Abstract

We demonstrate efficient generation of correlated photon pairs by spontaneous four wave mixing in a 5 μm radius silicon ring resonator in the telecom band around 1550 nm. By optically pumping our device with a 200 μW continuous wave laser, we obtain a pair generation rate of 0.2 MHz and demonstrate photon time correlations with a coincidence-to-accidental ratio as high as 250. The results are in good agreement with theoretical predictions and show the potential of silicon micro-ring resonators as room temperature sources for integrated quantum optics applications.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, “Quantum cryptography,” Rev. Mod. Phys.74, 145–195 (2002).
    [CrossRef]
  2. A. Ekert and R. Jozsa, “Quantum computation and Shor’s factoring algorithm,” Rev. Mod. Phys.68, 733–753 (2002).
    [CrossRef]
  3. R. W. Boyd, Nonlinear Optics, 3rd ed. (Academic Press, San Diego2008).
  4. A. Aspect, J. Dalibar, and G. Roger, “Experimental test of Bell’s Inequalities using time- varying analyzers,” Phys. Rev. A49, 1804–1807 (1982).
  5. P. G. Kwiat, K. Mattle, H. Weinfurter, A. Zeilinger, A. V. Sergienko, and Y. Shih, “New high-intensity source of polarization-entangled photon pairs,” Phys. Rev. Lett.75, 4337–4341 (1995).
    [CrossRef] [PubMed]
  6. L. Lanco, S. Ducci, J.-P. Likforman, X. Marcadet, J. A. W. van Houwelingen, H. Zbinden, G. Leo, and V. Berger, “Semiconductor waveguide source of counterpropagating twin photons,” Phys. Rev. Lett.97, 173901–173904 (2006).
    [CrossRef] [PubMed]
  7. R. Horn, P. Abolghasem, B. J. Bijlani, D. Kang, A. S. Helmy, and G. Weihs, “Monolithic source of photon pairs,” Phys. Rev. Lett.108, 153605–153610 (2012).
    [CrossRef] [PubMed]
  8. D. Bajoni, D. Gerace, M. Galli, J. Bloch, R. Braive, I. Sagnes, A. Miard, A. Lematre, M. Patrini, and L. C. Andreani, “Exciton polaritons in two-dimensional photonic crystals,” Phys. Rev. B80, 201308 (2009).
    [CrossRef]
  9. M. Liscidini, D. Gerace, D. Sanvitto, and D. Bajoni, “Guided Bloch surface wave polaritons” Appl. Phys. Lett.98, 121118 (2011).
    [CrossRef]
  10. K. I. Harada, H. Takesue, H. Fukuda, T. Tsuchizawa, T. Watanabe, K. Yamada, Y. Tokura, and S. Itabashi, “Frequency and polarization characteristics of correlated photon-pair generation using a silicon wire waveguide”, IEEE J. Sel. Top. Quantum Electron.16, 325–331 (2010).
    [CrossRef]
  11. H. Takesue, Y. Tokura, H. Fukuda, T. Tsuchizawa, T. Watanabe, K. Yamada, and S. Itabashi, “Entanglement generation using silicon wire waveguide,” Appl. Phys. Lett.91, 201108–201110 (2007).
    [CrossRef]
  12. V. R. Almeida and M. Lipson, “Optical bistability on a silicon chip,” Opt. Lett.29, 2387–2389 (2004).
    [CrossRef] [PubMed]
  13. T. Tanabe, M. Notomi, S. Mitsugi, A. Shinya, and E. Kuramochi, “All-optical switches on a silicon chip realized using photonic crystal nanocavities,” Appl. Phys. Lett.87, 151112–151114 (2005).
    [CrossRef]
  14. J. T. Robinson, L. Chen, and M. Lipson, “On-chip gas detection in silicon optical microcavities,” Opt. Express16, 4296–4301 (2008).
    [CrossRef] [PubMed]
  15. K. H. Lee, S. Guilet, G. Patriarche, I. Sagnes, and A. Talneau, “Smooth sidewall in InP-based photonic crystal membrane etched by N2-based inductive coupled plasma,” J. Vac. Sci. Technol. B26, 1326–1333 (2008).
    [CrossRef]
  16. F. Romanato, L. Businaro, E. Di Fabrizio, A. Passaseo, M. De Vittorio, R. Cingolani, M. Patrini, M. Galli, D. Bajoni, L. C. Andreani, F. Giacometti, M. Gentili, D. Peyrade, and Y. Chen, “Fabrication by means of x-ray lithography of two-dimensional GaAs/AlGaAs photonic crystals with an unconventional unit cell,” Nanotechnology13, 644–652 (2002).
    [CrossRef]
  17. A. Alduino and M. Paniccia, “Interconnects: Wiring electronics with light,” Nat. Photonics1, 153155 (2007).
    [CrossRef]
  18. B. Guha, B. Kyotoku, and M. Lipson, “CMOS-compatible athermal silicon microring resonators,” Opt. Express18, 3487–3493 (2010).
    [CrossRef] [PubMed]
  19. A. Turner, M. Foster, A. Gaeta, and M. Lipson, “Ultra-low power parametric frequency conversion in a silicon microring resonator,” Opt. Express16, 4881–4887 (2008).
    [CrossRef] [PubMed]
  20. L. G. Helt, Z. Yang, M. Liscidini, and J. E. Sipe, “Spontaneous four-wave mixing in microring resonators,” Opt. Lett.35, 3006–3008 (2010).
    [CrossRef] [PubMed]
  21. S. Clemmen, K. Phan Huy, W. Bogaerts, R. G. Baets, Ph. Emplit, and S. Massar, “Continuous wave photon pair generation in silicon-on-insulator waveguides and ring resonators,” Opt. Express17, 16558–16570 (2009).
    [CrossRef] [PubMed]
  22. T. Shoji, T. Tsuchizawa, T. Watanabe, K. Yamada, and H. Morita, “Low loss mode size converter from 0.3μm square Si waveguides to singlemode fibres,” Electron. Lett.38, 1669–1700 (2002).
    [CrossRef]
  23. M. Notomi, A. Shinya, S. Mitsugi, E. Kuramochi, and H.-Y. Ryu, “Waveguides, resonators, and their coupled elements in photonic crystal slabs,” Opt. Express12, 1551–1561 (2004).
    [CrossRef] [PubMed]
  24. B. E. Little, J. Laine, and S.T. Chu, “Surface-roughness-induced contradirectional coupling in ring and disk resonators,” Opt. Lett.22, 4–6 (1997).
    [CrossRef] [PubMed]
  25. Unlike in Ref. [20], here we assume losses in the ring resonator. At the critical coupling, the on-resonance field enhancement in the ring resonator is FE≃2Qvg/(ω02πR), with ω0 the resonant frequency.
  26. L. G. Helt, M. Liscidini, and J. E. Sipe, “How does it scale? - Comparing quantum and classical nonlinear optical processes in integrated devices,” J. Opt. Soc. Am. B29, 2199–2212 (2012).
    [CrossRef]
  27. S. Azzini, D. Grassani, M. Galli, L. C. Andreani, M. Sorel, M. J. Strain, L. G. Helt, J. E. Sipe, M. Liscidini, and D. Bajoni, “From Classical Four-Wave Mixing to Parametric Fluorescence in Silicon micro-ring resonators,” accepted for publication in Optics Letters.
  28. M. Davanco, J. R. Ong, A. B. Shehata, A. Tosi, I. Agha, S. Assefa, F. Xia, W. M. J. Green, S. Mookherjea, and K. Srinivasan, “Telecommunications-band heralded single photons from a silicon nanophotonic chip,” Appl. Phys. Lett.100, 261104–261106 (2012)
    [CrossRef]
  29. H. Takesue and K. Shimizu, “Effects of multiple pairs on visibility measurements of entangled photons generated by spontaneous parametric processes,” Opt. Commun.283, 276287 (2010).
    [CrossRef]
  30. J. D. Franson, “Two-photon interferometry over large distances,” Phys. Rev. A.44, 4552–4555 (1991)
    [CrossRef] [PubMed]
  31. P. J. Mosley, J. S. Lundeen, B. J. Smith, P. Wasylczyk, A. B. URen, C. Silberhorn, and I. A. Walmsley, “Heralded generation of ultrafast single photons in pure quantum states,” Phys. Rev. Lett.100, 133601–133605 (2008)
    [CrossRef] [PubMed]
  32. M. Razavi, I. Söllner, E. Bocquillon, C. Couteau, R. Laflamme, and G Weihs, “Characterizing heralded single-photon sources with imperfect measurement devices,” J. Phys. B: At. Mol. Opt. Phys.42, 114013–114017 (2009).
    [CrossRef]
  33. A. Gaggero, S. Jahanmirinejad, F. Marsili, F. Mattioli, R. Leoni, D. Bitauld, D. Sahin, G. J. Hamhuis, R. Ntzel, R. Sanjines, and A. Fiore, “Nanowire superconducting single-photon detectors on GaAs for integrated quantum photonic applications”, Appl. Phys. Lett.97, 151108 (2010).
    [CrossRef]
  34. S. N. Dorenbos, E. M. Reiger, U. Perinetti, V. Zwiller, T. Zijlstra, and T. M. Klapwijk, “Low noise superconducting single photon detectors on silicon,” Appl. Phys. Lett.93, 131101 (2008).
    [CrossRef]
  35. L. D. Joannopoulos, S. G. Johnson, J. N. Winn, and R. D. Meade, Photonic Crystals: Molding the Flow of Light (Princeton University Press, Princeton2008).
  36. M. Galli, D. Bajoni, F. Marabelli, L. C. Andreani, L. Pavesi, and G. Pucker, “Photonic bands and group-velocity dispersion in Si/SiO2 photonic crystals from white-light interferometry,” Phys. Rev. B69, 115107 (2004).
    [CrossRef]
  37. Y. Akahane, T. Asano, B. S. Song, and S. Noda, “High-Q photonic nanocavity in a two-dimensional photonic crystal,” Nature425, 944–947 (2003).
    [CrossRef] [PubMed]
  38. K. Nozaki, T. Tanabe, A. Shinya, S. Matsuo, T. Sato, H. Taniyama, and M. Notomi, “Sub-femtojoule all-optical switching using a photonic-crystal nanocavity,” Nat. Photonics4, 477–483 (2010)
    [CrossRef]
  39. S. Azzini, D. Gerace, M. Galli, I. Sagnes, R. Braive, A. Lemaître, J. Bloch, and D. Bajoni, “Ultra-low threshold polariton lasing in photonic crystal cavities,” Appl. Phys. Lett.99, 111106 (2011).
    [CrossRef]
  40. S. Ferretti and D. Gerace, “Single-photon nonlinear optics with Kerr-type nanostructured materials,” Phys. Rev. B85, 033303–033307 (2012).
    [CrossRef]
  41. We note that after submission of our manuscript we became aware of another research reporting emission of correlated photons with high CAR values from a silicon ring resonator: Erman Engin, Damien Bonneau, Chandra M. Natarajan, Alex Clark, M. G. Tanner, R. H. Hadfield, Sanders N. Dorenbos, Val Zwiller, Kazuya Ohira, Nobuo Suzuki, Haruhiko Yoshida, Norio Iizuka, Mizunori Ezaki, Jeremy L. OBrien, Mark G. Thompson, ”Photon Pair Generation in Silicon Micro-Ring Resonators with Reverse Bias Enhancement” arXiv:1204.4922.

2012

R. Horn, P. Abolghasem, B. J. Bijlani, D. Kang, A. S. Helmy, and G. Weihs, “Monolithic source of photon pairs,” Phys. Rev. Lett.108, 153605–153610 (2012).
[CrossRef] [PubMed]

L. G. Helt, M. Liscidini, and J. E. Sipe, “How does it scale? - Comparing quantum and classical nonlinear optical processes in integrated devices,” J. Opt. Soc. Am. B29, 2199–2212 (2012).
[CrossRef]

M. Davanco, J. R. Ong, A. B. Shehata, A. Tosi, I. Agha, S. Assefa, F. Xia, W. M. J. Green, S. Mookherjea, and K. Srinivasan, “Telecommunications-band heralded single photons from a silicon nanophotonic chip,” Appl. Phys. Lett.100, 261104–261106 (2012)
[CrossRef]

S. Ferretti and D. Gerace, “Single-photon nonlinear optics with Kerr-type nanostructured materials,” Phys. Rev. B85, 033303–033307 (2012).
[CrossRef]

2011

S. Azzini, D. Gerace, M. Galli, I. Sagnes, R. Braive, A. Lemaître, J. Bloch, and D. Bajoni, “Ultra-low threshold polariton lasing in photonic crystal cavities,” Appl. Phys. Lett.99, 111106 (2011).
[CrossRef]

M. Liscidini, D. Gerace, D. Sanvitto, and D. Bajoni, “Guided Bloch surface wave polaritons” Appl. Phys. Lett.98, 121118 (2011).
[CrossRef]

2010

K. I. Harada, H. Takesue, H. Fukuda, T. Tsuchizawa, T. Watanabe, K. Yamada, Y. Tokura, and S. Itabashi, “Frequency and polarization characteristics of correlated photon-pair generation using a silicon wire waveguide”, IEEE J. Sel. Top. Quantum Electron.16, 325–331 (2010).
[CrossRef]

B. Guha, B. Kyotoku, and M. Lipson, “CMOS-compatible athermal silicon microring resonators,” Opt. Express18, 3487–3493 (2010).
[CrossRef] [PubMed]

K. Nozaki, T. Tanabe, A. Shinya, S. Matsuo, T. Sato, H. Taniyama, and M. Notomi, “Sub-femtojoule all-optical switching using a photonic-crystal nanocavity,” Nat. Photonics4, 477–483 (2010)
[CrossRef]

A. Gaggero, S. Jahanmirinejad, F. Marsili, F. Mattioli, R. Leoni, D. Bitauld, D. Sahin, G. J. Hamhuis, R. Ntzel, R. Sanjines, and A. Fiore, “Nanowire superconducting single-photon detectors on GaAs for integrated quantum photonic applications”, Appl. Phys. Lett.97, 151108 (2010).
[CrossRef]

H. Takesue and K. Shimizu, “Effects of multiple pairs on visibility measurements of entangled photons generated by spontaneous parametric processes,” Opt. Commun.283, 276287 (2010).
[CrossRef]

L. G. Helt, Z. Yang, M. Liscidini, and J. E. Sipe, “Spontaneous four-wave mixing in microring resonators,” Opt. Lett.35, 3006–3008 (2010).
[CrossRef] [PubMed]

2009

S. Clemmen, K. Phan Huy, W. Bogaerts, R. G. Baets, Ph. Emplit, and S. Massar, “Continuous wave photon pair generation in silicon-on-insulator waveguides and ring resonators,” Opt. Express17, 16558–16570 (2009).
[CrossRef] [PubMed]

M. Razavi, I. Söllner, E. Bocquillon, C. Couteau, R. Laflamme, and G Weihs, “Characterizing heralded single-photon sources with imperfect measurement devices,” J. Phys. B: At. Mol. Opt. Phys.42, 114013–114017 (2009).
[CrossRef]

D. Bajoni, D. Gerace, M. Galli, J. Bloch, R. Braive, I. Sagnes, A. Miard, A. Lematre, M. Patrini, and L. C. Andreani, “Exciton polaritons in two-dimensional photonic crystals,” Phys. Rev. B80, 201308 (2009).
[CrossRef]

2008

J. T. Robinson, L. Chen, and M. Lipson, “On-chip gas detection in silicon optical microcavities,” Opt. Express16, 4296–4301 (2008).
[CrossRef] [PubMed]

K. H. Lee, S. Guilet, G. Patriarche, I. Sagnes, and A. Talneau, “Smooth sidewall in InP-based photonic crystal membrane etched by N2-based inductive coupled plasma,” J. Vac. Sci. Technol. B26, 1326–1333 (2008).
[CrossRef]

A. Turner, M. Foster, A. Gaeta, and M. Lipson, “Ultra-low power parametric frequency conversion in a silicon microring resonator,” Opt. Express16, 4881–4887 (2008).
[CrossRef] [PubMed]

P. J. Mosley, J. S. Lundeen, B. J. Smith, P. Wasylczyk, A. B. URen, C. Silberhorn, and I. A. Walmsley, “Heralded generation of ultrafast single photons in pure quantum states,” Phys. Rev. Lett.100, 133601–133605 (2008)
[CrossRef] [PubMed]

S. N. Dorenbos, E. M. Reiger, U. Perinetti, V. Zwiller, T. Zijlstra, and T. M. Klapwijk, “Low noise superconducting single photon detectors on silicon,” Appl. Phys. Lett.93, 131101 (2008).
[CrossRef]

2007

A. Alduino and M. Paniccia, “Interconnects: Wiring electronics with light,” Nat. Photonics1, 153155 (2007).
[CrossRef]

H. Takesue, Y. Tokura, H. Fukuda, T. Tsuchizawa, T. Watanabe, K. Yamada, and S. Itabashi, “Entanglement generation using silicon wire waveguide,” Appl. Phys. Lett.91, 201108–201110 (2007).
[CrossRef]

2006

L. Lanco, S. Ducci, J.-P. Likforman, X. Marcadet, J. A. W. van Houwelingen, H. Zbinden, G. Leo, and V. Berger, “Semiconductor waveguide source of counterpropagating twin photons,” Phys. Rev. Lett.97, 173901–173904 (2006).
[CrossRef] [PubMed]

2005

T. Tanabe, M. Notomi, S. Mitsugi, A. Shinya, and E. Kuramochi, “All-optical switches on a silicon chip realized using photonic crystal nanocavities,” Appl. Phys. Lett.87, 151112–151114 (2005).
[CrossRef]

2004

2003

Y. Akahane, T. Asano, B. S. Song, and S. Noda, “High-Q photonic nanocavity in a two-dimensional photonic crystal,” Nature425, 944–947 (2003).
[CrossRef] [PubMed]

2002

T. Shoji, T. Tsuchizawa, T. Watanabe, K. Yamada, and H. Morita, “Low loss mode size converter from 0.3μm square Si waveguides to singlemode fibres,” Electron. Lett.38, 1669–1700 (2002).
[CrossRef]

N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, “Quantum cryptography,” Rev. Mod. Phys.74, 145–195 (2002).
[CrossRef]

A. Ekert and R. Jozsa, “Quantum computation and Shor’s factoring algorithm,” Rev. Mod. Phys.68, 733–753 (2002).
[CrossRef]

F. Romanato, L. Businaro, E. Di Fabrizio, A. Passaseo, M. De Vittorio, R. Cingolani, M. Patrini, M. Galli, D. Bajoni, L. C. Andreani, F. Giacometti, M. Gentili, D. Peyrade, and Y. Chen, “Fabrication by means of x-ray lithography of two-dimensional GaAs/AlGaAs photonic crystals with an unconventional unit cell,” Nanotechnology13, 644–652 (2002).
[CrossRef]

1997

1995

P. G. Kwiat, K. Mattle, H. Weinfurter, A. Zeilinger, A. V. Sergienko, and Y. Shih, “New high-intensity source of polarization-entangled photon pairs,” Phys. Rev. Lett.75, 4337–4341 (1995).
[CrossRef] [PubMed]

1991

J. D. Franson, “Two-photon interferometry over large distances,” Phys. Rev. A.44, 4552–4555 (1991)
[CrossRef] [PubMed]

1982

A. Aspect, J. Dalibar, and G. Roger, “Experimental test of Bell’s Inequalities using time- varying analyzers,” Phys. Rev. A49, 1804–1807 (1982).

Abolghasem, P.

R. Horn, P. Abolghasem, B. J. Bijlani, D. Kang, A. S. Helmy, and G. Weihs, “Monolithic source of photon pairs,” Phys. Rev. Lett.108, 153605–153610 (2012).
[CrossRef] [PubMed]

Agha, I.

M. Davanco, J. R. Ong, A. B. Shehata, A. Tosi, I. Agha, S. Assefa, F. Xia, W. M. J. Green, S. Mookherjea, and K. Srinivasan, “Telecommunications-band heralded single photons from a silicon nanophotonic chip,” Appl. Phys. Lett.100, 261104–261106 (2012)
[CrossRef]

Akahane, Y.

Y. Akahane, T. Asano, B. S. Song, and S. Noda, “High-Q photonic nanocavity in a two-dimensional photonic crystal,” Nature425, 944–947 (2003).
[CrossRef] [PubMed]

Alduino, A.

A. Alduino and M. Paniccia, “Interconnects: Wiring electronics with light,” Nat. Photonics1, 153155 (2007).
[CrossRef]

Almeida, V. R.

Andreani, L. C.

D. Bajoni, D. Gerace, M. Galli, J. Bloch, R. Braive, I. Sagnes, A. Miard, A. Lematre, M. Patrini, and L. C. Andreani, “Exciton polaritons in two-dimensional photonic crystals,” Phys. Rev. B80, 201308 (2009).
[CrossRef]

M. Galli, D. Bajoni, F. Marabelli, L. C. Andreani, L. Pavesi, and G. Pucker, “Photonic bands and group-velocity dispersion in Si/SiO2 photonic crystals from white-light interferometry,” Phys. Rev. B69, 115107 (2004).
[CrossRef]

F. Romanato, L. Businaro, E. Di Fabrizio, A. Passaseo, M. De Vittorio, R. Cingolani, M. Patrini, M. Galli, D. Bajoni, L. C. Andreani, F. Giacometti, M. Gentili, D. Peyrade, and Y. Chen, “Fabrication by means of x-ray lithography of two-dimensional GaAs/AlGaAs photonic crystals with an unconventional unit cell,” Nanotechnology13, 644–652 (2002).
[CrossRef]

S. Azzini, D. Grassani, M. Galli, L. C. Andreani, M. Sorel, M. J. Strain, L. G. Helt, J. E. Sipe, M. Liscidini, and D. Bajoni, “From Classical Four-Wave Mixing to Parametric Fluorescence in Silicon micro-ring resonators,” accepted for publication in Optics Letters.

Asano, T.

Y. Akahane, T. Asano, B. S. Song, and S. Noda, “High-Q photonic nanocavity in a two-dimensional photonic crystal,” Nature425, 944–947 (2003).
[CrossRef] [PubMed]

Aspect, A.

A. Aspect, J. Dalibar, and G. Roger, “Experimental test of Bell’s Inequalities using time- varying analyzers,” Phys. Rev. A49, 1804–1807 (1982).

Assefa, S.

M. Davanco, J. R. Ong, A. B. Shehata, A. Tosi, I. Agha, S. Assefa, F. Xia, W. M. J. Green, S. Mookherjea, and K. Srinivasan, “Telecommunications-band heralded single photons from a silicon nanophotonic chip,” Appl. Phys. Lett.100, 261104–261106 (2012)
[CrossRef]

Azzini, S.

S. Azzini, D. Gerace, M. Galli, I. Sagnes, R. Braive, A. Lemaître, J. Bloch, and D. Bajoni, “Ultra-low threshold polariton lasing in photonic crystal cavities,” Appl. Phys. Lett.99, 111106 (2011).
[CrossRef]

S. Azzini, D. Grassani, M. Galli, L. C. Andreani, M. Sorel, M. J. Strain, L. G. Helt, J. E. Sipe, M. Liscidini, and D. Bajoni, “From Classical Four-Wave Mixing to Parametric Fluorescence in Silicon micro-ring resonators,” accepted for publication in Optics Letters.

Baets, R. G.

Bajoni, D.

M. Liscidini, D. Gerace, D. Sanvitto, and D. Bajoni, “Guided Bloch surface wave polaritons” Appl. Phys. Lett.98, 121118 (2011).
[CrossRef]

S. Azzini, D. Gerace, M. Galli, I. Sagnes, R. Braive, A. Lemaître, J. Bloch, and D. Bajoni, “Ultra-low threshold polariton lasing in photonic crystal cavities,” Appl. Phys. Lett.99, 111106 (2011).
[CrossRef]

D. Bajoni, D. Gerace, M. Galli, J. Bloch, R. Braive, I. Sagnes, A. Miard, A. Lematre, M. Patrini, and L. C. Andreani, “Exciton polaritons in two-dimensional photonic crystals,” Phys. Rev. B80, 201308 (2009).
[CrossRef]

M. Galli, D. Bajoni, F. Marabelli, L. C. Andreani, L. Pavesi, and G. Pucker, “Photonic bands and group-velocity dispersion in Si/SiO2 photonic crystals from white-light interferometry,” Phys. Rev. B69, 115107 (2004).
[CrossRef]

F. Romanato, L. Businaro, E. Di Fabrizio, A. Passaseo, M. De Vittorio, R. Cingolani, M. Patrini, M. Galli, D. Bajoni, L. C. Andreani, F. Giacometti, M. Gentili, D. Peyrade, and Y. Chen, “Fabrication by means of x-ray lithography of two-dimensional GaAs/AlGaAs photonic crystals with an unconventional unit cell,” Nanotechnology13, 644–652 (2002).
[CrossRef]

S. Azzini, D. Grassani, M. Galli, L. C. Andreani, M. Sorel, M. J. Strain, L. G. Helt, J. E. Sipe, M. Liscidini, and D. Bajoni, “From Classical Four-Wave Mixing to Parametric Fluorescence in Silicon micro-ring resonators,” accepted for publication in Optics Letters.

Berger, V.

L. Lanco, S. Ducci, J.-P. Likforman, X. Marcadet, J. A. W. van Houwelingen, H. Zbinden, G. Leo, and V. Berger, “Semiconductor waveguide source of counterpropagating twin photons,” Phys. Rev. Lett.97, 173901–173904 (2006).
[CrossRef] [PubMed]

Bijlani, B. J.

R. Horn, P. Abolghasem, B. J. Bijlani, D. Kang, A. S. Helmy, and G. Weihs, “Monolithic source of photon pairs,” Phys. Rev. Lett.108, 153605–153610 (2012).
[CrossRef] [PubMed]

Bitauld, D.

A. Gaggero, S. Jahanmirinejad, F. Marsili, F. Mattioli, R. Leoni, D. Bitauld, D. Sahin, G. J. Hamhuis, R. Ntzel, R. Sanjines, and A. Fiore, “Nanowire superconducting single-photon detectors on GaAs for integrated quantum photonic applications”, Appl. Phys. Lett.97, 151108 (2010).
[CrossRef]

Bloch, J.

S. Azzini, D. Gerace, M. Galli, I. Sagnes, R. Braive, A. Lemaître, J. Bloch, and D. Bajoni, “Ultra-low threshold polariton lasing in photonic crystal cavities,” Appl. Phys. Lett.99, 111106 (2011).
[CrossRef]

D. Bajoni, D. Gerace, M. Galli, J. Bloch, R. Braive, I. Sagnes, A. Miard, A. Lematre, M. Patrini, and L. C. Andreani, “Exciton polaritons in two-dimensional photonic crystals,” Phys. Rev. B80, 201308 (2009).
[CrossRef]

Bocquillon, E.

M. Razavi, I. Söllner, E. Bocquillon, C. Couteau, R. Laflamme, and G Weihs, “Characterizing heralded single-photon sources with imperfect measurement devices,” J. Phys. B: At. Mol. Opt. Phys.42, 114013–114017 (2009).
[CrossRef]

Bogaerts, W.

Boyd, R. W.

R. W. Boyd, Nonlinear Optics, 3rd ed. (Academic Press, San Diego2008).

Braive, R.

S. Azzini, D. Gerace, M. Galli, I. Sagnes, R. Braive, A. Lemaître, J. Bloch, and D. Bajoni, “Ultra-low threshold polariton lasing in photonic crystal cavities,” Appl. Phys. Lett.99, 111106 (2011).
[CrossRef]

D. Bajoni, D. Gerace, M. Galli, J. Bloch, R. Braive, I. Sagnes, A. Miard, A. Lematre, M. Patrini, and L. C. Andreani, “Exciton polaritons in two-dimensional photonic crystals,” Phys. Rev. B80, 201308 (2009).
[CrossRef]

Businaro, L.

F. Romanato, L. Businaro, E. Di Fabrizio, A. Passaseo, M. De Vittorio, R. Cingolani, M. Patrini, M. Galli, D. Bajoni, L. C. Andreani, F. Giacometti, M. Gentili, D. Peyrade, and Y. Chen, “Fabrication by means of x-ray lithography of two-dimensional GaAs/AlGaAs photonic crystals with an unconventional unit cell,” Nanotechnology13, 644–652 (2002).
[CrossRef]

Chen, L.

Chen, Y.

F. Romanato, L. Businaro, E. Di Fabrizio, A. Passaseo, M. De Vittorio, R. Cingolani, M. Patrini, M. Galli, D. Bajoni, L. C. Andreani, F. Giacometti, M. Gentili, D. Peyrade, and Y. Chen, “Fabrication by means of x-ray lithography of two-dimensional GaAs/AlGaAs photonic crystals with an unconventional unit cell,” Nanotechnology13, 644–652 (2002).
[CrossRef]

Chu, S.T.

Cingolani, R.

F. Romanato, L. Businaro, E. Di Fabrizio, A. Passaseo, M. De Vittorio, R. Cingolani, M. Patrini, M. Galli, D. Bajoni, L. C. Andreani, F. Giacometti, M. Gentili, D. Peyrade, and Y. Chen, “Fabrication by means of x-ray lithography of two-dimensional GaAs/AlGaAs photonic crystals with an unconventional unit cell,” Nanotechnology13, 644–652 (2002).
[CrossRef]

Clemmen, S.

Couteau, C.

M. Razavi, I. Söllner, E. Bocquillon, C. Couteau, R. Laflamme, and G Weihs, “Characterizing heralded single-photon sources with imperfect measurement devices,” J. Phys. B: At. Mol. Opt. Phys.42, 114013–114017 (2009).
[CrossRef]

Dalibar, J.

A. Aspect, J. Dalibar, and G. Roger, “Experimental test of Bell’s Inequalities using time- varying analyzers,” Phys. Rev. A49, 1804–1807 (1982).

Davanco, M.

M. Davanco, J. R. Ong, A. B. Shehata, A. Tosi, I. Agha, S. Assefa, F. Xia, W. M. J. Green, S. Mookherjea, and K. Srinivasan, “Telecommunications-band heralded single photons from a silicon nanophotonic chip,” Appl. Phys. Lett.100, 261104–261106 (2012)
[CrossRef]

De Vittorio, M.

F. Romanato, L. Businaro, E. Di Fabrizio, A. Passaseo, M. De Vittorio, R. Cingolani, M. Patrini, M. Galli, D. Bajoni, L. C. Andreani, F. Giacometti, M. Gentili, D. Peyrade, and Y. Chen, “Fabrication by means of x-ray lithography of two-dimensional GaAs/AlGaAs photonic crystals with an unconventional unit cell,” Nanotechnology13, 644–652 (2002).
[CrossRef]

Di Fabrizio, E.

F. Romanato, L. Businaro, E. Di Fabrizio, A. Passaseo, M. De Vittorio, R. Cingolani, M. Patrini, M. Galli, D. Bajoni, L. C. Andreani, F. Giacometti, M. Gentili, D. Peyrade, and Y. Chen, “Fabrication by means of x-ray lithography of two-dimensional GaAs/AlGaAs photonic crystals with an unconventional unit cell,” Nanotechnology13, 644–652 (2002).
[CrossRef]

Dorenbos, S. N.

S. N. Dorenbos, E. M. Reiger, U. Perinetti, V. Zwiller, T. Zijlstra, and T. M. Klapwijk, “Low noise superconducting single photon detectors on silicon,” Appl. Phys. Lett.93, 131101 (2008).
[CrossRef]

Ducci, S.

L. Lanco, S. Ducci, J.-P. Likforman, X. Marcadet, J. A. W. van Houwelingen, H. Zbinden, G. Leo, and V. Berger, “Semiconductor waveguide source of counterpropagating twin photons,” Phys. Rev. Lett.97, 173901–173904 (2006).
[CrossRef] [PubMed]

Ekert, A.

A. Ekert and R. Jozsa, “Quantum computation and Shor’s factoring algorithm,” Rev. Mod. Phys.68, 733–753 (2002).
[CrossRef]

Emplit, Ph.

Ferretti, S.

S. Ferretti and D. Gerace, “Single-photon nonlinear optics with Kerr-type nanostructured materials,” Phys. Rev. B85, 033303–033307 (2012).
[CrossRef]

Fiore, A.

A. Gaggero, S. Jahanmirinejad, F. Marsili, F. Mattioli, R. Leoni, D. Bitauld, D. Sahin, G. J. Hamhuis, R. Ntzel, R. Sanjines, and A. Fiore, “Nanowire superconducting single-photon detectors on GaAs for integrated quantum photonic applications”, Appl. Phys. Lett.97, 151108 (2010).
[CrossRef]

Foster, M.

Franson, J. D.

J. D. Franson, “Two-photon interferometry over large distances,” Phys. Rev. A.44, 4552–4555 (1991)
[CrossRef] [PubMed]

Fukuda, H.

K. I. Harada, H. Takesue, H. Fukuda, T. Tsuchizawa, T. Watanabe, K. Yamada, Y. Tokura, and S. Itabashi, “Frequency and polarization characteristics of correlated photon-pair generation using a silicon wire waveguide”, IEEE J. Sel. Top. Quantum Electron.16, 325–331 (2010).
[CrossRef]

H. Takesue, Y. Tokura, H. Fukuda, T. Tsuchizawa, T. Watanabe, K. Yamada, and S. Itabashi, “Entanglement generation using silicon wire waveguide,” Appl. Phys. Lett.91, 201108–201110 (2007).
[CrossRef]

Gaeta, A.

Gaggero, A.

A. Gaggero, S. Jahanmirinejad, F. Marsili, F. Mattioli, R. Leoni, D. Bitauld, D. Sahin, G. J. Hamhuis, R. Ntzel, R. Sanjines, and A. Fiore, “Nanowire superconducting single-photon detectors on GaAs for integrated quantum photonic applications”, Appl. Phys. Lett.97, 151108 (2010).
[CrossRef]

Galli, M.

S. Azzini, D. Gerace, M. Galli, I. Sagnes, R. Braive, A. Lemaître, J. Bloch, and D. Bajoni, “Ultra-low threshold polariton lasing in photonic crystal cavities,” Appl. Phys. Lett.99, 111106 (2011).
[CrossRef]

D. Bajoni, D. Gerace, M. Galli, J. Bloch, R. Braive, I. Sagnes, A. Miard, A. Lematre, M. Patrini, and L. C. Andreani, “Exciton polaritons in two-dimensional photonic crystals,” Phys. Rev. B80, 201308 (2009).
[CrossRef]

M. Galli, D. Bajoni, F. Marabelli, L. C. Andreani, L. Pavesi, and G. Pucker, “Photonic bands and group-velocity dispersion in Si/SiO2 photonic crystals from white-light interferometry,” Phys. Rev. B69, 115107 (2004).
[CrossRef]

F. Romanato, L. Businaro, E. Di Fabrizio, A. Passaseo, M. De Vittorio, R. Cingolani, M. Patrini, M. Galli, D. Bajoni, L. C. Andreani, F. Giacometti, M. Gentili, D. Peyrade, and Y. Chen, “Fabrication by means of x-ray lithography of two-dimensional GaAs/AlGaAs photonic crystals with an unconventional unit cell,” Nanotechnology13, 644–652 (2002).
[CrossRef]

S. Azzini, D. Grassani, M. Galli, L. C. Andreani, M. Sorel, M. J. Strain, L. G. Helt, J. E. Sipe, M. Liscidini, and D. Bajoni, “From Classical Four-Wave Mixing to Parametric Fluorescence in Silicon micro-ring resonators,” accepted for publication in Optics Letters.

Gentili, M.

F. Romanato, L. Businaro, E. Di Fabrizio, A. Passaseo, M. De Vittorio, R. Cingolani, M. Patrini, M. Galli, D. Bajoni, L. C. Andreani, F. Giacometti, M. Gentili, D. Peyrade, and Y. Chen, “Fabrication by means of x-ray lithography of two-dimensional GaAs/AlGaAs photonic crystals with an unconventional unit cell,” Nanotechnology13, 644–652 (2002).
[CrossRef]

Gerace, D.

S. Ferretti and D. Gerace, “Single-photon nonlinear optics with Kerr-type nanostructured materials,” Phys. Rev. B85, 033303–033307 (2012).
[CrossRef]

S. Azzini, D. Gerace, M. Galli, I. Sagnes, R. Braive, A. Lemaître, J. Bloch, and D. Bajoni, “Ultra-low threshold polariton lasing in photonic crystal cavities,” Appl. Phys. Lett.99, 111106 (2011).
[CrossRef]

M. Liscidini, D. Gerace, D. Sanvitto, and D. Bajoni, “Guided Bloch surface wave polaritons” Appl. Phys. Lett.98, 121118 (2011).
[CrossRef]

D. Bajoni, D. Gerace, M. Galli, J. Bloch, R. Braive, I. Sagnes, A. Miard, A. Lematre, M. Patrini, and L. C. Andreani, “Exciton polaritons in two-dimensional photonic crystals,” Phys. Rev. B80, 201308 (2009).
[CrossRef]

Giacometti, F.

F. Romanato, L. Businaro, E. Di Fabrizio, A. Passaseo, M. De Vittorio, R. Cingolani, M. Patrini, M. Galli, D. Bajoni, L. C. Andreani, F. Giacometti, M. Gentili, D. Peyrade, and Y. Chen, “Fabrication by means of x-ray lithography of two-dimensional GaAs/AlGaAs photonic crystals with an unconventional unit cell,” Nanotechnology13, 644–652 (2002).
[CrossRef]

Gisin, N.

N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, “Quantum cryptography,” Rev. Mod. Phys.74, 145–195 (2002).
[CrossRef]

Grassani, D.

S. Azzini, D. Grassani, M. Galli, L. C. Andreani, M. Sorel, M. J. Strain, L. G. Helt, J. E. Sipe, M. Liscidini, and D. Bajoni, “From Classical Four-Wave Mixing to Parametric Fluorescence in Silicon micro-ring resonators,” accepted for publication in Optics Letters.

Green, W. M. J.

M. Davanco, J. R. Ong, A. B. Shehata, A. Tosi, I. Agha, S. Assefa, F. Xia, W. M. J. Green, S. Mookherjea, and K. Srinivasan, “Telecommunications-band heralded single photons from a silicon nanophotonic chip,” Appl. Phys. Lett.100, 261104–261106 (2012)
[CrossRef]

Guha, B.

Guilet, S.

K. H. Lee, S. Guilet, G. Patriarche, I. Sagnes, and A. Talneau, “Smooth sidewall in InP-based photonic crystal membrane etched by N2-based inductive coupled plasma,” J. Vac. Sci. Technol. B26, 1326–1333 (2008).
[CrossRef]

Hamhuis, G. J.

A. Gaggero, S. Jahanmirinejad, F. Marsili, F. Mattioli, R. Leoni, D. Bitauld, D. Sahin, G. J. Hamhuis, R. Ntzel, R. Sanjines, and A. Fiore, “Nanowire superconducting single-photon detectors on GaAs for integrated quantum photonic applications”, Appl. Phys. Lett.97, 151108 (2010).
[CrossRef]

Harada, K. I.

K. I. Harada, H. Takesue, H. Fukuda, T. Tsuchizawa, T. Watanabe, K. Yamada, Y. Tokura, and S. Itabashi, “Frequency and polarization characteristics of correlated photon-pair generation using a silicon wire waveguide”, IEEE J. Sel. Top. Quantum Electron.16, 325–331 (2010).
[CrossRef]

Helmy, A. S.

R. Horn, P. Abolghasem, B. J. Bijlani, D. Kang, A. S. Helmy, and G. Weihs, “Monolithic source of photon pairs,” Phys. Rev. Lett.108, 153605–153610 (2012).
[CrossRef] [PubMed]

Helt, L. G.

L. G. Helt, M. Liscidini, and J. E. Sipe, “How does it scale? - Comparing quantum and classical nonlinear optical processes in integrated devices,” J. Opt. Soc. Am. B29, 2199–2212 (2012).
[CrossRef]

L. G. Helt, Z. Yang, M. Liscidini, and J. E. Sipe, “Spontaneous four-wave mixing in microring resonators,” Opt. Lett.35, 3006–3008 (2010).
[CrossRef] [PubMed]

S. Azzini, D. Grassani, M. Galli, L. C. Andreani, M. Sorel, M. J. Strain, L. G. Helt, J. E. Sipe, M. Liscidini, and D. Bajoni, “From Classical Four-Wave Mixing to Parametric Fluorescence in Silicon micro-ring resonators,” accepted for publication in Optics Letters.

Horn, R.

R. Horn, P. Abolghasem, B. J. Bijlani, D. Kang, A. S. Helmy, and G. Weihs, “Monolithic source of photon pairs,” Phys. Rev. Lett.108, 153605–153610 (2012).
[CrossRef] [PubMed]

Itabashi, S.

K. I. Harada, H. Takesue, H. Fukuda, T. Tsuchizawa, T. Watanabe, K. Yamada, Y. Tokura, and S. Itabashi, “Frequency and polarization characteristics of correlated photon-pair generation using a silicon wire waveguide”, IEEE J. Sel. Top. Quantum Electron.16, 325–331 (2010).
[CrossRef]

H. Takesue, Y. Tokura, H. Fukuda, T. Tsuchizawa, T. Watanabe, K. Yamada, and S. Itabashi, “Entanglement generation using silicon wire waveguide,” Appl. Phys. Lett.91, 201108–201110 (2007).
[CrossRef]

Jahanmirinejad, S.

A. Gaggero, S. Jahanmirinejad, F. Marsili, F. Mattioli, R. Leoni, D. Bitauld, D. Sahin, G. J. Hamhuis, R. Ntzel, R. Sanjines, and A. Fiore, “Nanowire superconducting single-photon detectors on GaAs for integrated quantum photonic applications”, Appl. Phys. Lett.97, 151108 (2010).
[CrossRef]

Joannopoulos, L. D.

L. D. Joannopoulos, S. G. Johnson, J. N. Winn, and R. D. Meade, Photonic Crystals: Molding the Flow of Light (Princeton University Press, Princeton2008).

Johnson, S. G.

L. D. Joannopoulos, S. G. Johnson, J. N. Winn, and R. D. Meade, Photonic Crystals: Molding the Flow of Light (Princeton University Press, Princeton2008).

Jozsa, R.

A. Ekert and R. Jozsa, “Quantum computation and Shor’s factoring algorithm,” Rev. Mod. Phys.68, 733–753 (2002).
[CrossRef]

Kang, D.

R. Horn, P. Abolghasem, B. J. Bijlani, D. Kang, A. S. Helmy, and G. Weihs, “Monolithic source of photon pairs,” Phys. Rev. Lett.108, 153605–153610 (2012).
[CrossRef] [PubMed]

Klapwijk, T. M.

S. N. Dorenbos, E. M. Reiger, U. Perinetti, V. Zwiller, T. Zijlstra, and T. M. Klapwijk, “Low noise superconducting single photon detectors on silicon,” Appl. Phys. Lett.93, 131101 (2008).
[CrossRef]

Kuramochi, E.

T. Tanabe, M. Notomi, S. Mitsugi, A. Shinya, and E. Kuramochi, “All-optical switches on a silicon chip realized using photonic crystal nanocavities,” Appl. Phys. Lett.87, 151112–151114 (2005).
[CrossRef]

M. Notomi, A. Shinya, S. Mitsugi, E. Kuramochi, and H.-Y. Ryu, “Waveguides, resonators, and their coupled elements in photonic crystal slabs,” Opt. Express12, 1551–1561 (2004).
[CrossRef] [PubMed]

Kwiat, P. G.

P. G. Kwiat, K. Mattle, H. Weinfurter, A. Zeilinger, A. V. Sergienko, and Y. Shih, “New high-intensity source of polarization-entangled photon pairs,” Phys. Rev. Lett.75, 4337–4341 (1995).
[CrossRef] [PubMed]

Kyotoku, B.

Laflamme, R.

M. Razavi, I. Söllner, E. Bocquillon, C. Couteau, R. Laflamme, and G Weihs, “Characterizing heralded single-photon sources with imperfect measurement devices,” J. Phys. B: At. Mol. Opt. Phys.42, 114013–114017 (2009).
[CrossRef]

Laine, J.

Lanco, L.

L. Lanco, S. Ducci, J.-P. Likforman, X. Marcadet, J. A. W. van Houwelingen, H. Zbinden, G. Leo, and V. Berger, “Semiconductor waveguide source of counterpropagating twin photons,” Phys. Rev. Lett.97, 173901–173904 (2006).
[CrossRef] [PubMed]

Lee, K. H.

K. H. Lee, S. Guilet, G. Patriarche, I. Sagnes, and A. Talneau, “Smooth sidewall in InP-based photonic crystal membrane etched by N2-based inductive coupled plasma,” J. Vac. Sci. Technol. B26, 1326–1333 (2008).
[CrossRef]

Lemaître, A.

S. Azzini, D. Gerace, M. Galli, I. Sagnes, R. Braive, A. Lemaître, J. Bloch, and D. Bajoni, “Ultra-low threshold polariton lasing in photonic crystal cavities,” Appl. Phys. Lett.99, 111106 (2011).
[CrossRef]

Lematre, A.

D. Bajoni, D. Gerace, M. Galli, J. Bloch, R. Braive, I. Sagnes, A. Miard, A. Lematre, M. Patrini, and L. C. Andreani, “Exciton polaritons in two-dimensional photonic crystals,” Phys. Rev. B80, 201308 (2009).
[CrossRef]

Leo, G.

L. Lanco, S. Ducci, J.-P. Likforman, X. Marcadet, J. A. W. van Houwelingen, H. Zbinden, G. Leo, and V. Berger, “Semiconductor waveguide source of counterpropagating twin photons,” Phys. Rev. Lett.97, 173901–173904 (2006).
[CrossRef] [PubMed]

Leoni, R.

A. Gaggero, S. Jahanmirinejad, F. Marsili, F. Mattioli, R. Leoni, D. Bitauld, D. Sahin, G. J. Hamhuis, R. Ntzel, R. Sanjines, and A. Fiore, “Nanowire superconducting single-photon detectors on GaAs for integrated quantum photonic applications”, Appl. Phys. Lett.97, 151108 (2010).
[CrossRef]

Likforman, J.-P.

L. Lanco, S. Ducci, J.-P. Likforman, X. Marcadet, J. A. W. van Houwelingen, H. Zbinden, G. Leo, and V. Berger, “Semiconductor waveguide source of counterpropagating twin photons,” Phys. Rev. Lett.97, 173901–173904 (2006).
[CrossRef] [PubMed]

Lipson, M.

Liscidini, M.

L. G. Helt, M. Liscidini, and J. E. Sipe, “How does it scale? - Comparing quantum and classical nonlinear optical processes in integrated devices,” J. Opt. Soc. Am. B29, 2199–2212 (2012).
[CrossRef]

M. Liscidini, D. Gerace, D. Sanvitto, and D. Bajoni, “Guided Bloch surface wave polaritons” Appl. Phys. Lett.98, 121118 (2011).
[CrossRef]

L. G. Helt, Z. Yang, M. Liscidini, and J. E. Sipe, “Spontaneous four-wave mixing in microring resonators,” Opt. Lett.35, 3006–3008 (2010).
[CrossRef] [PubMed]

S. Azzini, D. Grassani, M. Galli, L. C. Andreani, M. Sorel, M. J. Strain, L. G. Helt, J. E. Sipe, M. Liscidini, and D. Bajoni, “From Classical Four-Wave Mixing to Parametric Fluorescence in Silicon micro-ring resonators,” accepted for publication in Optics Letters.

Little, B. E.

Lundeen, J. S.

P. J. Mosley, J. S. Lundeen, B. J. Smith, P. Wasylczyk, A. B. URen, C. Silberhorn, and I. A. Walmsley, “Heralded generation of ultrafast single photons in pure quantum states,” Phys. Rev. Lett.100, 133601–133605 (2008)
[CrossRef] [PubMed]

Marabelli, F.

M. Galli, D. Bajoni, F. Marabelli, L. C. Andreani, L. Pavesi, and G. Pucker, “Photonic bands and group-velocity dispersion in Si/SiO2 photonic crystals from white-light interferometry,” Phys. Rev. B69, 115107 (2004).
[CrossRef]

Marcadet, X.

L. Lanco, S. Ducci, J.-P. Likforman, X. Marcadet, J. A. W. van Houwelingen, H. Zbinden, G. Leo, and V. Berger, “Semiconductor waveguide source of counterpropagating twin photons,” Phys. Rev. Lett.97, 173901–173904 (2006).
[CrossRef] [PubMed]

Marsili, F.

A. Gaggero, S. Jahanmirinejad, F. Marsili, F. Mattioli, R. Leoni, D. Bitauld, D. Sahin, G. J. Hamhuis, R. Ntzel, R. Sanjines, and A. Fiore, “Nanowire superconducting single-photon detectors on GaAs for integrated quantum photonic applications”, Appl. Phys. Lett.97, 151108 (2010).
[CrossRef]

Massar, S.

Matsuo, S.

K. Nozaki, T. Tanabe, A. Shinya, S. Matsuo, T. Sato, H. Taniyama, and M. Notomi, “Sub-femtojoule all-optical switching using a photonic-crystal nanocavity,” Nat. Photonics4, 477–483 (2010)
[CrossRef]

Mattioli, F.

A. Gaggero, S. Jahanmirinejad, F. Marsili, F. Mattioli, R. Leoni, D. Bitauld, D. Sahin, G. J. Hamhuis, R. Ntzel, R. Sanjines, and A. Fiore, “Nanowire superconducting single-photon detectors on GaAs for integrated quantum photonic applications”, Appl. Phys. Lett.97, 151108 (2010).
[CrossRef]

Mattle, K.

P. G. Kwiat, K. Mattle, H. Weinfurter, A. Zeilinger, A. V. Sergienko, and Y. Shih, “New high-intensity source of polarization-entangled photon pairs,” Phys. Rev. Lett.75, 4337–4341 (1995).
[CrossRef] [PubMed]

Meade, R. D.

L. D. Joannopoulos, S. G. Johnson, J. N. Winn, and R. D. Meade, Photonic Crystals: Molding the Flow of Light (Princeton University Press, Princeton2008).

Miard, A.

D. Bajoni, D. Gerace, M. Galli, J. Bloch, R. Braive, I. Sagnes, A. Miard, A. Lematre, M. Patrini, and L. C. Andreani, “Exciton polaritons in two-dimensional photonic crystals,” Phys. Rev. B80, 201308 (2009).
[CrossRef]

Mitsugi, S.

T. Tanabe, M. Notomi, S. Mitsugi, A. Shinya, and E. Kuramochi, “All-optical switches on a silicon chip realized using photonic crystal nanocavities,” Appl. Phys. Lett.87, 151112–151114 (2005).
[CrossRef]

M. Notomi, A. Shinya, S. Mitsugi, E. Kuramochi, and H.-Y. Ryu, “Waveguides, resonators, and their coupled elements in photonic crystal slabs,” Opt. Express12, 1551–1561 (2004).
[CrossRef] [PubMed]

Mookherjea, S.

M. Davanco, J. R. Ong, A. B. Shehata, A. Tosi, I. Agha, S. Assefa, F. Xia, W. M. J. Green, S. Mookherjea, and K. Srinivasan, “Telecommunications-band heralded single photons from a silicon nanophotonic chip,” Appl. Phys. Lett.100, 261104–261106 (2012)
[CrossRef]

Morita, H.

T. Shoji, T. Tsuchizawa, T. Watanabe, K. Yamada, and H. Morita, “Low loss mode size converter from 0.3μm square Si waveguides to singlemode fibres,” Electron. Lett.38, 1669–1700 (2002).
[CrossRef]

Mosley, P. J.

P. J. Mosley, J. S. Lundeen, B. J. Smith, P. Wasylczyk, A. B. URen, C. Silberhorn, and I. A. Walmsley, “Heralded generation of ultrafast single photons in pure quantum states,” Phys. Rev. Lett.100, 133601–133605 (2008)
[CrossRef] [PubMed]

Noda, S.

Y. Akahane, T. Asano, B. S. Song, and S. Noda, “High-Q photonic nanocavity in a two-dimensional photonic crystal,” Nature425, 944–947 (2003).
[CrossRef] [PubMed]

Notomi, M.

K. Nozaki, T. Tanabe, A. Shinya, S. Matsuo, T. Sato, H. Taniyama, and M. Notomi, “Sub-femtojoule all-optical switching using a photonic-crystal nanocavity,” Nat. Photonics4, 477–483 (2010)
[CrossRef]

T. Tanabe, M. Notomi, S. Mitsugi, A. Shinya, and E. Kuramochi, “All-optical switches on a silicon chip realized using photonic crystal nanocavities,” Appl. Phys. Lett.87, 151112–151114 (2005).
[CrossRef]

M. Notomi, A. Shinya, S. Mitsugi, E. Kuramochi, and H.-Y. Ryu, “Waveguides, resonators, and their coupled elements in photonic crystal slabs,” Opt. Express12, 1551–1561 (2004).
[CrossRef] [PubMed]

Nozaki, K.

K. Nozaki, T. Tanabe, A. Shinya, S. Matsuo, T. Sato, H. Taniyama, and M. Notomi, “Sub-femtojoule all-optical switching using a photonic-crystal nanocavity,” Nat. Photonics4, 477–483 (2010)
[CrossRef]

Ntzel, R.

A. Gaggero, S. Jahanmirinejad, F. Marsili, F. Mattioli, R. Leoni, D. Bitauld, D. Sahin, G. J. Hamhuis, R. Ntzel, R. Sanjines, and A. Fiore, “Nanowire superconducting single-photon detectors on GaAs for integrated quantum photonic applications”, Appl. Phys. Lett.97, 151108 (2010).
[CrossRef]

Ong, J. R.

M. Davanco, J. R. Ong, A. B. Shehata, A. Tosi, I. Agha, S. Assefa, F. Xia, W. M. J. Green, S. Mookherjea, and K. Srinivasan, “Telecommunications-band heralded single photons from a silicon nanophotonic chip,” Appl. Phys. Lett.100, 261104–261106 (2012)
[CrossRef]

Paniccia, M.

A. Alduino and M. Paniccia, “Interconnects: Wiring electronics with light,” Nat. Photonics1, 153155 (2007).
[CrossRef]

Passaseo, A.

F. Romanato, L. Businaro, E. Di Fabrizio, A. Passaseo, M. De Vittorio, R. Cingolani, M. Patrini, M. Galli, D. Bajoni, L. C. Andreani, F. Giacometti, M. Gentili, D. Peyrade, and Y. Chen, “Fabrication by means of x-ray lithography of two-dimensional GaAs/AlGaAs photonic crystals with an unconventional unit cell,” Nanotechnology13, 644–652 (2002).
[CrossRef]

Patriarche, G.

K. H. Lee, S. Guilet, G. Patriarche, I. Sagnes, and A. Talneau, “Smooth sidewall in InP-based photonic crystal membrane etched by N2-based inductive coupled plasma,” J. Vac. Sci. Technol. B26, 1326–1333 (2008).
[CrossRef]

Patrini, M.

D. Bajoni, D. Gerace, M. Galli, J. Bloch, R. Braive, I. Sagnes, A. Miard, A. Lematre, M. Patrini, and L. C. Andreani, “Exciton polaritons in two-dimensional photonic crystals,” Phys. Rev. B80, 201308 (2009).
[CrossRef]

F. Romanato, L. Businaro, E. Di Fabrizio, A. Passaseo, M. De Vittorio, R. Cingolani, M. Patrini, M. Galli, D. Bajoni, L. C. Andreani, F. Giacometti, M. Gentili, D. Peyrade, and Y. Chen, “Fabrication by means of x-ray lithography of two-dimensional GaAs/AlGaAs photonic crystals with an unconventional unit cell,” Nanotechnology13, 644–652 (2002).
[CrossRef]

Pavesi, L.

M. Galli, D. Bajoni, F. Marabelli, L. C. Andreani, L. Pavesi, and G. Pucker, “Photonic bands and group-velocity dispersion in Si/SiO2 photonic crystals from white-light interferometry,” Phys. Rev. B69, 115107 (2004).
[CrossRef]

Perinetti, U.

S. N. Dorenbos, E. M. Reiger, U. Perinetti, V. Zwiller, T. Zijlstra, and T. M. Klapwijk, “Low noise superconducting single photon detectors on silicon,” Appl. Phys. Lett.93, 131101 (2008).
[CrossRef]

Peyrade, D.

F. Romanato, L. Businaro, E. Di Fabrizio, A. Passaseo, M. De Vittorio, R. Cingolani, M. Patrini, M. Galli, D. Bajoni, L. C. Andreani, F. Giacometti, M. Gentili, D. Peyrade, and Y. Chen, “Fabrication by means of x-ray lithography of two-dimensional GaAs/AlGaAs photonic crystals with an unconventional unit cell,” Nanotechnology13, 644–652 (2002).
[CrossRef]

Phan Huy, K.

Pucker, G.

M. Galli, D. Bajoni, F. Marabelli, L. C. Andreani, L. Pavesi, and G. Pucker, “Photonic bands and group-velocity dispersion in Si/SiO2 photonic crystals from white-light interferometry,” Phys. Rev. B69, 115107 (2004).
[CrossRef]

Razavi, M.

M. Razavi, I. Söllner, E. Bocquillon, C. Couteau, R. Laflamme, and G Weihs, “Characterizing heralded single-photon sources with imperfect measurement devices,” J. Phys. B: At. Mol. Opt. Phys.42, 114013–114017 (2009).
[CrossRef]

Reiger, E. M.

S. N. Dorenbos, E. M. Reiger, U. Perinetti, V. Zwiller, T. Zijlstra, and T. M. Klapwijk, “Low noise superconducting single photon detectors on silicon,” Appl. Phys. Lett.93, 131101 (2008).
[CrossRef]

Ribordy, G.

N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, “Quantum cryptography,” Rev. Mod. Phys.74, 145–195 (2002).
[CrossRef]

Robinson, J. T.

Roger, G.

A. Aspect, J. Dalibar, and G. Roger, “Experimental test of Bell’s Inequalities using time- varying analyzers,” Phys. Rev. A49, 1804–1807 (1982).

Romanato, F.

F. Romanato, L. Businaro, E. Di Fabrizio, A. Passaseo, M. De Vittorio, R. Cingolani, M. Patrini, M. Galli, D. Bajoni, L. C. Andreani, F. Giacometti, M. Gentili, D. Peyrade, and Y. Chen, “Fabrication by means of x-ray lithography of two-dimensional GaAs/AlGaAs photonic crystals with an unconventional unit cell,” Nanotechnology13, 644–652 (2002).
[CrossRef]

Ryu, H.-Y.

Sagnes, I.

S. Azzini, D. Gerace, M. Galli, I. Sagnes, R. Braive, A. Lemaître, J. Bloch, and D. Bajoni, “Ultra-low threshold polariton lasing in photonic crystal cavities,” Appl. Phys. Lett.99, 111106 (2011).
[CrossRef]

D. Bajoni, D. Gerace, M. Galli, J. Bloch, R. Braive, I. Sagnes, A. Miard, A. Lematre, M. Patrini, and L. C. Andreani, “Exciton polaritons in two-dimensional photonic crystals,” Phys. Rev. B80, 201308 (2009).
[CrossRef]

K. H. Lee, S. Guilet, G. Patriarche, I. Sagnes, and A. Talneau, “Smooth sidewall in InP-based photonic crystal membrane etched by N2-based inductive coupled plasma,” J. Vac. Sci. Technol. B26, 1326–1333 (2008).
[CrossRef]

Sahin, D.

A. Gaggero, S. Jahanmirinejad, F. Marsili, F. Mattioli, R. Leoni, D. Bitauld, D. Sahin, G. J. Hamhuis, R. Ntzel, R. Sanjines, and A. Fiore, “Nanowire superconducting single-photon detectors on GaAs for integrated quantum photonic applications”, Appl. Phys. Lett.97, 151108 (2010).
[CrossRef]

Sanjines, R.

A. Gaggero, S. Jahanmirinejad, F. Marsili, F. Mattioli, R. Leoni, D. Bitauld, D. Sahin, G. J. Hamhuis, R. Ntzel, R. Sanjines, and A. Fiore, “Nanowire superconducting single-photon detectors on GaAs for integrated quantum photonic applications”, Appl. Phys. Lett.97, 151108 (2010).
[CrossRef]

Sanvitto, D.

M. Liscidini, D. Gerace, D. Sanvitto, and D. Bajoni, “Guided Bloch surface wave polaritons” Appl. Phys. Lett.98, 121118 (2011).
[CrossRef]

Sato, T.

K. Nozaki, T. Tanabe, A. Shinya, S. Matsuo, T. Sato, H. Taniyama, and M. Notomi, “Sub-femtojoule all-optical switching using a photonic-crystal nanocavity,” Nat. Photonics4, 477–483 (2010)
[CrossRef]

Sergienko, A. V.

P. G. Kwiat, K. Mattle, H. Weinfurter, A. Zeilinger, A. V. Sergienko, and Y. Shih, “New high-intensity source of polarization-entangled photon pairs,” Phys. Rev. Lett.75, 4337–4341 (1995).
[CrossRef] [PubMed]

Shehata, A. B.

M. Davanco, J. R. Ong, A. B. Shehata, A. Tosi, I. Agha, S. Assefa, F. Xia, W. M. J. Green, S. Mookherjea, and K. Srinivasan, “Telecommunications-band heralded single photons from a silicon nanophotonic chip,” Appl. Phys. Lett.100, 261104–261106 (2012)
[CrossRef]

Shih, Y.

P. G. Kwiat, K. Mattle, H. Weinfurter, A. Zeilinger, A. V. Sergienko, and Y. Shih, “New high-intensity source of polarization-entangled photon pairs,” Phys. Rev. Lett.75, 4337–4341 (1995).
[CrossRef] [PubMed]

Shimizu, K.

H. Takesue and K. Shimizu, “Effects of multiple pairs on visibility measurements of entangled photons generated by spontaneous parametric processes,” Opt. Commun.283, 276287 (2010).
[CrossRef]

Shinya, A.

K. Nozaki, T. Tanabe, A. Shinya, S. Matsuo, T. Sato, H. Taniyama, and M. Notomi, “Sub-femtojoule all-optical switching using a photonic-crystal nanocavity,” Nat. Photonics4, 477–483 (2010)
[CrossRef]

T. Tanabe, M. Notomi, S. Mitsugi, A. Shinya, and E. Kuramochi, “All-optical switches on a silicon chip realized using photonic crystal nanocavities,” Appl. Phys. Lett.87, 151112–151114 (2005).
[CrossRef]

M. Notomi, A. Shinya, S. Mitsugi, E. Kuramochi, and H.-Y. Ryu, “Waveguides, resonators, and their coupled elements in photonic crystal slabs,” Opt. Express12, 1551–1561 (2004).
[CrossRef] [PubMed]

Shoji, T.

T. Shoji, T. Tsuchizawa, T. Watanabe, K. Yamada, and H. Morita, “Low loss mode size converter from 0.3μm square Si waveguides to singlemode fibres,” Electron. Lett.38, 1669–1700 (2002).
[CrossRef]

Silberhorn, C.

P. J. Mosley, J. S. Lundeen, B. J. Smith, P. Wasylczyk, A. B. URen, C. Silberhorn, and I. A. Walmsley, “Heralded generation of ultrafast single photons in pure quantum states,” Phys. Rev. Lett.100, 133601–133605 (2008)
[CrossRef] [PubMed]

Sipe, J. E.

L. G. Helt, M. Liscidini, and J. E. Sipe, “How does it scale? - Comparing quantum and classical nonlinear optical processes in integrated devices,” J. Opt. Soc. Am. B29, 2199–2212 (2012).
[CrossRef]

L. G. Helt, Z. Yang, M. Liscidini, and J. E. Sipe, “Spontaneous four-wave mixing in microring resonators,” Opt. Lett.35, 3006–3008 (2010).
[CrossRef] [PubMed]

S. Azzini, D. Grassani, M. Galli, L. C. Andreani, M. Sorel, M. J. Strain, L. G. Helt, J. E. Sipe, M. Liscidini, and D. Bajoni, “From Classical Four-Wave Mixing to Parametric Fluorescence in Silicon micro-ring resonators,” accepted for publication in Optics Letters.

Smith, B. J.

P. J. Mosley, J. S. Lundeen, B. J. Smith, P. Wasylczyk, A. B. URen, C. Silberhorn, and I. A. Walmsley, “Heralded generation of ultrafast single photons in pure quantum states,” Phys. Rev. Lett.100, 133601–133605 (2008)
[CrossRef] [PubMed]

Söllner, I.

M. Razavi, I. Söllner, E. Bocquillon, C. Couteau, R. Laflamme, and G Weihs, “Characterizing heralded single-photon sources with imperfect measurement devices,” J. Phys. B: At. Mol. Opt. Phys.42, 114013–114017 (2009).
[CrossRef]

Song, B. S.

Y. Akahane, T. Asano, B. S. Song, and S. Noda, “High-Q photonic nanocavity in a two-dimensional photonic crystal,” Nature425, 944–947 (2003).
[CrossRef] [PubMed]

Sorel, M.

S. Azzini, D. Grassani, M. Galli, L. C. Andreani, M. Sorel, M. J. Strain, L. G. Helt, J. E. Sipe, M. Liscidini, and D. Bajoni, “From Classical Four-Wave Mixing to Parametric Fluorescence in Silicon micro-ring resonators,” accepted for publication in Optics Letters.

Srinivasan, K.

M. Davanco, J. R. Ong, A. B. Shehata, A. Tosi, I. Agha, S. Assefa, F. Xia, W. M. J. Green, S. Mookherjea, and K. Srinivasan, “Telecommunications-band heralded single photons from a silicon nanophotonic chip,” Appl. Phys. Lett.100, 261104–261106 (2012)
[CrossRef]

Strain, M. J.

S. Azzini, D. Grassani, M. Galli, L. C. Andreani, M. Sorel, M. J. Strain, L. G. Helt, J. E. Sipe, M. Liscidini, and D. Bajoni, “From Classical Four-Wave Mixing to Parametric Fluorescence in Silicon micro-ring resonators,” accepted for publication in Optics Letters.

Takesue, H.

H. Takesue and K. Shimizu, “Effects of multiple pairs on visibility measurements of entangled photons generated by spontaneous parametric processes,” Opt. Commun.283, 276287 (2010).
[CrossRef]

K. I. Harada, H. Takesue, H. Fukuda, T. Tsuchizawa, T. Watanabe, K. Yamada, Y. Tokura, and S. Itabashi, “Frequency and polarization characteristics of correlated photon-pair generation using a silicon wire waveguide”, IEEE J. Sel. Top. Quantum Electron.16, 325–331 (2010).
[CrossRef]

H. Takesue, Y. Tokura, H. Fukuda, T. Tsuchizawa, T. Watanabe, K. Yamada, and S. Itabashi, “Entanglement generation using silicon wire waveguide,” Appl. Phys. Lett.91, 201108–201110 (2007).
[CrossRef]

Talneau, A.

K. H. Lee, S. Guilet, G. Patriarche, I. Sagnes, and A. Talneau, “Smooth sidewall in InP-based photonic crystal membrane etched by N2-based inductive coupled plasma,” J. Vac. Sci. Technol. B26, 1326–1333 (2008).
[CrossRef]

Tanabe, T.

K. Nozaki, T. Tanabe, A. Shinya, S. Matsuo, T. Sato, H. Taniyama, and M. Notomi, “Sub-femtojoule all-optical switching using a photonic-crystal nanocavity,” Nat. Photonics4, 477–483 (2010)
[CrossRef]

T. Tanabe, M. Notomi, S. Mitsugi, A. Shinya, and E. Kuramochi, “All-optical switches on a silicon chip realized using photonic crystal nanocavities,” Appl. Phys. Lett.87, 151112–151114 (2005).
[CrossRef]

Taniyama, H.

K. Nozaki, T. Tanabe, A. Shinya, S. Matsuo, T. Sato, H. Taniyama, and M. Notomi, “Sub-femtojoule all-optical switching using a photonic-crystal nanocavity,” Nat. Photonics4, 477–483 (2010)
[CrossRef]

Tittel, W.

N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, “Quantum cryptography,” Rev. Mod. Phys.74, 145–195 (2002).
[CrossRef]

Tokura, Y.

K. I. Harada, H. Takesue, H. Fukuda, T. Tsuchizawa, T. Watanabe, K. Yamada, Y. Tokura, and S. Itabashi, “Frequency and polarization characteristics of correlated photon-pair generation using a silicon wire waveguide”, IEEE J. Sel. Top. Quantum Electron.16, 325–331 (2010).
[CrossRef]

H. Takesue, Y. Tokura, H. Fukuda, T. Tsuchizawa, T. Watanabe, K. Yamada, and S. Itabashi, “Entanglement generation using silicon wire waveguide,” Appl. Phys. Lett.91, 201108–201110 (2007).
[CrossRef]

Tosi, A.

M. Davanco, J. R. Ong, A. B. Shehata, A. Tosi, I. Agha, S. Assefa, F. Xia, W. M. J. Green, S. Mookherjea, and K. Srinivasan, “Telecommunications-band heralded single photons from a silicon nanophotonic chip,” Appl. Phys. Lett.100, 261104–261106 (2012)
[CrossRef]

Tsuchizawa, T.

K. I. Harada, H. Takesue, H. Fukuda, T. Tsuchizawa, T. Watanabe, K. Yamada, Y. Tokura, and S. Itabashi, “Frequency and polarization characteristics of correlated photon-pair generation using a silicon wire waveguide”, IEEE J. Sel. Top. Quantum Electron.16, 325–331 (2010).
[CrossRef]

H. Takesue, Y. Tokura, H. Fukuda, T. Tsuchizawa, T. Watanabe, K. Yamada, and S. Itabashi, “Entanglement generation using silicon wire waveguide,” Appl. Phys. Lett.91, 201108–201110 (2007).
[CrossRef]

T. Shoji, T. Tsuchizawa, T. Watanabe, K. Yamada, and H. Morita, “Low loss mode size converter from 0.3μm square Si waveguides to singlemode fibres,” Electron. Lett.38, 1669–1700 (2002).
[CrossRef]

Turner, A.

URen, A. B.

P. J. Mosley, J. S. Lundeen, B. J. Smith, P. Wasylczyk, A. B. URen, C. Silberhorn, and I. A. Walmsley, “Heralded generation of ultrafast single photons in pure quantum states,” Phys. Rev. Lett.100, 133601–133605 (2008)
[CrossRef] [PubMed]

van Houwelingen, J. A. W.

L. Lanco, S. Ducci, J.-P. Likforman, X. Marcadet, J. A. W. van Houwelingen, H. Zbinden, G. Leo, and V. Berger, “Semiconductor waveguide source of counterpropagating twin photons,” Phys. Rev. Lett.97, 173901–173904 (2006).
[CrossRef] [PubMed]

Walmsley, I. A.

P. J. Mosley, J. S. Lundeen, B. J. Smith, P. Wasylczyk, A. B. URen, C. Silberhorn, and I. A. Walmsley, “Heralded generation of ultrafast single photons in pure quantum states,” Phys. Rev. Lett.100, 133601–133605 (2008)
[CrossRef] [PubMed]

Wasylczyk, P.

P. J. Mosley, J. S. Lundeen, B. J. Smith, P. Wasylczyk, A. B. URen, C. Silberhorn, and I. A. Walmsley, “Heralded generation of ultrafast single photons in pure quantum states,” Phys. Rev. Lett.100, 133601–133605 (2008)
[CrossRef] [PubMed]

Watanabe, T.

K. I. Harada, H. Takesue, H. Fukuda, T. Tsuchizawa, T. Watanabe, K. Yamada, Y. Tokura, and S. Itabashi, “Frequency and polarization characteristics of correlated photon-pair generation using a silicon wire waveguide”, IEEE J. Sel. Top. Quantum Electron.16, 325–331 (2010).
[CrossRef]

H. Takesue, Y. Tokura, H. Fukuda, T. Tsuchizawa, T. Watanabe, K. Yamada, and S. Itabashi, “Entanglement generation using silicon wire waveguide,” Appl. Phys. Lett.91, 201108–201110 (2007).
[CrossRef]

T. Shoji, T. Tsuchizawa, T. Watanabe, K. Yamada, and H. Morita, “Low loss mode size converter from 0.3μm square Si waveguides to singlemode fibres,” Electron. Lett.38, 1669–1700 (2002).
[CrossRef]

Weihs, G

M. Razavi, I. Söllner, E. Bocquillon, C. Couteau, R. Laflamme, and G Weihs, “Characterizing heralded single-photon sources with imperfect measurement devices,” J. Phys. B: At. Mol. Opt. Phys.42, 114013–114017 (2009).
[CrossRef]

Weihs, G.

R. Horn, P. Abolghasem, B. J. Bijlani, D. Kang, A. S. Helmy, and G. Weihs, “Monolithic source of photon pairs,” Phys. Rev. Lett.108, 153605–153610 (2012).
[CrossRef] [PubMed]

Weinfurter, H.

P. G. Kwiat, K. Mattle, H. Weinfurter, A. Zeilinger, A. V. Sergienko, and Y. Shih, “New high-intensity source of polarization-entangled photon pairs,” Phys. Rev. Lett.75, 4337–4341 (1995).
[CrossRef] [PubMed]

Winn, J. N.

L. D. Joannopoulos, S. G. Johnson, J. N. Winn, and R. D. Meade, Photonic Crystals: Molding the Flow of Light (Princeton University Press, Princeton2008).

Xia, F.

M. Davanco, J. R. Ong, A. B. Shehata, A. Tosi, I. Agha, S. Assefa, F. Xia, W. M. J. Green, S. Mookherjea, and K. Srinivasan, “Telecommunications-band heralded single photons from a silicon nanophotonic chip,” Appl. Phys. Lett.100, 261104–261106 (2012)
[CrossRef]

Yamada, K.

K. I. Harada, H. Takesue, H. Fukuda, T. Tsuchizawa, T. Watanabe, K. Yamada, Y. Tokura, and S. Itabashi, “Frequency and polarization characteristics of correlated photon-pair generation using a silicon wire waveguide”, IEEE J. Sel. Top. Quantum Electron.16, 325–331 (2010).
[CrossRef]

H. Takesue, Y. Tokura, H. Fukuda, T. Tsuchizawa, T. Watanabe, K. Yamada, and S. Itabashi, “Entanglement generation using silicon wire waveguide,” Appl. Phys. Lett.91, 201108–201110 (2007).
[CrossRef]

T. Shoji, T. Tsuchizawa, T. Watanabe, K. Yamada, and H. Morita, “Low loss mode size converter from 0.3μm square Si waveguides to singlemode fibres,” Electron. Lett.38, 1669–1700 (2002).
[CrossRef]

Yang, Z.

Zbinden, H.

L. Lanco, S. Ducci, J.-P. Likforman, X. Marcadet, J. A. W. van Houwelingen, H. Zbinden, G. Leo, and V. Berger, “Semiconductor waveguide source of counterpropagating twin photons,” Phys. Rev. Lett.97, 173901–173904 (2006).
[CrossRef] [PubMed]

N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, “Quantum cryptography,” Rev. Mod. Phys.74, 145–195 (2002).
[CrossRef]

Zeilinger, A.

P. G. Kwiat, K. Mattle, H. Weinfurter, A. Zeilinger, A. V. Sergienko, and Y. Shih, “New high-intensity source of polarization-entangled photon pairs,” Phys. Rev. Lett.75, 4337–4341 (1995).
[CrossRef] [PubMed]

Zijlstra, T.

S. N. Dorenbos, E. M. Reiger, U. Perinetti, V. Zwiller, T. Zijlstra, and T. M. Klapwijk, “Low noise superconducting single photon detectors on silicon,” Appl. Phys. Lett.93, 131101 (2008).
[CrossRef]

Zwiller, V.

S. N. Dorenbos, E. M. Reiger, U. Perinetti, V. Zwiller, T. Zijlstra, and T. M. Klapwijk, “Low noise superconducting single photon detectors on silicon,” Appl. Phys. Lett.93, 131101 (2008).
[CrossRef]

Appl. Phys. Lett.

M. Liscidini, D. Gerace, D. Sanvitto, and D. Bajoni, “Guided Bloch surface wave polaritons” Appl. Phys. Lett.98, 121118 (2011).
[CrossRef]

H. Takesue, Y. Tokura, H. Fukuda, T. Tsuchizawa, T. Watanabe, K. Yamada, and S. Itabashi, “Entanglement generation using silicon wire waveguide,” Appl. Phys. Lett.91, 201108–201110 (2007).
[CrossRef]

T. Tanabe, M. Notomi, S. Mitsugi, A. Shinya, and E. Kuramochi, “All-optical switches on a silicon chip realized using photonic crystal nanocavities,” Appl. Phys. Lett.87, 151112–151114 (2005).
[CrossRef]

M. Davanco, J. R. Ong, A. B. Shehata, A. Tosi, I. Agha, S. Assefa, F. Xia, W. M. J. Green, S. Mookherjea, and K. Srinivasan, “Telecommunications-band heralded single photons from a silicon nanophotonic chip,” Appl. Phys. Lett.100, 261104–261106 (2012)
[CrossRef]

A. Gaggero, S. Jahanmirinejad, F. Marsili, F. Mattioli, R. Leoni, D. Bitauld, D. Sahin, G. J. Hamhuis, R. Ntzel, R. Sanjines, and A. Fiore, “Nanowire superconducting single-photon detectors on GaAs for integrated quantum photonic applications”, Appl. Phys. Lett.97, 151108 (2010).
[CrossRef]

S. N. Dorenbos, E. M. Reiger, U. Perinetti, V. Zwiller, T. Zijlstra, and T. M. Klapwijk, “Low noise superconducting single photon detectors on silicon,” Appl. Phys. Lett.93, 131101 (2008).
[CrossRef]

S. Azzini, D. Gerace, M. Galli, I. Sagnes, R. Braive, A. Lemaître, J. Bloch, and D. Bajoni, “Ultra-low threshold polariton lasing in photonic crystal cavities,” Appl. Phys. Lett.99, 111106 (2011).
[CrossRef]

Electron. Lett.

T. Shoji, T. Tsuchizawa, T. Watanabe, K. Yamada, and H. Morita, “Low loss mode size converter from 0.3μm square Si waveguides to singlemode fibres,” Electron. Lett.38, 1669–1700 (2002).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron.

K. I. Harada, H. Takesue, H. Fukuda, T. Tsuchizawa, T. Watanabe, K. Yamada, Y. Tokura, and S. Itabashi, “Frequency and polarization characteristics of correlated photon-pair generation using a silicon wire waveguide”, IEEE J. Sel. Top. Quantum Electron.16, 325–331 (2010).
[CrossRef]

J. Opt. Soc. Am. B

J. Phys. B: At. Mol. Opt. Phys.

M. Razavi, I. Söllner, E. Bocquillon, C. Couteau, R. Laflamme, and G Weihs, “Characterizing heralded single-photon sources with imperfect measurement devices,” J. Phys. B: At. Mol. Opt. Phys.42, 114013–114017 (2009).
[CrossRef]

J. Vac. Sci. Technol. B

K. H. Lee, S. Guilet, G. Patriarche, I. Sagnes, and A. Talneau, “Smooth sidewall in InP-based photonic crystal membrane etched by N2-based inductive coupled plasma,” J. Vac. Sci. Technol. B26, 1326–1333 (2008).
[CrossRef]

Nanotechnology

F. Romanato, L. Businaro, E. Di Fabrizio, A. Passaseo, M. De Vittorio, R. Cingolani, M. Patrini, M. Galli, D. Bajoni, L. C. Andreani, F. Giacometti, M. Gentili, D. Peyrade, and Y. Chen, “Fabrication by means of x-ray lithography of two-dimensional GaAs/AlGaAs photonic crystals with an unconventional unit cell,” Nanotechnology13, 644–652 (2002).
[CrossRef]

Nat. Photonics

A. Alduino and M. Paniccia, “Interconnects: Wiring electronics with light,” Nat. Photonics1, 153155 (2007).
[CrossRef]

K. Nozaki, T. Tanabe, A. Shinya, S. Matsuo, T. Sato, H. Taniyama, and M. Notomi, “Sub-femtojoule all-optical switching using a photonic-crystal nanocavity,” Nat. Photonics4, 477–483 (2010)
[CrossRef]

Nature

Y. Akahane, T. Asano, B. S. Song, and S. Noda, “High-Q photonic nanocavity in a two-dimensional photonic crystal,” Nature425, 944–947 (2003).
[CrossRef] [PubMed]

Opt. Commun.

H. Takesue and K. Shimizu, “Effects of multiple pairs on visibility measurements of entangled photons generated by spontaneous parametric processes,” Opt. Commun.283, 276287 (2010).
[CrossRef]

Opt. Express

Opt. Lett.

Phys. Rev. A

A. Aspect, J. Dalibar, and G. Roger, “Experimental test of Bell’s Inequalities using time- varying analyzers,” Phys. Rev. A49, 1804–1807 (1982).

Phys. Rev. A.

J. D. Franson, “Two-photon interferometry over large distances,” Phys. Rev. A.44, 4552–4555 (1991)
[CrossRef] [PubMed]

Phys. Rev. B

M. Galli, D. Bajoni, F. Marabelli, L. C. Andreani, L. Pavesi, and G. Pucker, “Photonic bands and group-velocity dispersion in Si/SiO2 photonic crystals from white-light interferometry,” Phys. Rev. B69, 115107 (2004).
[CrossRef]

D. Bajoni, D. Gerace, M. Galli, J. Bloch, R. Braive, I. Sagnes, A. Miard, A. Lematre, M. Patrini, and L. C. Andreani, “Exciton polaritons in two-dimensional photonic crystals,” Phys. Rev. B80, 201308 (2009).
[CrossRef]

S. Ferretti and D. Gerace, “Single-photon nonlinear optics with Kerr-type nanostructured materials,” Phys. Rev. B85, 033303–033307 (2012).
[CrossRef]

Phys. Rev. Lett.

P. J. Mosley, J. S. Lundeen, B. J. Smith, P. Wasylczyk, A. B. URen, C. Silberhorn, and I. A. Walmsley, “Heralded generation of ultrafast single photons in pure quantum states,” Phys. Rev. Lett.100, 133601–133605 (2008)
[CrossRef] [PubMed]

P. G. Kwiat, K. Mattle, H. Weinfurter, A. Zeilinger, A. V. Sergienko, and Y. Shih, “New high-intensity source of polarization-entangled photon pairs,” Phys. Rev. Lett.75, 4337–4341 (1995).
[CrossRef] [PubMed]

L. Lanco, S. Ducci, J.-P. Likforman, X. Marcadet, J. A. W. van Houwelingen, H. Zbinden, G. Leo, and V. Berger, “Semiconductor waveguide source of counterpropagating twin photons,” Phys. Rev. Lett.97, 173901–173904 (2006).
[CrossRef] [PubMed]

R. Horn, P. Abolghasem, B. J. Bijlani, D. Kang, A. S. Helmy, and G. Weihs, “Monolithic source of photon pairs,” Phys. Rev. Lett.108, 153605–153610 (2012).
[CrossRef] [PubMed]

Rev. Mod. Phys.

N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, “Quantum cryptography,” Rev. Mod. Phys.74, 145–195 (2002).
[CrossRef]

A. Ekert and R. Jozsa, “Quantum computation and Shor’s factoring algorithm,” Rev. Mod. Phys.68, 733–753 (2002).
[CrossRef]

Other

R. W. Boyd, Nonlinear Optics, 3rd ed. (Academic Press, San Diego2008).

L. D. Joannopoulos, S. G. Johnson, J. N. Winn, and R. D. Meade, Photonic Crystals: Molding the Flow of Light (Princeton University Press, Princeton2008).

S. Azzini, D. Grassani, M. Galli, L. C. Andreani, M. Sorel, M. J. Strain, L. G. Helt, J. E. Sipe, M. Liscidini, and D. Bajoni, “From Classical Four-Wave Mixing to Parametric Fluorescence in Silicon micro-ring resonators,” accepted for publication in Optics Letters.

Unlike in Ref. [20], here we assume losses in the ring resonator. At the critical coupling, the on-resonance field enhancement in the ring resonator is FE≃2Qvg/(ω02πR), with ω0 the resonant frequency.

We note that after submission of our manuscript we became aware of another research reporting emission of correlated photons with high CAR values from a silicon ring resonator: Erman Engin, Damien Bonneau, Chandra M. Natarajan, Alex Clark, M. G. Tanner, R. H. Hadfield, Sanders N. Dorenbos, Val Zwiller, Kazuya Ohira, Nobuo Suzuki, Haruhiko Yoshida, Norio Iizuka, Mizunori Ezaki, Jeremy L. OBrien, Mark G. Thompson, ”Photon Pair Generation in Silicon Micro-Ring Resonators with Reverse Bias Enhancement” arXiv:1204.4922.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Transmission spectrum from the sample. The inset shows an optical microscope image of the ring resonator.

Fig. 2
Fig. 2

(a) Schematic of the experimental setup used to test spontaneous four wave mixing. (b) Spectrum of spontaneously generated signal and idler beams for PPump = 0.6 mW. (c) Integrated intensities of the generated beams as a function of the pump power. The line is the prediction from Eq. (1).

Fig. 3
Fig. 3

(a) Schematic of the experimental setup used for coincidence measurements. (b) and (c) Coincidence histograms for different pump powers. (d) Rate of coincidences as a function of the pump power. The dashed line is a guide to the eye proportional to the square of the pump power. (e) Coincidences to accidentals ratio as a function of the pump power.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

ρ = ( γ 2 π R ) 2 ( Q v g ω p π R ) 3 v g 4 π R P Pump 2 ,

Metrics