Abstract

We numerically demonstrate an optical waveguide structure for the coherent tunnelling adiabatic passage of photons. An alternative coupling scheme is used compared to earlier work. We show that a three rib optical waveguide structure is robust to material loss in the intermediate waveguide and variations to the waveguide parameters. We also present a five rib optical waveguide structure that represents a new class of octave spanning power divider.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. Longhi, M. Marangoni, D. Janner, R. Ramponi, P. Laporta, E. Cianci, and V. Foglietti, “Observation of wave packet dichotomy and adiabatic stabilization in an optical waveguide,” Phys. Rev. Lett.94, 073002 (2005).
    [CrossRef] [PubMed]
  2. S. Longhi, “Adiabatic passage of light in coupled optical waveguides,” Phys. Rev. E73, 026607 (2006).
    [CrossRef]
  3. S. Longhi, “Optical realization of multilevel adiabatic population transfer in curved waveguide arrays,” Phys. Lett. A359, 166–170 (2006).
    [CrossRef]
  4. E. Paspalakis, “Adiabatic three-waveguide directional coupler,” Opt. Commun.258, 30–34 (2006).
    [CrossRef]
  5. S. Longhi, G. Della Valle, M. Ornigotti, and P. Laporta, “Coherent tunneling by adiabatic passage in an optical waveguide system,” Phys. Rev. B76, 201101 (2007).
  6. G. Della Valle, M. Ornigotti, T. Fernandez, P. Laporta, S. Longhi, A. Coppa, and V. Foglietti, “Adiabatic light transfer via dressed states in optical waveguide arrays,” Appl. Phys. Lett.92, 011106 (2008).
    [CrossRef]
  7. R. Sapienza, P. Costantino, D. Wiersma, M. Ghulinyan, C. J. Oton, and L. Pavesi, “Optical analogue of electronic bloch oscillations,” Phys. Rev. Lett.91, 263902 (2003).
    [CrossRef]
  8. D. N. Christodoulides, F. Lederer, and Y. Silberberg, “Discretizing light behaviour in linear and nonlinear waveguide lattices,” Nature424, 817 – 823 (2003).
    [CrossRef] [PubMed]
  9. H. Trompeter, T. Pertsch, F. Lederer, D. Michaelis, U. Streppel, A. Bräuer, and U. Peschel, “Visual observation of zener tunneling,” Phys. Rev. Lett.96, 023901 (2006).
    [CrossRef] [PubMed]
  10. S. Longhi, “Quantum-optical analogies using photonic structures,” Laser & Phot. Rev.3, 243–261 (2009).
    [CrossRef] [PubMed]
  11. K. Bergmann, H. Theuer, and B. W. Shore, “Coherent population transfer among quantum states of atoms and molecules,” Rev. Mod. Phys.70, 1003–1025 (1998).
    [CrossRef]
  12. N. V. Vitanov, T. Halfmann, B. W. Shore, and K. Bergmann, “Laser-induced population transfer by adiabatic passage techniques,” Annu. Rev. Phys. Chem.52, 763–809 (2001).
    [CrossRef] [PubMed]
  13. A. D. Greentree, J. H. Cole, A. R. Hamilton, and L. C. L. Hollenberg, “Coherent electronic transfer in quantum dot systems using adiabatic passage,” Phys. Rev. B70, 235317 (2004).
    [CrossRef]
  14. K. Eckert, M. Lewenstein, R. Corbalán, G. Birkl, W. Ertmer, and J. Mompart, “Three-level atom optics via the tunneling interaction,” Phys. Rev. A70, 023606 (2004).
    [CrossRef]
  15. M. Rab, J. H. Cole, N. G. Parker, A. D. Greentree, L. C. L. Hollenberg, and A. M. Martin, “Spatial coherent transport of interacting dilute bose gases,” Phys. Rev. A77, 061602 (2008).
    [CrossRef]
  16. J. D. Joannopoulos, R. D. Meade, and J. N. Winn, Photonic Crystals: Molding the Flow of Light (Princeton University Press, 1995).
  17. K. Okamoto, Fundamentals of optical waveguides (Academic Press, 2000).
  18. F. Dreisow, M. Ornigotti, A. Szameit, M. Heinrich, R. Keil, S. Nolte, A. Tunnermann, and S. Longhi, “Polychromatic beam splitting by fractional stimulated raman adiabatic passage,” Appl. Phys. Lett.95, 261102 (2009).
    [CrossRef]
  19. A. A. Rangelov and N. V. Vitanov, “Achromatic multiple beam splitting by adiabatic passage in optical waveguides,” Phys. Rev. A85, 055803 (2012).
    [CrossRef]
  20. A. D. Greentree, S. J. Devitt, and L. C. L. Hollenberg, “Quantum-information transport to multiple receivers,” Phys. Rev. A73, 032319 (2006).
    [CrossRef]
  21. S. J. Devitt, A. D. Greentree, and L. C. L. Hollenberg, “Information free quantum bus for generating stabiliser states.” Quantum Inf. Process.6, 229 – 242 (2007).
    [CrossRef]
  22. C. D. Hill, A. D. Greentree, and L. C. L. Hollenberg, “Parallel interaction-free measurement using spatial adiabatic passage,” New J. Phys.13, 125002 (2011).
    [CrossRef]
  23. B. E. Little and W. P. Huang, “Coupled-mode theory for optical waveguides,” Prog. Electromagn. Res.10, 217–270 (1995).
  24. S. Longhi, “Photonic transport via chirped adiabatic passage in optical waveguides,” J. Phys. B: At., Mol. Opt. Phys.40, F189 (2007).
    [CrossRef]
  25. T. Tamir, Integrated Optics, Topics in Applied Physics, Vol. 7 (Berlin: Springer, 1979).
  26. L. M. Jong, A. D. Greentree, V. I. Conrad, L. C. L. Hollenberg, and D. N. Jamieson, “Coherent tunneling adiabatic passage with the alternating coupling scheme,” Nanotech.20, 405402 (2009).
    [CrossRef]
  27. J. H. Cole, A. D. Greentree, L. C. L. Hollenberg, and S. Das Sarma, “Spatial adiabatic passage in a realistic triple well structure,” Phys. Rev. B77, 235418 (2008).
    [CrossRef]

2012

A. A. Rangelov and N. V. Vitanov, “Achromatic multiple beam splitting by adiabatic passage in optical waveguides,” Phys. Rev. A85, 055803 (2012).
[CrossRef]

2011

S. Longhi, G. Della Valle, M. Ornigotti, and P. Laporta, “Coherent tunneling by adiabatic passage in an optical waveguide system,” Phys. Rev. B76, 201101 (2007).

C. D. Hill, A. D. Greentree, and L. C. L. Hollenberg, “Parallel interaction-free measurement using spatial adiabatic passage,” New J. Phys.13, 125002 (2011).
[CrossRef]

2009

F. Dreisow, M. Ornigotti, A. Szameit, M. Heinrich, R. Keil, S. Nolte, A. Tunnermann, and S. Longhi, “Polychromatic beam splitting by fractional stimulated raman adiabatic passage,” Appl. Phys. Lett.95, 261102 (2009).
[CrossRef]

L. M. Jong, A. D. Greentree, V. I. Conrad, L. C. L. Hollenberg, and D. N. Jamieson, “Coherent tunneling adiabatic passage with the alternating coupling scheme,” Nanotech.20, 405402 (2009).
[CrossRef]

S. Longhi, “Quantum-optical analogies using photonic structures,” Laser & Phot. Rev.3, 243–261 (2009).
[CrossRef] [PubMed]

2008

M. Rab, J. H. Cole, N. G. Parker, A. D. Greentree, L. C. L. Hollenberg, and A. M. Martin, “Spatial coherent transport of interacting dilute bose gases,” Phys. Rev. A77, 061602 (2008).
[CrossRef]

G. Della Valle, M. Ornigotti, T. Fernandez, P. Laporta, S. Longhi, A. Coppa, and V. Foglietti, “Adiabatic light transfer via dressed states in optical waveguide arrays,” Appl. Phys. Lett.92, 011106 (2008).
[CrossRef]

J. H. Cole, A. D. Greentree, L. C. L. Hollenberg, and S. Das Sarma, “Spatial adiabatic passage in a realistic triple well structure,” Phys. Rev. B77, 235418 (2008).
[CrossRef]

2007

S. Longhi, “Photonic transport via chirped adiabatic passage in optical waveguides,” J. Phys. B: At., Mol. Opt. Phys.40, F189 (2007).
[CrossRef]

S. J. Devitt, A. D. Greentree, and L. C. L. Hollenberg, “Information free quantum bus for generating stabiliser states.” Quantum Inf. Process.6, 229 – 242 (2007).
[CrossRef]

2006

S. Longhi, “Adiabatic passage of light in coupled optical waveguides,” Phys. Rev. E73, 026607 (2006).
[CrossRef]

S. Longhi, “Optical realization of multilevel adiabatic population transfer in curved waveguide arrays,” Phys. Lett. A359, 166–170 (2006).
[CrossRef]

E. Paspalakis, “Adiabatic three-waveguide directional coupler,” Opt. Commun.258, 30–34 (2006).
[CrossRef]

H. Trompeter, T. Pertsch, F. Lederer, D. Michaelis, U. Streppel, A. Bräuer, and U. Peschel, “Visual observation of zener tunneling,” Phys. Rev. Lett.96, 023901 (2006).
[CrossRef] [PubMed]

A. D. Greentree, S. J. Devitt, and L. C. L. Hollenberg, “Quantum-information transport to multiple receivers,” Phys. Rev. A73, 032319 (2006).
[CrossRef]

2005

S. Longhi, M. Marangoni, D. Janner, R. Ramponi, P. Laporta, E. Cianci, and V. Foglietti, “Observation of wave packet dichotomy and adiabatic stabilization in an optical waveguide,” Phys. Rev. Lett.94, 073002 (2005).
[CrossRef] [PubMed]

2004

A. D. Greentree, J. H. Cole, A. R. Hamilton, and L. C. L. Hollenberg, “Coherent electronic transfer in quantum dot systems using adiabatic passage,” Phys. Rev. B70, 235317 (2004).
[CrossRef]

K. Eckert, M. Lewenstein, R. Corbalán, G. Birkl, W. Ertmer, and J. Mompart, “Three-level atom optics via the tunneling interaction,” Phys. Rev. A70, 023606 (2004).
[CrossRef]

2003

R. Sapienza, P. Costantino, D. Wiersma, M. Ghulinyan, C. J. Oton, and L. Pavesi, “Optical analogue of electronic bloch oscillations,” Phys. Rev. Lett.91, 263902 (2003).
[CrossRef]

D. N. Christodoulides, F. Lederer, and Y. Silberberg, “Discretizing light behaviour in linear and nonlinear waveguide lattices,” Nature424, 817 – 823 (2003).
[CrossRef] [PubMed]

2001

N. V. Vitanov, T. Halfmann, B. W. Shore, and K. Bergmann, “Laser-induced population transfer by adiabatic passage techniques,” Annu. Rev. Phys. Chem.52, 763–809 (2001).
[CrossRef] [PubMed]

1998

K. Bergmann, H. Theuer, and B. W. Shore, “Coherent population transfer among quantum states of atoms and molecules,” Rev. Mod. Phys.70, 1003–1025 (1998).
[CrossRef]

1995

B. E. Little and W. P. Huang, “Coupled-mode theory for optical waveguides,” Prog. Electromagn. Res.10, 217–270 (1995).

Bergmann, K.

N. V. Vitanov, T. Halfmann, B. W. Shore, and K. Bergmann, “Laser-induced population transfer by adiabatic passage techniques,” Annu. Rev. Phys. Chem.52, 763–809 (2001).
[CrossRef] [PubMed]

K. Bergmann, H. Theuer, and B. W. Shore, “Coherent population transfer among quantum states of atoms and molecules,” Rev. Mod. Phys.70, 1003–1025 (1998).
[CrossRef]

Birkl, G.

K. Eckert, M. Lewenstein, R. Corbalán, G. Birkl, W. Ertmer, and J. Mompart, “Three-level atom optics via the tunneling interaction,” Phys. Rev. A70, 023606 (2004).
[CrossRef]

Bräuer, A.

H. Trompeter, T. Pertsch, F. Lederer, D. Michaelis, U. Streppel, A. Bräuer, and U. Peschel, “Visual observation of zener tunneling,” Phys. Rev. Lett.96, 023901 (2006).
[CrossRef] [PubMed]

Christodoulides, D. N.

D. N. Christodoulides, F. Lederer, and Y. Silberberg, “Discretizing light behaviour in linear and nonlinear waveguide lattices,” Nature424, 817 – 823 (2003).
[CrossRef] [PubMed]

Cianci, E.

S. Longhi, M. Marangoni, D. Janner, R. Ramponi, P. Laporta, E. Cianci, and V. Foglietti, “Observation of wave packet dichotomy and adiabatic stabilization in an optical waveguide,” Phys. Rev. Lett.94, 073002 (2005).
[CrossRef] [PubMed]

Cole, J. H.

M. Rab, J. H. Cole, N. G. Parker, A. D. Greentree, L. C. L. Hollenberg, and A. M. Martin, “Spatial coherent transport of interacting dilute bose gases,” Phys. Rev. A77, 061602 (2008).
[CrossRef]

J. H. Cole, A. D. Greentree, L. C. L. Hollenberg, and S. Das Sarma, “Spatial adiabatic passage in a realistic triple well structure,” Phys. Rev. B77, 235418 (2008).
[CrossRef]

A. D. Greentree, J. H. Cole, A. R. Hamilton, and L. C. L. Hollenberg, “Coherent electronic transfer in quantum dot systems using adiabatic passage,” Phys. Rev. B70, 235317 (2004).
[CrossRef]

Conrad, V. I.

L. M. Jong, A. D. Greentree, V. I. Conrad, L. C. L. Hollenberg, and D. N. Jamieson, “Coherent tunneling adiabatic passage with the alternating coupling scheme,” Nanotech.20, 405402 (2009).
[CrossRef]

Coppa, A.

G. Della Valle, M. Ornigotti, T. Fernandez, P. Laporta, S. Longhi, A. Coppa, and V. Foglietti, “Adiabatic light transfer via dressed states in optical waveguide arrays,” Appl. Phys. Lett.92, 011106 (2008).
[CrossRef]

Corbalán, R.

K. Eckert, M. Lewenstein, R. Corbalán, G. Birkl, W. Ertmer, and J. Mompart, “Three-level atom optics via the tunneling interaction,” Phys. Rev. A70, 023606 (2004).
[CrossRef]

Costantino, P.

R. Sapienza, P. Costantino, D. Wiersma, M. Ghulinyan, C. J. Oton, and L. Pavesi, “Optical analogue of electronic bloch oscillations,” Phys. Rev. Lett.91, 263902 (2003).
[CrossRef]

Das Sarma, S.

J. H. Cole, A. D. Greentree, L. C. L. Hollenberg, and S. Das Sarma, “Spatial adiabatic passage in a realistic triple well structure,” Phys. Rev. B77, 235418 (2008).
[CrossRef]

Della Valle, G.

S. Longhi, G. Della Valle, M. Ornigotti, and P. Laporta, “Coherent tunneling by adiabatic passage in an optical waveguide system,” Phys. Rev. B76, 201101 (2007).

G. Della Valle, M. Ornigotti, T. Fernandez, P. Laporta, S. Longhi, A. Coppa, and V. Foglietti, “Adiabatic light transfer via dressed states in optical waveguide arrays,” Appl. Phys. Lett.92, 011106 (2008).
[CrossRef]

Devitt, S. J.

S. J. Devitt, A. D. Greentree, and L. C. L. Hollenberg, “Information free quantum bus for generating stabiliser states.” Quantum Inf. Process.6, 229 – 242 (2007).
[CrossRef]

A. D. Greentree, S. J. Devitt, and L. C. L. Hollenberg, “Quantum-information transport to multiple receivers,” Phys. Rev. A73, 032319 (2006).
[CrossRef]

Dreisow, F.

F. Dreisow, M. Ornigotti, A. Szameit, M. Heinrich, R. Keil, S. Nolte, A. Tunnermann, and S. Longhi, “Polychromatic beam splitting by fractional stimulated raman adiabatic passage,” Appl. Phys. Lett.95, 261102 (2009).
[CrossRef]

Eckert, K.

K. Eckert, M. Lewenstein, R. Corbalán, G. Birkl, W. Ertmer, and J. Mompart, “Three-level atom optics via the tunneling interaction,” Phys. Rev. A70, 023606 (2004).
[CrossRef]

Ertmer, W.

K. Eckert, M. Lewenstein, R. Corbalán, G. Birkl, W. Ertmer, and J. Mompart, “Three-level atom optics via the tunneling interaction,” Phys. Rev. A70, 023606 (2004).
[CrossRef]

Fernandez, T.

G. Della Valle, M. Ornigotti, T. Fernandez, P. Laporta, S. Longhi, A. Coppa, and V. Foglietti, “Adiabatic light transfer via dressed states in optical waveguide arrays,” Appl. Phys. Lett.92, 011106 (2008).
[CrossRef]

Foglietti, V.

G. Della Valle, M. Ornigotti, T. Fernandez, P. Laporta, S. Longhi, A. Coppa, and V. Foglietti, “Adiabatic light transfer via dressed states in optical waveguide arrays,” Appl. Phys. Lett.92, 011106 (2008).
[CrossRef]

S. Longhi, M. Marangoni, D. Janner, R. Ramponi, P. Laporta, E. Cianci, and V. Foglietti, “Observation of wave packet dichotomy and adiabatic stabilization in an optical waveguide,” Phys. Rev. Lett.94, 073002 (2005).
[CrossRef] [PubMed]

Ghulinyan, M.

R. Sapienza, P. Costantino, D. Wiersma, M. Ghulinyan, C. J. Oton, and L. Pavesi, “Optical analogue of electronic bloch oscillations,” Phys. Rev. Lett.91, 263902 (2003).
[CrossRef]

Greentree, A. D.

C. D. Hill, A. D. Greentree, and L. C. L. Hollenberg, “Parallel interaction-free measurement using spatial adiabatic passage,” New J. Phys.13, 125002 (2011).
[CrossRef]

L. M. Jong, A. D. Greentree, V. I. Conrad, L. C. L. Hollenberg, and D. N. Jamieson, “Coherent tunneling adiabatic passage with the alternating coupling scheme,” Nanotech.20, 405402 (2009).
[CrossRef]

J. H. Cole, A. D. Greentree, L. C. L. Hollenberg, and S. Das Sarma, “Spatial adiabatic passage in a realistic triple well structure,” Phys. Rev. B77, 235418 (2008).
[CrossRef]

M. Rab, J. H. Cole, N. G. Parker, A. D. Greentree, L. C. L. Hollenberg, and A. M. Martin, “Spatial coherent transport of interacting dilute bose gases,” Phys. Rev. A77, 061602 (2008).
[CrossRef]

S. J. Devitt, A. D. Greentree, and L. C. L. Hollenberg, “Information free quantum bus for generating stabiliser states.” Quantum Inf. Process.6, 229 – 242 (2007).
[CrossRef]

A. D. Greentree, S. J. Devitt, and L. C. L. Hollenberg, “Quantum-information transport to multiple receivers,” Phys. Rev. A73, 032319 (2006).
[CrossRef]

A. D. Greentree, J. H. Cole, A. R. Hamilton, and L. C. L. Hollenberg, “Coherent electronic transfer in quantum dot systems using adiabatic passage,” Phys. Rev. B70, 235317 (2004).
[CrossRef]

Halfmann, T.

N. V. Vitanov, T. Halfmann, B. W. Shore, and K. Bergmann, “Laser-induced population transfer by adiabatic passage techniques,” Annu. Rev. Phys. Chem.52, 763–809 (2001).
[CrossRef] [PubMed]

Hamilton, A. R.

A. D. Greentree, J. H. Cole, A. R. Hamilton, and L. C. L. Hollenberg, “Coherent electronic transfer in quantum dot systems using adiabatic passage,” Phys. Rev. B70, 235317 (2004).
[CrossRef]

Heinrich, M.

F. Dreisow, M. Ornigotti, A. Szameit, M. Heinrich, R. Keil, S. Nolte, A. Tunnermann, and S. Longhi, “Polychromatic beam splitting by fractional stimulated raman adiabatic passage,” Appl. Phys. Lett.95, 261102 (2009).
[CrossRef]

Hill, C. D.

C. D. Hill, A. D. Greentree, and L. C. L. Hollenberg, “Parallel interaction-free measurement using spatial adiabatic passage,” New J. Phys.13, 125002 (2011).
[CrossRef]

Hollenberg, L. C. L.

C. D. Hill, A. D. Greentree, and L. C. L. Hollenberg, “Parallel interaction-free measurement using spatial adiabatic passage,” New J. Phys.13, 125002 (2011).
[CrossRef]

L. M. Jong, A. D. Greentree, V. I. Conrad, L. C. L. Hollenberg, and D. N. Jamieson, “Coherent tunneling adiabatic passage with the alternating coupling scheme,” Nanotech.20, 405402 (2009).
[CrossRef]

J. H. Cole, A. D. Greentree, L. C. L. Hollenberg, and S. Das Sarma, “Spatial adiabatic passage in a realistic triple well structure,” Phys. Rev. B77, 235418 (2008).
[CrossRef]

M. Rab, J. H. Cole, N. G. Parker, A. D. Greentree, L. C. L. Hollenberg, and A. M. Martin, “Spatial coherent transport of interacting dilute bose gases,” Phys. Rev. A77, 061602 (2008).
[CrossRef]

S. J. Devitt, A. D. Greentree, and L. C. L. Hollenberg, “Information free quantum bus for generating stabiliser states.” Quantum Inf. Process.6, 229 – 242 (2007).
[CrossRef]

A. D. Greentree, S. J. Devitt, and L. C. L. Hollenberg, “Quantum-information transport to multiple receivers,” Phys. Rev. A73, 032319 (2006).
[CrossRef]

A. D. Greentree, J. H. Cole, A. R. Hamilton, and L. C. L. Hollenberg, “Coherent electronic transfer in quantum dot systems using adiabatic passage,” Phys. Rev. B70, 235317 (2004).
[CrossRef]

Huang, W. P.

B. E. Little and W. P. Huang, “Coupled-mode theory for optical waveguides,” Prog. Electromagn. Res.10, 217–270 (1995).

Jamieson, D. N.

L. M. Jong, A. D. Greentree, V. I. Conrad, L. C. L. Hollenberg, and D. N. Jamieson, “Coherent tunneling adiabatic passage with the alternating coupling scheme,” Nanotech.20, 405402 (2009).
[CrossRef]

Janner, D.

S. Longhi, M. Marangoni, D. Janner, R. Ramponi, P. Laporta, E. Cianci, and V. Foglietti, “Observation of wave packet dichotomy and adiabatic stabilization in an optical waveguide,” Phys. Rev. Lett.94, 073002 (2005).
[CrossRef] [PubMed]

Joannopoulos, J. D.

J. D. Joannopoulos, R. D. Meade, and J. N. Winn, Photonic Crystals: Molding the Flow of Light (Princeton University Press, 1995).

Jong, L. M.

L. M. Jong, A. D. Greentree, V. I. Conrad, L. C. L. Hollenberg, and D. N. Jamieson, “Coherent tunneling adiabatic passage with the alternating coupling scheme,” Nanotech.20, 405402 (2009).
[CrossRef]

Keil, R.

F. Dreisow, M. Ornigotti, A. Szameit, M. Heinrich, R. Keil, S. Nolte, A. Tunnermann, and S. Longhi, “Polychromatic beam splitting by fractional stimulated raman adiabatic passage,” Appl. Phys. Lett.95, 261102 (2009).
[CrossRef]

Laporta, P.

S. Longhi, G. Della Valle, M. Ornigotti, and P. Laporta, “Coherent tunneling by adiabatic passage in an optical waveguide system,” Phys. Rev. B76, 201101 (2007).

G. Della Valle, M. Ornigotti, T. Fernandez, P. Laporta, S. Longhi, A. Coppa, and V. Foglietti, “Adiabatic light transfer via dressed states in optical waveguide arrays,” Appl. Phys. Lett.92, 011106 (2008).
[CrossRef]

S. Longhi, M. Marangoni, D. Janner, R. Ramponi, P. Laporta, E. Cianci, and V. Foglietti, “Observation of wave packet dichotomy and adiabatic stabilization in an optical waveguide,” Phys. Rev. Lett.94, 073002 (2005).
[CrossRef] [PubMed]

Lederer, F.

H. Trompeter, T. Pertsch, F. Lederer, D. Michaelis, U. Streppel, A. Bräuer, and U. Peschel, “Visual observation of zener tunneling,” Phys. Rev. Lett.96, 023901 (2006).
[CrossRef] [PubMed]

D. N. Christodoulides, F. Lederer, and Y. Silberberg, “Discretizing light behaviour in linear and nonlinear waveguide lattices,” Nature424, 817 – 823 (2003).
[CrossRef] [PubMed]

Lewenstein, M.

K. Eckert, M. Lewenstein, R. Corbalán, G. Birkl, W. Ertmer, and J. Mompart, “Three-level atom optics via the tunneling interaction,” Phys. Rev. A70, 023606 (2004).
[CrossRef]

Little, B. E.

B. E. Little and W. P. Huang, “Coupled-mode theory for optical waveguides,” Prog. Electromagn. Res.10, 217–270 (1995).

Longhi, S.

S. Longhi, G. Della Valle, M. Ornigotti, and P. Laporta, “Coherent tunneling by adiabatic passage in an optical waveguide system,” Phys. Rev. B76, 201101 (2007).

F. Dreisow, M. Ornigotti, A. Szameit, M. Heinrich, R. Keil, S. Nolte, A. Tunnermann, and S. Longhi, “Polychromatic beam splitting by fractional stimulated raman adiabatic passage,” Appl. Phys. Lett.95, 261102 (2009).
[CrossRef]

S. Longhi, “Quantum-optical analogies using photonic structures,” Laser & Phot. Rev.3, 243–261 (2009).
[CrossRef] [PubMed]

G. Della Valle, M. Ornigotti, T. Fernandez, P. Laporta, S. Longhi, A. Coppa, and V. Foglietti, “Adiabatic light transfer via dressed states in optical waveguide arrays,” Appl. Phys. Lett.92, 011106 (2008).
[CrossRef]

S. Longhi, “Photonic transport via chirped adiabatic passage in optical waveguides,” J. Phys. B: At., Mol. Opt. Phys.40, F189 (2007).
[CrossRef]

S. Longhi, “Adiabatic passage of light in coupled optical waveguides,” Phys. Rev. E73, 026607 (2006).
[CrossRef]

S. Longhi, “Optical realization of multilevel adiabatic population transfer in curved waveguide arrays,” Phys. Lett. A359, 166–170 (2006).
[CrossRef]

S. Longhi, M. Marangoni, D. Janner, R. Ramponi, P. Laporta, E. Cianci, and V. Foglietti, “Observation of wave packet dichotomy and adiabatic stabilization in an optical waveguide,” Phys. Rev. Lett.94, 073002 (2005).
[CrossRef] [PubMed]

Marangoni, M.

S. Longhi, M. Marangoni, D. Janner, R. Ramponi, P. Laporta, E. Cianci, and V. Foglietti, “Observation of wave packet dichotomy and adiabatic stabilization in an optical waveguide,” Phys. Rev. Lett.94, 073002 (2005).
[CrossRef] [PubMed]

Martin, A. M.

M. Rab, J. H. Cole, N. G. Parker, A. D. Greentree, L. C. L. Hollenberg, and A. M. Martin, “Spatial coherent transport of interacting dilute bose gases,” Phys. Rev. A77, 061602 (2008).
[CrossRef]

Meade, R. D.

J. D. Joannopoulos, R. D. Meade, and J. N. Winn, Photonic Crystals: Molding the Flow of Light (Princeton University Press, 1995).

Michaelis, D.

H. Trompeter, T. Pertsch, F. Lederer, D. Michaelis, U. Streppel, A. Bräuer, and U. Peschel, “Visual observation of zener tunneling,” Phys. Rev. Lett.96, 023901 (2006).
[CrossRef] [PubMed]

Mompart, J.

K. Eckert, M. Lewenstein, R. Corbalán, G. Birkl, W. Ertmer, and J. Mompart, “Three-level atom optics via the tunneling interaction,” Phys. Rev. A70, 023606 (2004).
[CrossRef]

Nolte, S.

F. Dreisow, M. Ornigotti, A. Szameit, M. Heinrich, R. Keil, S. Nolte, A. Tunnermann, and S. Longhi, “Polychromatic beam splitting by fractional stimulated raman adiabatic passage,” Appl. Phys. Lett.95, 261102 (2009).
[CrossRef]

Okamoto, K.

K. Okamoto, Fundamentals of optical waveguides (Academic Press, 2000).

Ornigotti, M.

S. Longhi, G. Della Valle, M. Ornigotti, and P. Laporta, “Coherent tunneling by adiabatic passage in an optical waveguide system,” Phys. Rev. B76, 201101 (2007).

F. Dreisow, M. Ornigotti, A. Szameit, M. Heinrich, R. Keil, S. Nolte, A. Tunnermann, and S. Longhi, “Polychromatic beam splitting by fractional stimulated raman adiabatic passage,” Appl. Phys. Lett.95, 261102 (2009).
[CrossRef]

G. Della Valle, M. Ornigotti, T. Fernandez, P. Laporta, S. Longhi, A. Coppa, and V. Foglietti, “Adiabatic light transfer via dressed states in optical waveguide arrays,” Appl. Phys. Lett.92, 011106 (2008).
[CrossRef]

Oton, C. J.

R. Sapienza, P. Costantino, D. Wiersma, M. Ghulinyan, C. J. Oton, and L. Pavesi, “Optical analogue of electronic bloch oscillations,” Phys. Rev. Lett.91, 263902 (2003).
[CrossRef]

Parker, N. G.

M. Rab, J. H. Cole, N. G. Parker, A. D. Greentree, L. C. L. Hollenberg, and A. M. Martin, “Spatial coherent transport of interacting dilute bose gases,” Phys. Rev. A77, 061602 (2008).
[CrossRef]

Paspalakis, E.

E. Paspalakis, “Adiabatic three-waveguide directional coupler,” Opt. Commun.258, 30–34 (2006).
[CrossRef]

Pavesi, L.

R. Sapienza, P. Costantino, D. Wiersma, M. Ghulinyan, C. J. Oton, and L. Pavesi, “Optical analogue of electronic bloch oscillations,” Phys. Rev. Lett.91, 263902 (2003).
[CrossRef]

Pertsch, T.

H. Trompeter, T. Pertsch, F. Lederer, D. Michaelis, U. Streppel, A. Bräuer, and U. Peschel, “Visual observation of zener tunneling,” Phys. Rev. Lett.96, 023901 (2006).
[CrossRef] [PubMed]

Peschel, U.

H. Trompeter, T. Pertsch, F. Lederer, D. Michaelis, U. Streppel, A. Bräuer, and U. Peschel, “Visual observation of zener tunneling,” Phys. Rev. Lett.96, 023901 (2006).
[CrossRef] [PubMed]

Rab, M.

M. Rab, J. H. Cole, N. G. Parker, A. D. Greentree, L. C. L. Hollenberg, and A. M. Martin, “Spatial coherent transport of interacting dilute bose gases,” Phys. Rev. A77, 061602 (2008).
[CrossRef]

Ramponi, R.

S. Longhi, M. Marangoni, D. Janner, R. Ramponi, P. Laporta, E. Cianci, and V. Foglietti, “Observation of wave packet dichotomy and adiabatic stabilization in an optical waveguide,” Phys. Rev. Lett.94, 073002 (2005).
[CrossRef] [PubMed]

Rangelov, A. A.

A. A. Rangelov and N. V. Vitanov, “Achromatic multiple beam splitting by adiabatic passage in optical waveguides,” Phys. Rev. A85, 055803 (2012).
[CrossRef]

Sapienza, R.

R. Sapienza, P. Costantino, D. Wiersma, M. Ghulinyan, C. J. Oton, and L. Pavesi, “Optical analogue of electronic bloch oscillations,” Phys. Rev. Lett.91, 263902 (2003).
[CrossRef]

Shore, B. W.

N. V. Vitanov, T. Halfmann, B. W. Shore, and K. Bergmann, “Laser-induced population transfer by adiabatic passage techniques,” Annu. Rev. Phys. Chem.52, 763–809 (2001).
[CrossRef] [PubMed]

K. Bergmann, H. Theuer, and B. W. Shore, “Coherent population transfer among quantum states of atoms and molecules,” Rev. Mod. Phys.70, 1003–1025 (1998).
[CrossRef]

Silberberg, Y.

D. N. Christodoulides, F. Lederer, and Y. Silberberg, “Discretizing light behaviour in linear and nonlinear waveguide lattices,” Nature424, 817 – 823 (2003).
[CrossRef] [PubMed]

Streppel, U.

H. Trompeter, T. Pertsch, F. Lederer, D. Michaelis, U. Streppel, A. Bräuer, and U. Peschel, “Visual observation of zener tunneling,” Phys. Rev. Lett.96, 023901 (2006).
[CrossRef] [PubMed]

Szameit, A.

F. Dreisow, M. Ornigotti, A. Szameit, M. Heinrich, R. Keil, S. Nolte, A. Tunnermann, and S. Longhi, “Polychromatic beam splitting by fractional stimulated raman adiabatic passage,” Appl. Phys. Lett.95, 261102 (2009).
[CrossRef]

Tamir, T.

T. Tamir, Integrated Optics, Topics in Applied Physics, Vol. 7 (Berlin: Springer, 1979).

Theuer, H.

K. Bergmann, H. Theuer, and B. W. Shore, “Coherent population transfer among quantum states of atoms and molecules,” Rev. Mod. Phys.70, 1003–1025 (1998).
[CrossRef]

Trompeter, H.

H. Trompeter, T. Pertsch, F. Lederer, D. Michaelis, U. Streppel, A. Bräuer, and U. Peschel, “Visual observation of zener tunneling,” Phys. Rev. Lett.96, 023901 (2006).
[CrossRef] [PubMed]

Tunnermann, A.

F. Dreisow, M. Ornigotti, A. Szameit, M. Heinrich, R. Keil, S. Nolte, A. Tunnermann, and S. Longhi, “Polychromatic beam splitting by fractional stimulated raman adiabatic passage,” Appl. Phys. Lett.95, 261102 (2009).
[CrossRef]

Vitanov, N. V.

A. A. Rangelov and N. V. Vitanov, “Achromatic multiple beam splitting by adiabatic passage in optical waveguides,” Phys. Rev. A85, 055803 (2012).
[CrossRef]

N. V. Vitanov, T. Halfmann, B. W. Shore, and K. Bergmann, “Laser-induced population transfer by adiabatic passage techniques,” Annu. Rev. Phys. Chem.52, 763–809 (2001).
[CrossRef] [PubMed]

Wiersma, D.

R. Sapienza, P. Costantino, D. Wiersma, M. Ghulinyan, C. J. Oton, and L. Pavesi, “Optical analogue of electronic bloch oscillations,” Phys. Rev. Lett.91, 263902 (2003).
[CrossRef]

Winn, J. N.

J. D. Joannopoulos, R. D. Meade, and J. N. Winn, Photonic Crystals: Molding the Flow of Light (Princeton University Press, 1995).

Annu. Rev. Phys. Chem.

N. V. Vitanov, T. Halfmann, B. W. Shore, and K. Bergmann, “Laser-induced population transfer by adiabatic passage techniques,” Annu. Rev. Phys. Chem.52, 763–809 (2001).
[CrossRef] [PubMed]

Appl. Phys. Lett.

G. Della Valle, M. Ornigotti, T. Fernandez, P. Laporta, S. Longhi, A. Coppa, and V. Foglietti, “Adiabatic light transfer via dressed states in optical waveguide arrays,” Appl. Phys. Lett.92, 011106 (2008).
[CrossRef]

F. Dreisow, M. Ornigotti, A. Szameit, M. Heinrich, R. Keil, S. Nolte, A. Tunnermann, and S. Longhi, “Polychromatic beam splitting by fractional stimulated raman adiabatic passage,” Appl. Phys. Lett.95, 261102 (2009).
[CrossRef]

J. Phys. B: At., Mol. Opt. Phys.

S. Longhi, “Photonic transport via chirped adiabatic passage in optical waveguides,” J. Phys. B: At., Mol. Opt. Phys.40, F189 (2007).
[CrossRef]

Laser & Phot. Rev.

S. Longhi, “Quantum-optical analogies using photonic structures,” Laser & Phot. Rev.3, 243–261 (2009).
[CrossRef] [PubMed]

Nanotech.

L. M. Jong, A. D. Greentree, V. I. Conrad, L. C. L. Hollenberg, and D. N. Jamieson, “Coherent tunneling adiabatic passage with the alternating coupling scheme,” Nanotech.20, 405402 (2009).
[CrossRef]

Nature

D. N. Christodoulides, F. Lederer, and Y. Silberberg, “Discretizing light behaviour in linear and nonlinear waveguide lattices,” Nature424, 817 – 823 (2003).
[CrossRef] [PubMed]

New J. Phys.

C. D. Hill, A. D. Greentree, and L. C. L. Hollenberg, “Parallel interaction-free measurement using spatial adiabatic passage,” New J. Phys.13, 125002 (2011).
[CrossRef]

Opt. Commun.

E. Paspalakis, “Adiabatic three-waveguide directional coupler,” Opt. Commun.258, 30–34 (2006).
[CrossRef]

Phys. Lett. A

S. Longhi, “Optical realization of multilevel adiabatic population transfer in curved waveguide arrays,” Phys. Lett. A359, 166–170 (2006).
[CrossRef]

Phys. Rev. A

A. A. Rangelov and N. V. Vitanov, “Achromatic multiple beam splitting by adiabatic passage in optical waveguides,” Phys. Rev. A85, 055803 (2012).
[CrossRef]

A. D. Greentree, S. J. Devitt, and L. C. L. Hollenberg, “Quantum-information transport to multiple receivers,” Phys. Rev. A73, 032319 (2006).
[CrossRef]

K. Eckert, M. Lewenstein, R. Corbalán, G. Birkl, W. Ertmer, and J. Mompart, “Three-level atom optics via the tunneling interaction,” Phys. Rev. A70, 023606 (2004).
[CrossRef]

M. Rab, J. H. Cole, N. G. Parker, A. D. Greentree, L. C. L. Hollenberg, and A. M. Martin, “Spatial coherent transport of interacting dilute bose gases,” Phys. Rev. A77, 061602 (2008).
[CrossRef]

Phys. Rev. B

A. D. Greentree, J. H. Cole, A. R. Hamilton, and L. C. L. Hollenberg, “Coherent electronic transfer in quantum dot systems using adiabatic passage,” Phys. Rev. B70, 235317 (2004).
[CrossRef]

S. Longhi, G. Della Valle, M. Ornigotti, and P. Laporta, “Coherent tunneling by adiabatic passage in an optical waveguide system,” Phys. Rev. B76, 201101 (2007).

J. H. Cole, A. D. Greentree, L. C. L. Hollenberg, and S. Das Sarma, “Spatial adiabatic passage in a realistic triple well structure,” Phys. Rev. B77, 235418 (2008).
[CrossRef]

Phys. Rev. E

S. Longhi, “Adiabatic passage of light in coupled optical waveguides,” Phys. Rev. E73, 026607 (2006).
[CrossRef]

Phys. Rev. Lett.

S. Longhi, M. Marangoni, D. Janner, R. Ramponi, P. Laporta, E. Cianci, and V. Foglietti, “Observation of wave packet dichotomy and adiabatic stabilization in an optical waveguide,” Phys. Rev. Lett.94, 073002 (2005).
[CrossRef] [PubMed]

H. Trompeter, T. Pertsch, F. Lederer, D. Michaelis, U. Streppel, A. Bräuer, and U. Peschel, “Visual observation of zener tunneling,” Phys. Rev. Lett.96, 023901 (2006).
[CrossRef] [PubMed]

R. Sapienza, P. Costantino, D. Wiersma, M. Ghulinyan, C. J. Oton, and L. Pavesi, “Optical analogue of electronic bloch oscillations,” Phys. Rev. Lett.91, 263902 (2003).
[CrossRef]

Prog. Electromagn. Res.

B. E. Little and W. P. Huang, “Coupled-mode theory for optical waveguides,” Prog. Electromagn. Res.10, 217–270 (1995).

Quantum Inf. Process.

S. J. Devitt, A. D. Greentree, and L. C. L. Hollenberg, “Information free quantum bus for generating stabiliser states.” Quantum Inf. Process.6, 229 – 242 (2007).
[CrossRef]

Rev. Mod. Phys.

K. Bergmann, H. Theuer, and B. W. Shore, “Coherent population transfer among quantum states of atoms and molecules,” Rev. Mod. Phys.70, 1003–1025 (1998).
[CrossRef]

Other

J. D. Joannopoulos, R. D. Meade, and J. N. Winn, Photonic Crystals: Molding the Flow of Light (Princeton University Press, 1995).

K. Okamoto, Fundamentals of optical waveguides (Academic Press, 2000).

T. Tamir, Integrated Optics, Topics in Applied Physics, Vol. 7 (Berlin: Springer, 1979).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

(a) The basic rib waveguide (transverse slice, xy-plane) used to construct the CTAP and MRAP structures; where h, f, and w represent the rib, surround heights and core width respectively. nc, nf and ns represent the refractive indices of the cladding, core and substrate respectively. (b) The CTAP optical structure (top view, xz-plane) and (c) MRAP optical structure (top view, xz-plane), with coupling coefficients of Eqs. (3) shown.

Fig. 2
Fig. 2

Light propagation (using BeamPROP 8.2 by RSoft Design Group, Inc.) through the CTAP structure based on the coupling coefficients of the CTAP protocol, where (a) is the top view (xz-plane) of the structure and the black outlines represent the side walls of the individual waveguides. The grey scale represents the intensity of light, peak is normalised to 1. (b) The evolution of the power in each individual waveguide for the CTAP structure. The power in waveguide |2〉 has been multiplied by 100 to make it visible on this scale. Here we have set κmax = 2 × 10−2 μm−1, κmin = 2 × 10−5 μm−1 and the total length to L = 4 mm.

Fig. 3
Fig. 3

Power loss (α in decibels) as a function of ni for the transmission of power through the CTAP structure (solid line) and waveguide |2〉 only (dash-dot line). The core width of waveguides |1〉, |2〉 and |3〉 are w = 2.36 μm. The arrows for each scenario represent the input (bottom) and output (top) of the optical field.

Fig. 4
Fig. 4

Power fraction in waveguide |3〉 at L = 4 mm (i.e. end of structure) of the CTAP structure as a function of detunings Δ21 and Δ31. Note, Δ = 0 represents no change in the rib height of waveguides |2〉 and |3〉. The colour bar shows the final power fraction in |3〉.

Fig. 5
Fig. 5

Light propagation (using BeamPROP 8.2 by RSoft Design Group, Inc.) through the MRAP structure, where (a) shows the top view of the structure and the black outlines represent the side walls of the individual waveguides. The grey scale represents the intensity of light, peak is normalised to 1. (b) Power in individual waveguides of |1〉 (blue line), |2〉 (red line), |3〉 (black line), |4〉 (black dash) and |5〉 (cyan dash). The fractional powers of waveguides |2〉 and |4〉 are multiplied by 100 to make it visible on the scale. Here we have set κmax = 1.0 × 10−2 μm−1, κmin = 1.0 × 10−5 μm−1 and L = 4 mm.

Fig. 6
Fig. 6

Spectral response of the MRAP structure, optimised to operate at a wavelength of λ = 1.55 μm. The solid-dot line represents the summation of the maximum power that occurs in waveguides |2〉 and |4〉. The red square-solid (blue triangle-dash) line represents the final power fraction (L = 4 mm, i.e., end of structure) of waveguide |1〉 (|5〉).

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

i d d z A ( z ) = C ( z ) A ( z ) , C ( z ) = [ 0 κ 12 ( z ) 0 κ 12 ( z ) Δ 21 κ 23 ( z ) 0 κ 23 ( z ) Δ 31 ] ,
E ( z ) = κ 23 ( z ) κ 12 ( z ) 2 + κ 23 ( z ) 2 E 1 + 0 × E 2 + κ 12 ( z ) κ 12 ( z ) 2 + κ 23 ( z ) 2 E 3 .
κ 12 ( z ) = ( κ max κ min ) sin 2 ( π z 2 L ) + κ min , κ 23 ( z ) = ( κ max κ min ) cos 2 ( π z 2 L ) + κ min ,

Metrics