M. Liu, X. Yin, and X. Zhang, “Double–layer graphene optical modulator,” Nano Lett. 12, 1482–1485 (2012).
[Crossref]
[PubMed]
M. Moresco, M. Romagnoli, S. Boscolo, and M. Midrio, “Method for Characterization of Si waveguide propagation loss,” submitted to Opt. Express (2012).
M. Liu, X. Yin, E. Ulin-Avila, B. Geng, T. Zentgraf, L. Ju, F. Wang, and X. Zhang. “A graphene-based broadband optical modulator,” Nature 474, 64–67 (2011).
[Crossref]
[PubMed]
P. Dong, R. Shafiiha, S. Liao, H. Liang, N.-N. Feng, D. Feng, G. Li, X. Zheng, A. V. Krishnamoorthy, and M. Ashgari, “Wavelength-tunable silicon microring modulator,” Opt. Express 18, 10941–10946 (2010).
[Crossref]
[PubMed]
Q. Xu, D. Fattal, and R. G. Beausoleil, “Silicon microring resonators with 1.5-μm radius,” Opt. Express 16, 4309–4315 (2008).
[Crossref]
[PubMed]
A. A. Balandin, S. Ghosh, W. Bao, I. Calizo, D. Teweldebrhan, F. Miao, and C. N. Lau, “Superior thermal conductivity of single-layer graphene,” Nano Lett. 8, 902–907 (2008).
[Crossref]
[PubMed]
T. Stauber, N. M. R. Peres, and A. K. Geim, “Optical conductivity of graphene in the visible region of the spectrum,” Phys. Rev. B 78, 085432 (2008).
[Crossref]
A. Vakil and N. Engheta, “Transformation optics using graphene,” Science 332, 1291–1294 (2008).
[Crossref]
G. W. Hanson, “Dyadic Green’s function and guided surface waves for a surface conductivity model of graphene,” J. Appl. Phys. 103, 064302 (2008).
[Crossref]
A. K. Geim and K. S. Novoselov, “The rise of graphene,” Nat. Mater. 6, 183–191 (2007).
[Crossref]
[PubMed]
A. Liu, L. Liao, D. Rubin, H. Nguyen, B. Ciftcioglu, Y. Chetrit, N. Izhaki, and M. Paniccia, “High–speed optical modulation based on carrier depletion in a silicon waveguide,” Opt. Express 15, 660–668 (2007).
[Crossref]
[PubMed]
Q. Xu, S. Manipatrumi, B. Schmidt, J. Shakya, and M. Lipson, “12.5 Gbit/s carrier–injection–based silicon microring silicon modulators,” Opt. Express 15, 430–436 (2007).
[Crossref]
[PubMed]
A. Liu, R. Jones, L. Liao, D. Samara–Rubio, D. Rubin, O. Cohen, R. Nicolaescu, and M. Paniccia, “A high–speed silicon optical modulator based on a metal–oxide semiconductor capacitor,” Nature 427, 615–618 (2004).
[Crossref]
[PubMed]
A. Sciuto, S. Libertino, A. Alessandria, S. Coffa, and G. Coppola, “Design, fabrication and testing of an integrated Si–based light modulator,” J. Lightwave Technol. 21, 228–235 (2003).
[Crossref]
C. A. Barrios, V. R. de Almeida, and M. Lipson, “Low–power–consumption short–length and high–modulation–depth silicon electrooptic modulator,” J. Lightwave Technol. 21, 1089–1098 (2003).
[Crossref]
A. Yariv, “Critical coupling and its control in optical waveguide–ring resonator systems,” IEEE Photon. Technol. Lett. 14, 483–485 (2002).
[Crossref]
K. K. Lee, D. R. Lim, L. C. Kimerling, J. Shin, and F. Cerrina, “Fabrication of ultralow-loss Si/SiO2 waveguides by roughness reduction,” Opt. Lett. 23, 1888–1890 (2001).
[Crossref]
A. Cutolo, M. Iodice, P. Spirito, and L. Zeni, “Silicon electro–optic modulator based on a three-terminal device integrated in a low–loss single–mode SOI waveguide,” J. Lightwave Technol. 15, 505–518 (1997).
[Crossref]
U. Fischer, B. Schuppert, and K. Petermann, “Integrated optical switches in silicon based on SiGe–waveguides,” IEEE Photon. Technol. Lett. 5, 785–787 (1993).
[Crossref]
H. C. Huang and T. C. Lo, “Simulation and analysis of silicon electro–optic modulators utilizing the carrier–dispersion effect and impact–ionization mechanism,” J. Appl. Phys. 74, 1521–1582 (1993).
[Crossref]
G. V. Treyez, P. G. May, and J. M. Halbout, “Silicon optical modulators at 1.3 micrometer based on free–carrier absorption,” IEEE Electron. Dev. Lett. 12, 276–278 (1991).
[Crossref]
G. V. Treyez, P. G. May, and J. M. Halbout, “Silicon Mach–Zehnder waveguide inteferometers based on the plasma dispersion effect,” Appl. Phys. Lett. 59, 771–773 (1991).
[Crossref]
S. R. Giguere, L. Friedman, R. A. Soref, and J. P. Lorenzo, “Simulation studies of silicon electro–optic waveguide devices,” J. Appl. Phys. 68, 4964–4970 (1990).
[Crossref]
L. Friedman, R. A. Soref, and J. P. Lorenzo, “Silicon double–injection electro–optic modulator with junction gate control,” J. Appl. Phys. 63, 1831–1839 (1988).
[Crossref]
R. A. Soref and B. R. Bennett, “Kramers–Kronig analysis of electro–optical switching in silicon,” Proc. SPIE 704, 32–37 (1987).
J. P. Lorenzo and R. A. Soref, “1.3 μm electro–optic silicon switch,” J. Appl. Phys. 51, 6–8 (1987).
P. Dong, R. Shafiiha, S. Liao, H. Liang, N.-N. Feng, D. Feng, G. Li, X. Zheng, A. V. Krishnamoorthy, and M. Ashgari, “Wavelength-tunable silicon microring modulator,” Opt. Express 18, 10941–10946 (2010).
[Crossref]
[PubMed]
A. A. Balandin, S. Ghosh, W. Bao, I. Calizo, D. Teweldebrhan, F. Miao, and C. N. Lau, “Superior thermal conductivity of single-layer graphene,” Nano Lett. 8, 902–907 (2008).
[Crossref]
[PubMed]
A. A. Balandin, S. Ghosh, W. Bao, I. Calizo, D. Teweldebrhan, F. Miao, and C. N. Lau, “Superior thermal conductivity of single-layer graphene,” Nano Lett. 8, 902–907 (2008).
[Crossref]
[PubMed]
R. A. Soref and B. R. Bennett, “Kramers–Kronig analysis of electro–optical switching in silicon,” Proc. SPIE 704, 32–37 (1987).
M. Moresco, M. Romagnoli, S. Boscolo, and M. Midrio, “Method for Characterization of Si waveguide propagation loss,” submitted to Opt. Express (2012).
A. A. Balandin, S. Ghosh, W. Bao, I. Calizo, D. Teweldebrhan, F. Miao, and C. N. Lau, “Superior thermal conductivity of single-layer graphene,” Nano Lett. 8, 902–907 (2008).
[Crossref]
[PubMed]
K. K. Lee, D. R. Lim, L. C. Kimerling, J. Shin, and F. Cerrina, “Fabrication of ultralow-loss Si/SiO2 waveguides by roughness reduction,” Opt. Lett. 23, 1888–1890 (2001).
[Crossref]
A. Liu, L. Liao, D. Rubin, H. Nguyen, B. Ciftcioglu, Y. Chetrit, N. Izhaki, and M. Paniccia, “High–speed optical modulation based on carrier depletion in a silicon waveguide,” Opt. Express 15, 660–668 (2007).
[Crossref]
[PubMed]
A. Liu, L. Liao, D. Rubin, H. Nguyen, B. Ciftcioglu, Y. Chetrit, N. Izhaki, and M. Paniccia, “High–speed optical modulation based on carrier depletion in a silicon waveguide,” Opt. Express 15, 660–668 (2007).
[Crossref]
[PubMed]
A. Liu, R. Jones, L. Liao, D. Samara–Rubio, D. Rubin, O. Cohen, R. Nicolaescu, and M. Paniccia, “A high–speed silicon optical modulator based on a metal–oxide semiconductor capacitor,” Nature 427, 615–618 (2004).
[Crossref]
[PubMed]
A. Cutolo, M. Iodice, P. Spirito, and L. Zeni, “Silicon electro–optic modulator based on a three-terminal device integrated in a low–loss single–mode SOI waveguide,” J. Lightwave Technol. 15, 505–518 (1997).
[Crossref]
C. T. DeRose, M. R. Watts, D. C. Trotter, D. L. Luck, G. N. Nielson, and R. W. Young, “Silicon microring modulator with integrated heater and temperature sensor for thermal control,” in Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference 2010, paper CThJ3.
P. Dong, R. Shafiiha, S. Liao, H. Liang, N.-N. Feng, D. Feng, G. Li, X. Zheng, A. V. Krishnamoorthy, and M. Ashgari, “Wavelength-tunable silicon microring modulator,” Opt. Express 18, 10941–10946 (2010).
[Crossref]
[PubMed]
A. Vakil and N. Engheta, “Transformation optics using graphene,” Science 332, 1291–1294 (2008).
[Crossref]
P. Dong, R. Shafiiha, S. Liao, H. Liang, N.-N. Feng, D. Feng, G. Li, X. Zheng, A. V. Krishnamoorthy, and M. Ashgari, “Wavelength-tunable silicon microring modulator,” Opt. Express 18, 10941–10946 (2010).
[Crossref]
[PubMed]
P. Dong, R. Shafiiha, S. Liao, H. Liang, N.-N. Feng, D. Feng, G. Li, X. Zheng, A. V. Krishnamoorthy, and M. Ashgari, “Wavelength-tunable silicon microring modulator,” Opt. Express 18, 10941–10946 (2010).
[Crossref]
[PubMed]
U. Fischer, B. Schuppert, and K. Petermann, “Integrated optical switches in silicon based on SiGe–waveguides,” IEEE Photon. Technol. Lett. 5, 785–787 (1993).
[Crossref]
S. R. Giguere, L. Friedman, R. A. Soref, and J. P. Lorenzo, “Simulation studies of silicon electro–optic waveguide devices,” J. Appl. Phys. 68, 4964–4970 (1990).
[Crossref]
L. Friedman, R. A. Soref, and J. P. Lorenzo, “Silicon double–injection electro–optic modulator with junction gate control,” J. Appl. Phys. 63, 1831–1839 (1988).
[Crossref]
T. Stauber, N. M. R. Peres, and A. K. Geim, “Optical conductivity of graphene in the visible region of the spectrum,” Phys. Rev. B 78, 085432 (2008).
[Crossref]
A. K. Geim and K. S. Novoselov, “The rise of graphene,” Nat. Mater. 6, 183–191 (2007).
[Crossref]
[PubMed]
M. Liu, X. Yin, E. Ulin-Avila, B. Geng, T. Zentgraf, L. Ju, F. Wang, and X. Zhang. “A graphene-based broadband optical modulator,” Nature 474, 64–67 (2011).
[Crossref]
[PubMed]
A. A. Balandin, S. Ghosh, W. Bao, I. Calizo, D. Teweldebrhan, F. Miao, and C. N. Lau, “Superior thermal conductivity of single-layer graphene,” Nano Lett. 8, 902–907 (2008).
[Crossref]
[PubMed]
S. R. Giguere, L. Friedman, R. A. Soref, and J. P. Lorenzo, “Simulation studies of silicon electro–optic waveguide devices,” J. Appl. Phys. 68, 4964–4970 (1990).
[Crossref]
G. V. Treyez, P. G. May, and J. M. Halbout, “Silicon Mach–Zehnder waveguide inteferometers based on the plasma dispersion effect,” Appl. Phys. Lett. 59, 771–773 (1991).
[Crossref]
G. V. Treyez, P. G. May, and J. M. Halbout, “Silicon optical modulators at 1.3 micrometer based on free–carrier absorption,” IEEE Electron. Dev. Lett. 12, 276–278 (1991).
[Crossref]
G. W. Hanson, “Dyadic Green’s function and guided surface waves for a surface conductivity model of graphene,” J. Appl. Phys. 103, 064302 (2008).
[Crossref]
H. C. Huang and T. C. Lo, “Simulation and analysis of silicon electro–optic modulators utilizing the carrier–dispersion effect and impact–ionization mechanism,” J. Appl. Phys. 74, 1521–1582 (1993).
[Crossref]
A. Cutolo, M. Iodice, P. Spirito, and L. Zeni, “Silicon electro–optic modulator based on a three-terminal device integrated in a low–loss single–mode SOI waveguide,” J. Lightwave Technol. 15, 505–518 (1997).
[Crossref]
A. Liu, L. Liao, D. Rubin, H. Nguyen, B. Ciftcioglu, Y. Chetrit, N. Izhaki, and M. Paniccia, “High–speed optical modulation based on carrier depletion in a silicon waveguide,” Opt. Express 15, 660–668 (2007).
[Crossref]
[PubMed]
A. Liu, R. Jones, L. Liao, D. Samara–Rubio, D. Rubin, O. Cohen, R. Nicolaescu, and M. Paniccia, “A high–speed silicon optical modulator based on a metal–oxide semiconductor capacitor,” Nature 427, 615–618 (2004).
[Crossref]
[PubMed]
M. Liu, X. Yin, E. Ulin-Avila, B. Geng, T. Zentgraf, L. Ju, F. Wang, and X. Zhang. “A graphene-based broadband optical modulator,” Nature 474, 64–67 (2011).
[Crossref]
[PubMed]
K. K. Lee, D. R. Lim, L. C. Kimerling, J. Shin, and F. Cerrina, “Fabrication of ultralow-loss Si/SiO2 waveguides by roughness reduction,” Opt. Lett. 23, 1888–1890 (2001).
[Crossref]
P. Dong, R. Shafiiha, S. Liao, H. Liang, N.-N. Feng, D. Feng, G. Li, X. Zheng, A. V. Krishnamoorthy, and M. Ashgari, “Wavelength-tunable silicon microring modulator,” Opt. Express 18, 10941–10946 (2010).
[Crossref]
[PubMed]
A. A. Balandin, S. Ghosh, W. Bao, I. Calizo, D. Teweldebrhan, F. Miao, and C. N. Lau, “Superior thermal conductivity of single-layer graphene,” Nano Lett. 8, 902–907 (2008).
[Crossref]
[PubMed]
K. K. Lee, D. R. Lim, L. C. Kimerling, J. Shin, and F. Cerrina, “Fabrication of ultralow-loss Si/SiO2 waveguides by roughness reduction,” Opt. Lett. 23, 1888–1890 (2001).
[Crossref]
M. R. Watts, D. C. Trotter, R. W. Young, and A. L. Lentine, “Ultralow power silicon microdisk modulators and switches,” in Proc. of the 5th IEEE International Conference on Group IV Photonics (Cardiff, Wales, 2008).
W. A. Zortman, M. R. Watts, D. C. Trotter, R. W. Young, and A. L. Lentine, “Low-power high-speed silicon microdisk modulators,” in Proc. Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference (CLEO/QELS) (San Jose, Calif., 2004), paper CThJ4.
P. Dong, R. Shafiiha, S. Liao, H. Liang, N.-N. Feng, D. Feng, G. Li, X. Zheng, A. V. Krishnamoorthy, and M. Ashgari, “Wavelength-tunable silicon microring modulator,” Opt. Express 18, 10941–10946 (2010).
[Crossref]
[PubMed]
P. Dong, R. Shafiiha, S. Liao, H. Liang, N.-N. Feng, D. Feng, G. Li, X. Zheng, A. V. Krishnamoorthy, and M. Ashgari, “Wavelength-tunable silicon microring modulator,” Opt. Express 18, 10941–10946 (2010).
[Crossref]
[PubMed]
A. Liu, L. Liao, D. Rubin, H. Nguyen, B. Ciftcioglu, Y. Chetrit, N. Izhaki, and M. Paniccia, “High–speed optical modulation based on carrier depletion in a silicon waveguide,” Opt. Express 15, 660–668 (2007).
[Crossref]
[PubMed]
A. Liu, R. Jones, L. Liao, D. Samara–Rubio, D. Rubin, O. Cohen, R. Nicolaescu, and M. Paniccia, “A high–speed silicon optical modulator based on a metal–oxide semiconductor capacitor,” Nature 427, 615–618 (2004).
[Crossref]
[PubMed]
P. Dong, R. Shafiiha, S. Liao, H. Liang, N.-N. Feng, D. Feng, G. Li, X. Zheng, A. V. Krishnamoorthy, and M. Ashgari, “Wavelength-tunable silicon microring modulator,” Opt. Express 18, 10941–10946 (2010).
[Crossref]
[PubMed]
K. K. Lee, D. R. Lim, L. C. Kimerling, J. Shin, and F. Cerrina, “Fabrication of ultralow-loss Si/SiO2 waveguides by roughness reduction,” Opt. Lett. 23, 1888–1890 (2001).
[Crossref]
Q. Xu, S. Manipatrumi, B. Schmidt, J. Shakya, and M. Lipson, “12.5 Gbit/s carrier–injection–based silicon microring silicon modulators,” Opt. Express 15, 430–436 (2007).
[Crossref]
[PubMed]
C. A. Barrios, V. R. de Almeida, and M. Lipson, “Low–power–consumption short–length and high–modulation–depth silicon electrooptic modulator,” J. Lightwave Technol. 21, 1089–1098 (2003).
[Crossref]
A. Liu, L. Liao, D. Rubin, H. Nguyen, B. Ciftcioglu, Y. Chetrit, N. Izhaki, and M. Paniccia, “High–speed optical modulation based on carrier depletion in a silicon waveguide,” Opt. Express 15, 660–668 (2007).
[Crossref]
[PubMed]
A. Liu, R. Jones, L. Liao, D. Samara–Rubio, D. Rubin, O. Cohen, R. Nicolaescu, and M. Paniccia, “A high–speed silicon optical modulator based on a metal–oxide semiconductor capacitor,” Nature 427, 615–618 (2004).
[Crossref]
[PubMed]
M. Liu, X. Yin, and X. Zhang, “Double–layer graphene optical modulator,” Nano Lett. 12, 1482–1485 (2012).
[Crossref]
[PubMed]
M. Liu, X. Yin, E. Ulin-Avila, B. Geng, T. Zentgraf, L. Ju, F. Wang, and X. Zhang. “A graphene-based broadband optical modulator,” Nature 474, 64–67 (2011).
[Crossref]
[PubMed]
H. C. Huang and T. C. Lo, “Simulation and analysis of silicon electro–optic modulators utilizing the carrier–dispersion effect and impact–ionization mechanism,” J. Appl. Phys. 74, 1521–1582 (1993).
[Crossref]
S. R. Giguere, L. Friedman, R. A. Soref, and J. P. Lorenzo, “Simulation studies of silicon electro–optic waveguide devices,” J. Appl. Phys. 68, 4964–4970 (1990).
[Crossref]
L. Friedman, R. A. Soref, and J. P. Lorenzo, “Silicon double–injection electro–optic modulator with junction gate control,” J. Appl. Phys. 63, 1831–1839 (1988).
[Crossref]
J. P. Lorenzo and R. A. Soref, “1.3 μm electro–optic silicon switch,” J. Appl. Phys. 51, 6–8 (1987).
C. T. DeRose, M. R. Watts, D. C. Trotter, D. L. Luck, G. N. Nielson, and R. W. Young, “Silicon microring modulator with integrated heater and temperature sensor for thermal control,” in Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference 2010, paper CThJ3.
G. V. Treyez, P. G. May, and J. M. Halbout, “Silicon Mach–Zehnder waveguide inteferometers based on the plasma dispersion effect,” Appl. Phys. Lett. 59, 771–773 (1991).
[Crossref]
G. V. Treyez, P. G. May, and J. M. Halbout, “Silicon optical modulators at 1.3 micrometer based on free–carrier absorption,” IEEE Electron. Dev. Lett. 12, 276–278 (1991).
[Crossref]
A. A. Balandin, S. Ghosh, W. Bao, I. Calizo, D. Teweldebrhan, F. Miao, and C. N. Lau, “Superior thermal conductivity of single-layer graphene,” Nano Lett. 8, 902–907 (2008).
[Crossref]
[PubMed]
M. Moresco, M. Romagnoli, S. Boscolo, and M. Midrio, “Method for Characterization of Si waveguide propagation loss,” submitted to Opt. Express (2012).
M. Moresco, M. Romagnoli, S. Boscolo, and M. Midrio, “Method for Characterization of Si waveguide propagation loss,” submitted to Opt. Express (2012).
A. Liu, L. Liao, D. Rubin, H. Nguyen, B. Ciftcioglu, Y. Chetrit, N. Izhaki, and M. Paniccia, “High–speed optical modulation based on carrier depletion in a silicon waveguide,” Opt. Express 15, 660–668 (2007).
[Crossref]
[PubMed]
A. Liu, R. Jones, L. Liao, D. Samara–Rubio, D. Rubin, O. Cohen, R. Nicolaescu, and M. Paniccia, “A high–speed silicon optical modulator based on a metal–oxide semiconductor capacitor,” Nature 427, 615–618 (2004).
[Crossref]
[PubMed]
C. T. DeRose, M. R. Watts, D. C. Trotter, D. L. Luck, G. N. Nielson, and R. W. Young, “Silicon microring modulator with integrated heater and temperature sensor for thermal control,” in Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference 2010, paper CThJ3.
A. K. Geim and K. S. Novoselov, “The rise of graphene,” Nat. Mater. 6, 183–191 (2007).
[Crossref]
[PubMed]
A. Liu, L. Liao, D. Rubin, H. Nguyen, B. Ciftcioglu, Y. Chetrit, N. Izhaki, and M. Paniccia, “High–speed optical modulation based on carrier depletion in a silicon waveguide,” Opt. Express 15, 660–668 (2007).
[Crossref]
[PubMed]
A. Liu, R. Jones, L. Liao, D. Samara–Rubio, D. Rubin, O. Cohen, R. Nicolaescu, and M. Paniccia, “A high–speed silicon optical modulator based on a metal–oxide semiconductor capacitor,” Nature 427, 615–618 (2004).
[Crossref]
[PubMed]
T. Stauber, N. M. R. Peres, and A. K. Geim, “Optical conductivity of graphene in the visible region of the spectrum,” Phys. Rev. B 78, 085432 (2008).
[Crossref]
U. Fischer, B. Schuppert, and K. Petermann, “Integrated optical switches in silicon based on SiGe–waveguides,” IEEE Photon. Technol. Lett. 5, 785–787 (1993).
[Crossref]
M. Moresco, M. Romagnoli, S. Boscolo, and M. Midrio, “Method for Characterization of Si waveguide propagation loss,” submitted to Opt. Express (2012).
A. Liu, L. Liao, D. Rubin, H. Nguyen, B. Ciftcioglu, Y. Chetrit, N. Izhaki, and M. Paniccia, “High–speed optical modulation based on carrier depletion in a silicon waveguide,” Opt. Express 15, 660–668 (2007).
[Crossref]
[PubMed]
A. Liu, R. Jones, L. Liao, D. Samara–Rubio, D. Rubin, O. Cohen, R. Nicolaescu, and M. Paniccia, “A high–speed silicon optical modulator based on a metal–oxide semiconductor capacitor,” Nature 427, 615–618 (2004).
[Crossref]
[PubMed]
A. Liu, R. Jones, L. Liao, D. Samara–Rubio, D. Rubin, O. Cohen, R. Nicolaescu, and M. Paniccia, “A high–speed silicon optical modulator based on a metal–oxide semiconductor capacitor,” Nature 427, 615–618 (2004).
[Crossref]
[PubMed]
U. Fischer, B. Schuppert, and K. Petermann, “Integrated optical switches in silicon based on SiGe–waveguides,” IEEE Photon. Technol. Lett. 5, 785–787 (1993).
[Crossref]
P. Dong, R. Shafiiha, S. Liao, H. Liang, N.-N. Feng, D. Feng, G. Li, X. Zheng, A. V. Krishnamoorthy, and M. Ashgari, “Wavelength-tunable silicon microring modulator,” Opt. Express 18, 10941–10946 (2010).
[Crossref]
[PubMed]
K. K. Lee, D. R. Lim, L. C. Kimerling, J. Shin, and F. Cerrina, “Fabrication of ultralow-loss Si/SiO2 waveguides by roughness reduction,” Opt. Lett. 23, 1888–1890 (2001).
[Crossref]
S. R. Giguere, L. Friedman, R. A. Soref, and J. P. Lorenzo, “Simulation studies of silicon electro–optic waveguide devices,” J. Appl. Phys. 68, 4964–4970 (1990).
[Crossref]
L. Friedman, R. A. Soref, and J. P. Lorenzo, “Silicon double–injection electro–optic modulator with junction gate control,” J. Appl. Phys. 63, 1831–1839 (1988).
[Crossref]
J. P. Lorenzo and R. A. Soref, “1.3 μm electro–optic silicon switch,” J. Appl. Phys. 51, 6–8 (1987).
R. A. Soref and B. R. Bennett, “Kramers–Kronig analysis of electro–optical switching in silicon,” Proc. SPIE 704, 32–37 (1987).
A. Cutolo, M. Iodice, P. Spirito, and L. Zeni, “Silicon electro–optic modulator based on a three-terminal device integrated in a low–loss single–mode SOI waveguide,” J. Lightwave Technol. 15, 505–518 (1997).
[Crossref]
T. Stauber, N. M. R. Peres, and A. K. Geim, “Optical conductivity of graphene in the visible region of the spectrum,” Phys. Rev. B 78, 085432 (2008).
[Crossref]
A. A. Balandin, S. Ghosh, W. Bao, I. Calizo, D. Teweldebrhan, F. Miao, and C. N. Lau, “Superior thermal conductivity of single-layer graphene,” Nano Lett. 8, 902–907 (2008).
[Crossref]
[PubMed]
G. V. Treyez, P. G. May, and J. M. Halbout, “Silicon Mach–Zehnder waveguide inteferometers based on the plasma dispersion effect,” Appl. Phys. Lett. 59, 771–773 (1991).
[Crossref]
G. V. Treyez, P. G. May, and J. M. Halbout, “Silicon optical modulators at 1.3 micrometer based on free–carrier absorption,” IEEE Electron. Dev. Lett. 12, 276–278 (1991).
[Crossref]
C. T. DeRose, M. R. Watts, D. C. Trotter, D. L. Luck, G. N. Nielson, and R. W. Young, “Silicon microring modulator with integrated heater and temperature sensor for thermal control,” in Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference 2010, paper CThJ3.
W. A. Zortman, M. R. Watts, D. C. Trotter, R. W. Young, and A. L. Lentine, “Low-power high-speed silicon microdisk modulators,” in Proc. Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference (CLEO/QELS) (San Jose, Calif., 2004), paper CThJ4.
M. R. Watts, D. C. Trotter, R. W. Young, and A. L. Lentine, “Ultralow power silicon microdisk modulators and switches,” in Proc. of the 5th IEEE International Conference on Group IV Photonics (Cardiff, Wales, 2008).
M. Liu, X. Yin, E. Ulin-Avila, B. Geng, T. Zentgraf, L. Ju, F. Wang, and X. Zhang. “A graphene-based broadband optical modulator,” Nature 474, 64–67 (2011).
[Crossref]
[PubMed]
A. Vakil and N. Engheta, “Transformation optics using graphene,” Science 332, 1291–1294 (2008).
[Crossref]
M. Liu, X. Yin, E. Ulin-Avila, B. Geng, T. Zentgraf, L. Ju, F. Wang, and X. Zhang. “A graphene-based broadband optical modulator,” Nature 474, 64–67 (2011).
[Crossref]
[PubMed]
C. T. DeRose, M. R. Watts, D. C. Trotter, D. L. Luck, G. N. Nielson, and R. W. Young, “Silicon microring modulator with integrated heater and temperature sensor for thermal control,” in Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference 2010, paper CThJ3.
M. R. Watts, D. C. Trotter, R. W. Young, and A. L. Lentine, “Ultralow power silicon microdisk modulators and switches,” in Proc. of the 5th IEEE International Conference on Group IV Photonics (Cardiff, Wales, 2008).
W. A. Zortman, M. R. Watts, D. C. Trotter, R. W. Young, and A. L. Lentine, “Low-power high-speed silicon microdisk modulators,” in Proc. Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference (CLEO/QELS) (San Jose, Calif., 2004), paper CThJ4.
Q. Xu, D. Fattal, and R. G. Beausoleil, “Silicon microring resonators with 1.5-μm radius,” Opt. Express 16, 4309–4315 (2008).
[Crossref]
[PubMed]
Q. Xu, S. Manipatrumi, B. Schmidt, J. Shakya, and M. Lipson, “12.5 Gbit/s carrier–injection–based silicon microring silicon modulators,” Opt. Express 15, 430–436 (2007).
[Crossref]
[PubMed]
A. Yariv, “Critical coupling and its control in optical waveguide–ring resonator systems,” IEEE Photon. Technol. Lett. 14, 483–485 (2002).
[Crossref]
M. Liu, X. Yin, and X. Zhang, “Double–layer graphene optical modulator,” Nano Lett. 12, 1482–1485 (2012).
[Crossref]
[PubMed]
M. Liu, X. Yin, E. Ulin-Avila, B. Geng, T. Zentgraf, L. Ju, F. Wang, and X. Zhang. “A graphene-based broadband optical modulator,” Nature 474, 64–67 (2011).
[Crossref]
[PubMed]
C. T. DeRose, M. R. Watts, D. C. Trotter, D. L. Luck, G. N. Nielson, and R. W. Young, “Silicon microring modulator with integrated heater and temperature sensor for thermal control,” in Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference 2010, paper CThJ3.
M. R. Watts, D. C. Trotter, R. W. Young, and A. L. Lentine, “Ultralow power silicon microdisk modulators and switches,” in Proc. of the 5th IEEE International Conference on Group IV Photonics (Cardiff, Wales, 2008).
W. A. Zortman, M. R. Watts, D. C. Trotter, R. W. Young, and A. L. Lentine, “Low-power high-speed silicon microdisk modulators,” in Proc. Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference (CLEO/QELS) (San Jose, Calif., 2004), paper CThJ4.
A. Cutolo, M. Iodice, P. Spirito, and L. Zeni, “Silicon electro–optic modulator based on a three-terminal device integrated in a low–loss single–mode SOI waveguide,” J. Lightwave Technol. 15, 505–518 (1997).
[Crossref]
M. Liu, X. Yin, E. Ulin-Avila, B. Geng, T. Zentgraf, L. Ju, F. Wang, and X. Zhang. “A graphene-based broadband optical modulator,” Nature 474, 64–67 (2011).
[Crossref]
[PubMed]
M. Liu, X. Yin, and X. Zhang, “Double–layer graphene optical modulator,” Nano Lett. 12, 1482–1485 (2012).
[Crossref]
[PubMed]
M. Liu, X. Yin, E. Ulin-Avila, B. Geng, T. Zentgraf, L. Ju, F. Wang, and X. Zhang. “A graphene-based broadband optical modulator,” Nature 474, 64–67 (2011).
[Crossref]
[PubMed]
P. Dong, R. Shafiiha, S. Liao, H. Liang, N.-N. Feng, D. Feng, G. Li, X. Zheng, A. V. Krishnamoorthy, and M. Ashgari, “Wavelength-tunable silicon microring modulator,” Opt. Express 18, 10941–10946 (2010).
[Crossref]
[PubMed]
W. A. Zortman, M. R. Watts, D. C. Trotter, R. W. Young, and A. L. Lentine, “Low-power high-speed silicon microdisk modulators,” in Proc. Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference (CLEO/QELS) (San Jose, Calif., 2004), paper CThJ4.
G. V. Treyez, P. G. May, and J. M. Halbout, “Silicon Mach–Zehnder waveguide inteferometers based on the plasma dispersion effect,” Appl. Phys. Lett. 59, 771–773 (1991).
[Crossref]
G. V. Treyez, P. G. May, and J. M. Halbout, “Silicon optical modulators at 1.3 micrometer based on free–carrier absorption,” IEEE Electron. Dev. Lett. 12, 276–278 (1991).
[Crossref]
U. Fischer, B. Schuppert, and K. Petermann, “Integrated optical switches in silicon based on SiGe–waveguides,” IEEE Photon. Technol. Lett. 5, 785–787 (1993).
[Crossref]
A. Yariv, “Critical coupling and its control in optical waveguide–ring resonator systems,” IEEE Photon. Technol. Lett. 14, 483–485 (2002).
[Crossref]
J. P. Lorenzo and R. A. Soref, “1.3 μm electro–optic silicon switch,” J. Appl. Phys. 51, 6–8 (1987).
L. Friedman, R. A. Soref, and J. P. Lorenzo, “Silicon double–injection electro–optic modulator with junction gate control,” J. Appl. Phys. 63, 1831–1839 (1988).
[Crossref]
S. R. Giguere, L. Friedman, R. A. Soref, and J. P. Lorenzo, “Simulation studies of silicon electro–optic waveguide devices,” J. Appl. Phys. 68, 4964–4970 (1990).
[Crossref]
H. C. Huang and T. C. Lo, “Simulation and analysis of silicon electro–optic modulators utilizing the carrier–dispersion effect and impact–ionization mechanism,” J. Appl. Phys. 74, 1521–1582 (1993).
[Crossref]
G. W. Hanson, “Dyadic Green’s function and guided surface waves for a surface conductivity model of graphene,” J. Appl. Phys. 103, 064302 (2008).
[Crossref]
A. Cutolo, M. Iodice, P. Spirito, and L. Zeni, “Silicon electro–optic modulator based on a three-terminal device integrated in a low–loss single–mode SOI waveguide,” J. Lightwave Technol. 15, 505–518 (1997).
[Crossref]
A. Sciuto, S. Libertino, A. Alessandria, S. Coffa, and G. Coppola, “Design, fabrication and testing of an integrated Si–based light modulator,” J. Lightwave Technol. 21, 228–235 (2003).
[Crossref]
C. A. Barrios, V. R. de Almeida, and M. Lipson, “Low–power–consumption short–length and high–modulation–depth silicon electrooptic modulator,” J. Lightwave Technol. 21, 1089–1098 (2003).
[Crossref]
T. Barwicz and H. A. Haus, “Three-dimensional analysis of scattering losses due to sidewall roughness in microphotonic waveguides,” J. Lightwave Technol. 23, 2719–2732 (2005).
[Crossref]
A. A. Balandin, S. Ghosh, W. Bao, I. Calizo, D. Teweldebrhan, F. Miao, and C. N. Lau, “Superior thermal conductivity of single-layer graphene,” Nano Lett. 8, 902–907 (2008).
[Crossref]
[PubMed]
M. Liu, X. Yin, and X. Zhang, “Double–layer graphene optical modulator,” Nano Lett. 12, 1482–1485 (2012).
[Crossref]
[PubMed]
A. K. Geim and K. S. Novoselov, “The rise of graphene,” Nat. Mater. 6, 183–191 (2007).
[Crossref]
[PubMed]
M. Liu, X. Yin, E. Ulin-Avila, B. Geng, T. Zentgraf, L. Ju, F. Wang, and X. Zhang. “A graphene-based broadband optical modulator,” Nature 474, 64–67 (2011).
[Crossref]
[PubMed]
A. Liu, R. Jones, L. Liao, D. Samara–Rubio, D. Rubin, O. Cohen, R. Nicolaescu, and M. Paniccia, “A high–speed silicon optical modulator based on a metal–oxide semiconductor capacitor,” Nature 427, 615–618 (2004).
[Crossref]
[PubMed]
Q. Xu, S. Manipatrumi, B. Schmidt, J. Shakya, and M. Lipson, “12.5 Gbit/s carrier–injection–based silicon microring silicon modulators,” Opt. Express 15, 430–436 (2007).
[Crossref]
[PubMed]
A. Liu, L. Liao, D. Rubin, H. Nguyen, B. Ciftcioglu, Y. Chetrit, N. Izhaki, and M. Paniccia, “High–speed optical modulation based on carrier depletion in a silicon waveguide,” Opt. Express 15, 660–668 (2007).
[Crossref]
[PubMed]
Q. Xu, D. Fattal, and R. G. Beausoleil, “Silicon microring resonators with 1.5-μm radius,” Opt. Express 16, 4309–4315 (2008).
[Crossref]
[PubMed]
P. Dong, R. Shafiiha, S. Liao, H. Liang, N.-N. Feng, D. Feng, G. Li, X. Zheng, A. V. Krishnamoorthy, and M. Ashgari, “Wavelength-tunable silicon microring modulator,” Opt. Express 18, 10941–10946 (2010).
[Crossref]
[PubMed]
M. Moresco, M. Romagnoli, S. Boscolo, and M. Midrio, “Method for Characterization of Si waveguide propagation loss,” submitted to Opt. Express (2012).
K. K. Lee, D. R. Lim, L. C. Kimerling, J. Shin, and F. Cerrina, “Fabrication of ultralow-loss Si/SiO2 waveguides by roughness reduction,” Opt. Lett. 23, 1888–1890 (2001).
[Crossref]
T. Stauber, N. M. R. Peres, and A. K. Geim, “Optical conductivity of graphene in the visible region of the spectrum,” Phys. Rev. B 78, 085432 (2008).
[Crossref]
R. A. Soref and B. R. Bennett, “Kramers–Kronig analysis of electro–optical switching in silicon,” Proc. SPIE 704, 32–37 (1987).
A. Vakil and N. Engheta, “Transformation optics using graphene,” Science 332, 1291–1294 (2008).
[Crossref]
CST Microwave Studio 2012. Darmstadt, Germany.
W. A. Zortman, M. R. Watts, D. C. Trotter, R. W. Young, and A. L. Lentine, “Low-power high-speed silicon microdisk modulators,” in Proc. Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference (CLEO/QELS) (San Jose, Calif., 2004), paper CThJ4.
M. R. Watts, D. C. Trotter, R. W. Young, and A. L. Lentine, “Ultralow power silicon microdisk modulators and switches,” in Proc. of the 5th IEEE International Conference on Group IV Photonics (Cardiff, Wales, 2008).
C. T. DeRose, M. R. Watts, D. C. Trotter, D. L. Luck, G. N. Nielson, and R. W. Young, “Silicon microring modulator with integrated heater and temperature sensor for thermal control,” in Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference 2010, paper CThJ3.