

Textor, M.

A. Mashaghi, M. Swann, J. Popplewell, M. Textor, and E. Reimhult, “Optical anisotropy of supported lipid structures probed by waveguide spectroscopy and its application to study of supported lipid bilayer formation kinetics,” Anal. Chem.80(10), 3666–3676 (2008).
[CrossRef] [PubMed]

J. Vörös, J. J. Ramsden, G. Csúcs, I. Szendro, S. M. De Paul, M. Textor, and N. D. Spencer, “Optical grating coupler biosensors,” Biomaterials23(17), 3699–3710 (2002).
[CrossRef] [PubMed]

Thinggaard, S.

N. Skivesen, R. Horvath, S. Thinggaard, N. B. Larsen, and H. C. Pedersen, “Deep-probe metal-clad waveguide biosensors,” Biosens. Bioelectron.22(7), 1282–1288 (2007).
[CrossRef] [PubMed]

Tiefenthaler, K.

Tien, P. K.

P. K. Tien, “Integrated optics and new wave phenomena,” Rev. Mod. Phys.49(2), 361–420 (1977).
[CrossRef]

Van Tassel, P. R.

C. Calonder and P. R. Van Tassel, “Kinetic regimes of protein adsorption,” Langmuir17(14), 4392–4395 (2001).
[CrossRef]

Voegel, J. C.

C. Picart, C. Gergely, Y. Arntz, J. C. Voegel, P. Schaaf, F. J. G. Cuisinier, and B. Senger, “Measurement of film thickness up to several hundreds of nanometers using optical waveguide lightmode spectroscopy,” Biosens. Bioelectron.20, 553–561 (2004).
[CrossRef] [PubMed]

Vörös, J.

J. Vörös, J. J. Ramsden, G. Csúcs, I. Szendro, S. M. De Paul, M. Textor, and N. D. Spencer, “Optical grating coupler biosensors,” Biomaterials23(17), 3699–3710 (2002).
[CrossRef] [PubMed]

Weiss, P.

W. Lukosz, P. M. Nellen, C. Stamm, and P. Weiss, “Output grating couplers on planar wave-guides as integrated optical chemical sensors,” Sens. Actuators B Chem.1(1-6), 585–588 (1990).
[CrossRef]

White, I. M.

X. Fan, I. M. White, S. I. Shopova, H. Zhu, J. D. Suter, and Y. Sun, “Sensitive optical biosensors for unlabeled targets: a review,” Anal. Chim. Acta620(1-2), 8–26 (2008).
[CrossRef] [PubMed]

Yakubov, G. E.

R. Horvath, J. McColl, G. E. Yakubov, and J. J. Ramsden, “Structural hysteresis and hierarchy in adsorbed glycoproteins,” J. Chem. Phys.129(7), 071102 (2008).
[CrossRef] [PubMed]

Yee, S. S.

J. Homola, S. S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors: review,” Sens. Actuators B Chem.54(1-2), 3–15 (1999).
[CrossRef]

Zauscher, S.

J. M. Coles, D. P. Chang, and S. Zauscher, “Molecular mechanisms of aqueous boundary lubrication by mucinous glycoproteins,” Curr. Opin. Coll. Int. Sci.15(6), 406–416 (2010).
[CrossRef]

Zhu, H.

X. Fan, I. M. White, S. I. Shopova, H. Zhu, J. D. Suter, and Y. Sun, “Sensitive optical biosensors for unlabeled targets: a review,” Anal. Chim. Acta620(1-2), 8–26 (2008).
[CrossRef] [PubMed]

Anal. Bioanal. Chem.

R. E. Kunz and K. Cottier, “Optimizing integrated optical chips for label-free (bio-)chemical sensing,” Anal. Bioanal. Chem.384(1), 180–190 (2006).
[CrossRef] [PubMed]

Anal. Chem.

A. Mashaghi, M. Swann, J. Popplewell, M. Textor, and E. Reimhult, “Optical anisotropy of supported lipid structures probed by waveguide spectroscopy and its application to study of supported lipid bilayer formation kinetics,” Anal. Chem.80(10), 3666–3676 (2008).
[CrossRef] [PubMed]

Anal. Chim. Acta

X. Fan, I. M. White, S. I. Shopova, H. Zhu, J. D. Suter, and Y. Sun, “Sensitive optical biosensors for unlabeled targets: a review,” Anal. Chim. Acta620(1-2), 8–26 (2008).
[CrossRef] [PubMed]

Appl. Opt.

Appl. Phys. B

P. Kozma, A. Hamori, K. Cottier, S. Kurunczi, and R. Horvath, “Grating coupled interferometry for optical sensing,” Appl. Phys. B97(1), 5–8 (2009).
[CrossRef]

Appl. Phys. Lett.

N. Aggarwal, K. Lawson, M. Kershaw, R. Horvath, and J. J. Ramsden, “Protein adsorption on heterogeneous surfaces,” Appl. Phys. Lett.94(8), 083110 (2009).
[CrossRef]

R. Horvath, H. C. Pedersen, and N. B. Larsen, “Demonstration of reverse symmetry waveguide sensing in aqueous solutions,” Appl. Phys. Lett.81(12), 2166–2168 (2002).
[CrossRef]

R. Horvath, H. C. Pedersen, N. Skivesen, D. Selmeczi, and N. B. Larsen, “Monitoring of living cell attachment and spreading using reverse symmetry waveguide sensing,” Appl. Phys. Lett.86(7), 071101 (2005).
[CrossRef]

R. Horvath, H. C. Pedersen, and F. J. G. Cuisinier, “Guided wave sensing of polyelectrolyte multilayers,” Appl. Phys. Lett.88(11), 111102 (2006).
[CrossRef]

Biomaterials

J. Vörös, J. J. Ramsden, G. Csúcs, I. Szendro, S. M. De Paul, M. Textor, and N. D. Spencer, “Optical grating coupler biosensors,” Biomaterials23(17), 3699–3710 (2002).
[CrossRef] [PubMed]

Biophys. J.

Y. Fang, A. M. Ferrie, N. H. Fontaine, J. Mauro, and J. Balakrishnan, “Resonant waveguide grating biosensor for living cell sensing,” Biophys. J.91(5), 1925–1940 (2006).
[CrossRef] [PubMed]

Biosens. Bioelectron.

R. Horvath, K. Cottier, H. C. Pedersen, and J. J. Ramsden, “Multidepth screening of living cells using optical waveguides,” Biosens. Bioelectron.24(4), 799–810 (2008).
[CrossRef] [PubMed]

C. Picart, C. Gergely, Y. Arntz, J. C. Voegel, P. Schaaf, F. J. G. Cuisinier, and B. Senger, “Measurement of film thickness up to several hundreds of nanometers using optical waveguide lightmode spectroscopy,” Biosens. Bioelectron.20, 553–561 (2004).
[CrossRef] [PubMed]

V. N. Konopsky and E. V. Alieva, “A biosensor based on photonic crystal surface waves with an independent registration of the liquid refractive index,” Biosens. Bioelectron.25(5), 1212–1216 (2010).
[CrossRef] [PubMed]

N. Skivesen, R. Horvath, S. Thinggaard, N. B. Larsen, and H. C. Pedersen, “Deep-probe metal-clad waveguide biosensors,” Biosens. Bioelectron.22(7), 1282–1288 (2007).
[CrossRef] [PubMed]

K. Schmitt, B. Schirmer, C. Hoffmann, A. Brandenburg, and P. Meyrueis, “Interferometric biosensor based on planar optical waveguide sensor chips for label-free detection of surface bound bioreactions,” Biosens. Bioelectron.22(11), 2591–2597 (2007).
[CrossRef] [PubMed]

Curr. Opin. Coll. Int. Sci.

J. M. Coles, D. P. Chang, and S. Zauscher, “Molecular mechanisms of aqueous boundary lubrication by mucinous glycoproteins,” Curr. Opin. Coll. Int. Sci.15(6), 406–416 (2010).
[CrossRef]

Drug Discov. Today. Technol.

Y. Fang, “Label-free receptor assays,” Drug Discov. Today. Technol.7(1), 5–11 (2010).
[CrossRef] [PubMed]

J. Chem. Phys.

R. Horvath, J. McColl, G. E. Yakubov, and J. J. Ramsden, “Structural hysteresis and hierarchy in adsorbed glycoproteins,” J. Chem. Phys.129(7), 071102 (2008).
[CrossRef] [PubMed]

J. Micromech. Microeng.

R. Horvath, L. R. Lindvold, and N. B. Larsen, “Fabrication of all-polymer freestanding waveguides,” J. Micromech. Microeng.13(3), 419–424 (2003).
[CrossRef]

R. Horvath, H. C. Pedersen, N. Skivesen, C. Svanberg, and N. B. Larsen, “Fabrication of reverse symmetry polymer waveguide sensor chips on nanoporous substrates using dip-floating,” J. Micromech. Microeng.15(6), 1260–1264 (2005).
[CrossRef]

J. Opt. Soc. Am. B

J. Recept. Signal Transduct. Res.

J. J. Ramsden and R. Horvath, “Optical biosensors for cell adhesion,” J. Recept. Signal Transduct. Res.29(3-4), 211–223 (2009).
[CrossRef] [PubMed]

J. Stat. Phys.

J. J. Ramsden, “Review of new experimental methods for investigating random sequential adsorption,” J. Stat. Phys.73(5-6), 853–877 (1993).
[CrossRef]

Lab Chip

C. J. Choi and B. T. Cunningham, “Single-step fabrication and characterization of photonic crystal biosensors with polymer microfluidic channels,” Lab Chip6(10), 1373–1380 (2006).
[CrossRef] [PubMed]

Langmuir

E. K. Mann, “Evaluating optical techniques for determining film structure: Optical invariants for anisotropic dielectric thin films,” Langmuir17(19), 5872–5881 (2001).
[CrossRef]

E. K. Mann, L. Heinrich, and P. Schaaf, “Validation of the uniform thin-film approximation for the optical analysis of particulate films,” Langmuir13(18), 4906–4909 (1997).
[CrossRef]

C. Calonder and P. R. Van Tassel, “Kinetic regimes of protein adsorption,” Langmuir17(14), 4392–4395 (2001).
[CrossRef]

Laser Phys.

M. M. Abadla, M. M. Shabat, and D. Jäger, “Simulation of sensing characteristics in optical nonlinear waveguide sensors,” Laser Phys.14, 1231–1237 (2004).

Nanoscale

H. K. Hunt and A. M. Armani, “Label-free biological and chemical sensors,” Nanoscale2(9), 1544–1559 (2010).
[CrossRef] [PubMed]

Nat. Rev. Drug Discov.

M. A. Cooper, “Optical biosensors in drug discovery,” Nat. Rev. Drug Discov.1(7), 515–528 (2002).
[CrossRef] [PubMed]

Opt. Express

Opt. Lett.

Optik (Stuttg.)

S. A. Taya, M. M. Shabat, and H. M. Khalil, “Nonlinear planar asymmetrical optical waveguides for sensing applications,” Optik (Stuttg.)121(9), 860–865 (2010).
[CrossRef]

Phys. Lett. A

V. B. Braginsky, M. L. Gorodetsky, and V. S. Ilchenko, “Quality factor and nonlinear properties of optical whispering Gallery modes,” Phys. Lett. A137(7-8), 393–397 (1989).
[CrossRef]

Rev. Mod. Phys.

P. K. Tien, “Integrated optics and new wave phenomena,” Rev. Mod. Phys.49(2), 361–420 (1977).
[CrossRef]

Sens. Actuators B Chem.

W. Lukosz, P. M. Nellen, C. Stamm, and P. Weiss, “Output grating couplers on planar wave-guides as integrated optical chemical sensors,” Sens. Actuators B Chem.1(1-6), 585–588 (1990).
[CrossRef]

W. Lukosz, “Integrated optical chemical and direct biochemical sensors,” Sens. Actuators B Chem.29(1-3), 37–50 (1995).
[CrossRef]

N. Skivesen, R. Horvath, and H. C. Pedersen, “Optimization of metal-clad waveguide sensors,” Sens. Actuators B Chem.106(2), 668–676 (2005).
[CrossRef]

J. Homola, S. S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors: review,” Sens. Actuators B Chem.54(1-2), 3–15 (1999).
[CrossRef]

P. Kozma, A. Hamori, S. Kurunczi, K. Cottier, and R. Horvath, “Grating coupled optical waveguide interferometer for label-free biosensing,” Sens. Actuators B Chem.155(2), 446–450 (2011).
[CrossRef]

S. Grego, K. H. Gilchrist, J. B. Carlson, and B. R. Stoner, “A compact and multichannel optical biosensor based on a wavelength interrogated input grating coupler,” Sens. Actuators B Chem.161(1), 721–727 (2012).
[CrossRef]

Other

The home page of the Creoptix GmbH. (Creoptix GmbH 2012) http://www.creoptix.com/

The home page of the Farfield Group. (Farfield Group 2012) http://www.farfield-group.com/

The home page of the Microvacuum (Microvacuum 2012) http://www.microvacuum.com

The home page of the Corning (Corning 2012) http://www.corning.com/lifesciences/us_canada/en/whats_new/epic_system.aspx

The home page of the SRU Biosystems. (SRU Biosystems 2012) http://www.srubiosystems.com/

J. J. Ramsden, Biomedical Surfaces (Artech House, 2007).

M. Malmsten, Biopolymers at Interfaces (Taylor & Francis, 2003).

B. A. Forbes, D. F. Sahm, and A. S. Weissfeld, Diagnostic Microbiology (Mosby, 1998), Chap. 15.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

(a) Cross section of the waveguide sensor. The measuring light is coupled into the waveguide through the first grating. The reference light is incoupled at the second grating. The interfrence signal is outcoupled at the third grating and picked up by a fiber coupled optical detector. The 5 mm long opening in the SiO2 layer represents the sensing window of the device. (b) Photo of the waveguide chip showing mode propagation between the second incoupling grating and the third outcoupling grating.

Fig. 2
Fig. 2

(a) Schematic drawing of the optical setup. (b) (left) Photo of the waveguide sensor chip holder and the dual channel flow through cuvette before assembly. The waveguide sensor chip with the three gratings, the O-rings of the fluidic channels and the optical fibers are clearly seen. (right) Top view of the assembled unit. The two fluidic channels are connected in series.

Fig. 3
Fig. 3

(a) Driving voltage on the active part of the LCM. (b) The measured interference signals of the two channels (Ch1 and Ch2) during a typical relaxation period of the LCM. The fits of Eq. (1) to the recorded data are also shown (solid lines).

Fig. 4
Fig. 4

Theoretical sensitivities of the waveguide sensor structure plotted in the function of waveguide film thickness. (a) Refractive index sensitivity. (b) Adlayer thickness sensitivity.

Fig. 5
Fig. 5

Measured phase signals in the two channels when various glycerol solutions were flowed over the sensing areas. (a) TE polarization. (b) TM polarization. Since the channels are connected in series, the sample liquid flashes the Ch2 first and only after a short delay it arrives to Ch1. This causes the characteristic peaks and dips in the difference signals. (c) Linearity of the sensor for both polarizations.

Fig. 6
Fig. 6

Protein adsorption experiments. The arrows indicate the injection of the protein and buffer solutions into the fluidic channels. (a) TE polarization. (b) TM polarization.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

I( t rel )= I 0 +Acos[ φ LCM e 2t rel /τ φ LCM ϕ( t ) ],
Δϕ=kL N n C Δ n C .
Δϕ=kL N d A Δ d A .

Metrics