Abstract

In this paper, a novel structure of dynamic optical arbitrary waveform generation (O-AWG) with amplitude controlled by interference of two fiber Bragg grating (FBG) arrays is proposed. The FBG array consists of several FBGs and fiber stretchers (FSs). The amplitude is controlled by FSs through interference of two FBG arrays. The phase is controlled by FSs simultaneously. As a result, optical pulse trains with various waveforms as well as pulse trains with nonuniform pulse intensity, pulse spacing and pulse width in each period are obtained via FSs adjustment to change the phase shift of signal in each array.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. M. Weiner, “Femtosecond optical pulse shaping and processing,” Prog. Quantum Electron.19(3), 161–237 (1995).
    [CrossRef]
  2. A. M. Weiner and J. P. Heritage, “Picosecond and femtosecond Fourier pulse shape synthesis,” Rev. Phys. Appl. (Paris)22(12), 1619–1628 (1987).
    [CrossRef]
  3. S. T. Cundiff and A. M. Weiner, “Optical arbitrary waveform generation,” Nat. Photonics4(11), 760–766 (2010).
    [CrossRef]
  4. Z. Jiang, C.-B. Huang, D. E. Leaird, and A. M. Weiner, “Optical arbitrary waveform processing of more than 100 spectral comb lines,” Nat. Photonics1(8), 463–467 (2007).
    [CrossRef]
  5. V. Torres-Company, A. J. Metcalf, D. E. Leaird, and A. M. Weiner, “Multichannel radio-frequency arbitrary waveform generation based on multiwavelength comb switching and 2-D line-by-line pulse shaping,” IEEE Photon. Technol. Lett.24(11), 891–893 (2012).
    [CrossRef]
  6. Z. Jiang, D. E. Leaird, and A. M. Weiner, “Line-by-line pulse shaping control for optical arbitrary waveform generation,” Opt. Express13(25), 10431–10439 (2005).
    [CrossRef] [PubMed]
  7. Z. Jiang, D. E. Leaird, C.-B. Huang, H. Miao, M. Kourogi, K. Imai, and A. M. Weiner, “Spectral line-by-line pulse shaping on an optical frequency comb generator,” IEEE J. Quantum Electron.43(12), 1163–1174 (2007).
    [CrossRef]
  8. Z. Jiang, D. E. Leaird, and A. M. Weiner, “Optical arbitrary waveform generation and characterization using spectral line-by-line control” IEEE/OSA. J. Lightwave Technol.24(7), 2487–2494 (2006).
    [CrossRef]
  9. C.-B. Huang, Z. Jiang, D. E. Leaird, and A. M. Weiner, “Quantitative study of optical frequency noise to intensity noise conversion in line-by-line pulse shaping,” IEEE J. Quantum Electron.45(6), 661–673 (2009).
    [CrossRef]
  10. K. Mandai, T. Suzuki, H. Tsuda, T. Kurokawa, and T. Kawanishi, “Arbitrary optical short pulse generator using a high-resolution arrayed-waveguide grating,” in IEEE Topical Meeting on Microwave Photonics, Technical Digest (CD) (IEEE, 2004), 107–110, paper MC-20.
  11. N. K. Fontaine, R. P. Scott, C. Yang, D. J. Geisler, K. Okamoto, J. P. Heritage, and S. J. B. Yoo, “Integrated, ultrahigh-fidelity 17 × 40 GHz OAWG,” in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science and Photonic Applications Systems Technologies, (Optical Society of America, 2008), paper CTuA5, http://www.opticsinfobase.org/abstract.cfm?URI=CLEO-2008-CTuA5 .
  12. D. J. Geisler, N. K. Fontaine, T.-T. He, R. P. Scott, L. Paraschis, J. P. Heritage, and S. J. B. Yoo, “Modulation-format agile, reconfigurable Tb/s transmitter based on optical arbitrary waveform generation,” Opt. Express17(18), 15911–15925 (2009).
    [CrossRef] [PubMed]
  13. F. M. Soares, N. K. Fontaine, R. P. Scott, J. H. Baek, X. Zhou, T. Su, S. Cheung, Y. Wang, C. Junesand, S. Lourdudoss, K. Y. Liou, R. A. Hamm, W. Wang, B. Patel, L. A. Gruezke, W. T. Tsang, J. P. Heritage, and S. J. B. Yoo, “Monolithic InP 100-Channel × 10-GHz device for optical arbitrary waveform generation,” IEEE Photon. Journal3(6), 975–985 (2011).
    [CrossRef]
  14. P. Emplit, M. Haelterman, R. Kashyap, and M. De Lathouwer, “Fiber Bragg grating for optical dark soliton generation,” IEEE Photon. Technol. Lett.9(8), 1122–1124 (1997).
    [CrossRef]
  15. N. K. Berger, B. Levit, and B. Fischer, “Reshaping periodic light pulses using cascaded uniform fiber Bragg gratings,” IEEE/OSA J. Lightwave Technol.24(7), 2746–2751 (2006).
    [CrossRef]
  16. P. Petropoulos, M. Ibsen, A. D. Ellis, and D. J. Richardson, “Rectangular pulse generation based on pulse reshaping using a superstructured fiber Bragg grating,” IEEE/OSA J. Lightwave Technol.19(5), 746–752 (2001).
    [CrossRef]
  17. P. Petropoulos, M. Ibsen, M. N. Zervas, and D. J. Richardson, “Generation of a 40-GHz pulse stream by pulse multiplication with a sampled fiber Bragg grating,” Opt. Lett.25(8), 521–523 (2000).
    [CrossRef] [PubMed]
  18. D. Wang, J. Suzuki, K. Thanakom, C. S. Goh, S. Y. Set, and K. Kikuchi, “Multiplication of optical-pulse repetition rate from 40 GHz to 160 GHz by using phase-sampled fiber Bragg gratings,” in the 17th Annual Meeting of IEEE on Lasers and Electro-Optics Society, (IEEE, 2004), 390–391, paper TuZ2.
  19. Y. Y. Ho and L. Qian, “Dynamic arbitrary waveform shaping in a continuous fiber,” Opt. Lett.33(11), 1279–1281 (2008).
    [CrossRef] [PubMed]
  20. G. P. Agrawal, Applications of Nonlinear Fiber Optics (Academic & New York, 2007), chap. 3.
  21. Z. Jiang, C.-B. Huang, D. E. Leaird, and A. M. Weiner, “Optical arbitrary pulse train generation via spectral line-by-line pulse shaping,” in IEEE/LEOS Summer Topical Meetings, Technical Digest (CD) (IEEE, 2007), 170–171, paper TuC1.2.

2012 (1)

V. Torres-Company, A. J. Metcalf, D. E. Leaird, and A. M. Weiner, “Multichannel radio-frequency arbitrary waveform generation based on multiwavelength comb switching and 2-D line-by-line pulse shaping,” IEEE Photon. Technol. Lett.24(11), 891–893 (2012).
[CrossRef]

2011 (1)

F. M. Soares, N. K. Fontaine, R. P. Scott, J. H. Baek, X. Zhou, T. Su, S. Cheung, Y. Wang, C. Junesand, S. Lourdudoss, K. Y. Liou, R. A. Hamm, W. Wang, B. Patel, L. A. Gruezke, W. T. Tsang, J. P. Heritage, and S. J. B. Yoo, “Monolithic InP 100-Channel × 10-GHz device for optical arbitrary waveform generation,” IEEE Photon. Journal3(6), 975–985 (2011).
[CrossRef]

2010 (1)

S. T. Cundiff and A. M. Weiner, “Optical arbitrary waveform generation,” Nat. Photonics4(11), 760–766 (2010).
[CrossRef]

2009 (2)

C.-B. Huang, Z. Jiang, D. E. Leaird, and A. M. Weiner, “Quantitative study of optical frequency noise to intensity noise conversion in line-by-line pulse shaping,” IEEE J. Quantum Electron.45(6), 661–673 (2009).
[CrossRef]

D. J. Geisler, N. K. Fontaine, T.-T. He, R. P. Scott, L. Paraschis, J. P. Heritage, and S. J. B. Yoo, “Modulation-format agile, reconfigurable Tb/s transmitter based on optical arbitrary waveform generation,” Opt. Express17(18), 15911–15925 (2009).
[CrossRef] [PubMed]

2008 (1)

2007 (2)

Z. Jiang, C.-B. Huang, D. E. Leaird, and A. M. Weiner, “Optical arbitrary waveform processing of more than 100 spectral comb lines,” Nat. Photonics1(8), 463–467 (2007).
[CrossRef]

Z. Jiang, D. E. Leaird, C.-B. Huang, H. Miao, M. Kourogi, K. Imai, and A. M. Weiner, “Spectral line-by-line pulse shaping on an optical frequency comb generator,” IEEE J. Quantum Electron.43(12), 1163–1174 (2007).
[CrossRef]

2006 (2)

Z. Jiang, D. E. Leaird, and A. M. Weiner, “Optical arbitrary waveform generation and characterization using spectral line-by-line control” IEEE/OSA. J. Lightwave Technol.24(7), 2487–2494 (2006).
[CrossRef]

N. K. Berger, B. Levit, and B. Fischer, “Reshaping periodic light pulses using cascaded uniform fiber Bragg gratings,” IEEE/OSA J. Lightwave Technol.24(7), 2746–2751 (2006).
[CrossRef]

2005 (1)

2001 (1)

P. Petropoulos, M. Ibsen, A. D. Ellis, and D. J. Richardson, “Rectangular pulse generation based on pulse reshaping using a superstructured fiber Bragg grating,” IEEE/OSA J. Lightwave Technol.19(5), 746–752 (2001).
[CrossRef]

2000 (1)

1997 (1)

P. Emplit, M. Haelterman, R. Kashyap, and M. De Lathouwer, “Fiber Bragg grating for optical dark soliton generation,” IEEE Photon. Technol. Lett.9(8), 1122–1124 (1997).
[CrossRef]

1995 (1)

A. M. Weiner, “Femtosecond optical pulse shaping and processing,” Prog. Quantum Electron.19(3), 161–237 (1995).
[CrossRef]

1987 (1)

A. M. Weiner and J. P. Heritage, “Picosecond and femtosecond Fourier pulse shape synthesis,” Rev. Phys. Appl. (Paris)22(12), 1619–1628 (1987).
[CrossRef]

Baek, J. H.

F. M. Soares, N. K. Fontaine, R. P. Scott, J. H. Baek, X. Zhou, T. Su, S. Cheung, Y. Wang, C. Junesand, S. Lourdudoss, K. Y. Liou, R. A. Hamm, W. Wang, B. Patel, L. A. Gruezke, W. T. Tsang, J. P. Heritage, and S. J. B. Yoo, “Monolithic InP 100-Channel × 10-GHz device for optical arbitrary waveform generation,” IEEE Photon. Journal3(6), 975–985 (2011).
[CrossRef]

Berger, N. K.

N. K. Berger, B. Levit, and B. Fischer, “Reshaping periodic light pulses using cascaded uniform fiber Bragg gratings,” IEEE/OSA J. Lightwave Technol.24(7), 2746–2751 (2006).
[CrossRef]

Cheung, S.

F. M. Soares, N. K. Fontaine, R. P. Scott, J. H. Baek, X. Zhou, T. Su, S. Cheung, Y. Wang, C. Junesand, S. Lourdudoss, K. Y. Liou, R. A. Hamm, W. Wang, B. Patel, L. A. Gruezke, W. T. Tsang, J. P. Heritage, and S. J. B. Yoo, “Monolithic InP 100-Channel × 10-GHz device for optical arbitrary waveform generation,” IEEE Photon. Journal3(6), 975–985 (2011).
[CrossRef]

Cundiff, S. T.

S. T. Cundiff and A. M. Weiner, “Optical arbitrary waveform generation,” Nat. Photonics4(11), 760–766 (2010).
[CrossRef]

De Lathouwer, M.

P. Emplit, M. Haelterman, R. Kashyap, and M. De Lathouwer, “Fiber Bragg grating for optical dark soliton generation,” IEEE Photon. Technol. Lett.9(8), 1122–1124 (1997).
[CrossRef]

Ellis, A. D.

P. Petropoulos, M. Ibsen, A. D. Ellis, and D. J. Richardson, “Rectangular pulse generation based on pulse reshaping using a superstructured fiber Bragg grating,” IEEE/OSA J. Lightwave Technol.19(5), 746–752 (2001).
[CrossRef]

Emplit, P.

P. Emplit, M. Haelterman, R. Kashyap, and M. De Lathouwer, “Fiber Bragg grating for optical dark soliton generation,” IEEE Photon. Technol. Lett.9(8), 1122–1124 (1997).
[CrossRef]

Fischer, B.

N. K. Berger, B. Levit, and B. Fischer, “Reshaping periodic light pulses using cascaded uniform fiber Bragg gratings,” IEEE/OSA J. Lightwave Technol.24(7), 2746–2751 (2006).
[CrossRef]

Fontaine, N. K.

F. M. Soares, N. K. Fontaine, R. P. Scott, J. H. Baek, X. Zhou, T. Su, S. Cheung, Y. Wang, C. Junesand, S. Lourdudoss, K. Y. Liou, R. A. Hamm, W. Wang, B. Patel, L. A. Gruezke, W. T. Tsang, J. P. Heritage, and S. J. B. Yoo, “Monolithic InP 100-Channel × 10-GHz device for optical arbitrary waveform generation,” IEEE Photon. Journal3(6), 975–985 (2011).
[CrossRef]

D. J. Geisler, N. K. Fontaine, T.-T. He, R. P. Scott, L. Paraschis, J. P. Heritage, and S. J. B. Yoo, “Modulation-format agile, reconfigurable Tb/s transmitter based on optical arbitrary waveform generation,” Opt. Express17(18), 15911–15925 (2009).
[CrossRef] [PubMed]

Geisler, D. J.

Gruezke, L. A.

F. M. Soares, N. K. Fontaine, R. P. Scott, J. H. Baek, X. Zhou, T. Su, S. Cheung, Y. Wang, C. Junesand, S. Lourdudoss, K. Y. Liou, R. A. Hamm, W. Wang, B. Patel, L. A. Gruezke, W. T. Tsang, J. P. Heritage, and S. J. B. Yoo, “Monolithic InP 100-Channel × 10-GHz device for optical arbitrary waveform generation,” IEEE Photon. Journal3(6), 975–985 (2011).
[CrossRef]

Haelterman, M.

P. Emplit, M. Haelterman, R. Kashyap, and M. De Lathouwer, “Fiber Bragg grating for optical dark soliton generation,” IEEE Photon. Technol. Lett.9(8), 1122–1124 (1997).
[CrossRef]

Hamm, R. A.

F. M. Soares, N. K. Fontaine, R. P. Scott, J. H. Baek, X. Zhou, T. Su, S. Cheung, Y. Wang, C. Junesand, S. Lourdudoss, K. Y. Liou, R. A. Hamm, W. Wang, B. Patel, L. A. Gruezke, W. T. Tsang, J. P. Heritage, and S. J. B. Yoo, “Monolithic InP 100-Channel × 10-GHz device for optical arbitrary waveform generation,” IEEE Photon. Journal3(6), 975–985 (2011).
[CrossRef]

He, T.-T.

Heritage, J. P.

F. M. Soares, N. K. Fontaine, R. P. Scott, J. H. Baek, X. Zhou, T. Su, S. Cheung, Y. Wang, C. Junesand, S. Lourdudoss, K. Y. Liou, R. A. Hamm, W. Wang, B. Patel, L. A. Gruezke, W. T. Tsang, J. P. Heritage, and S. J. B. Yoo, “Monolithic InP 100-Channel × 10-GHz device for optical arbitrary waveform generation,” IEEE Photon. Journal3(6), 975–985 (2011).
[CrossRef]

D. J. Geisler, N. K. Fontaine, T.-T. He, R. P. Scott, L. Paraschis, J. P. Heritage, and S. J. B. Yoo, “Modulation-format agile, reconfigurable Tb/s transmitter based on optical arbitrary waveform generation,” Opt. Express17(18), 15911–15925 (2009).
[CrossRef] [PubMed]

A. M. Weiner and J. P. Heritage, “Picosecond and femtosecond Fourier pulse shape synthesis,” Rev. Phys. Appl. (Paris)22(12), 1619–1628 (1987).
[CrossRef]

Ho, Y. Y.

Huang, C.-B.

C.-B. Huang, Z. Jiang, D. E. Leaird, and A. M. Weiner, “Quantitative study of optical frequency noise to intensity noise conversion in line-by-line pulse shaping,” IEEE J. Quantum Electron.45(6), 661–673 (2009).
[CrossRef]

Z. Jiang, D. E. Leaird, C.-B. Huang, H. Miao, M. Kourogi, K. Imai, and A. M. Weiner, “Spectral line-by-line pulse shaping on an optical frequency comb generator,” IEEE J. Quantum Electron.43(12), 1163–1174 (2007).
[CrossRef]

Z. Jiang, C.-B. Huang, D. E. Leaird, and A. M. Weiner, “Optical arbitrary waveform processing of more than 100 spectral comb lines,” Nat. Photonics1(8), 463–467 (2007).
[CrossRef]

Ibsen, M.

P. Petropoulos, M. Ibsen, A. D. Ellis, and D. J. Richardson, “Rectangular pulse generation based on pulse reshaping using a superstructured fiber Bragg grating,” IEEE/OSA J. Lightwave Technol.19(5), 746–752 (2001).
[CrossRef]

P. Petropoulos, M. Ibsen, M. N. Zervas, and D. J. Richardson, “Generation of a 40-GHz pulse stream by pulse multiplication with a sampled fiber Bragg grating,” Opt. Lett.25(8), 521–523 (2000).
[CrossRef] [PubMed]

Imai, K.

Z. Jiang, D. E. Leaird, C.-B. Huang, H. Miao, M. Kourogi, K. Imai, and A. M. Weiner, “Spectral line-by-line pulse shaping on an optical frequency comb generator,” IEEE J. Quantum Electron.43(12), 1163–1174 (2007).
[CrossRef]

Jiang, Z.

C.-B. Huang, Z. Jiang, D. E. Leaird, and A. M. Weiner, “Quantitative study of optical frequency noise to intensity noise conversion in line-by-line pulse shaping,” IEEE J. Quantum Electron.45(6), 661–673 (2009).
[CrossRef]

Z. Jiang, C.-B. Huang, D. E. Leaird, and A. M. Weiner, “Optical arbitrary waveform processing of more than 100 spectral comb lines,” Nat. Photonics1(8), 463–467 (2007).
[CrossRef]

Z. Jiang, D. E. Leaird, C.-B. Huang, H. Miao, M. Kourogi, K. Imai, and A. M. Weiner, “Spectral line-by-line pulse shaping on an optical frequency comb generator,” IEEE J. Quantum Electron.43(12), 1163–1174 (2007).
[CrossRef]

Z. Jiang, D. E. Leaird, and A. M. Weiner, “Optical arbitrary waveform generation and characterization using spectral line-by-line control” IEEE/OSA. J. Lightwave Technol.24(7), 2487–2494 (2006).
[CrossRef]

Z. Jiang, D. E. Leaird, and A. M. Weiner, “Line-by-line pulse shaping control for optical arbitrary waveform generation,” Opt. Express13(25), 10431–10439 (2005).
[CrossRef] [PubMed]

Junesand, C.

F. M. Soares, N. K. Fontaine, R. P. Scott, J. H. Baek, X. Zhou, T. Su, S. Cheung, Y. Wang, C. Junesand, S. Lourdudoss, K. Y. Liou, R. A. Hamm, W. Wang, B. Patel, L. A. Gruezke, W. T. Tsang, J. P. Heritage, and S. J. B. Yoo, “Monolithic InP 100-Channel × 10-GHz device for optical arbitrary waveform generation,” IEEE Photon. Journal3(6), 975–985 (2011).
[CrossRef]

Kashyap, R.

P. Emplit, M. Haelterman, R. Kashyap, and M. De Lathouwer, “Fiber Bragg grating for optical dark soliton generation,” IEEE Photon. Technol. Lett.9(8), 1122–1124 (1997).
[CrossRef]

Kourogi, M.

Z. Jiang, D. E. Leaird, C.-B. Huang, H. Miao, M. Kourogi, K. Imai, and A. M. Weiner, “Spectral line-by-line pulse shaping on an optical frequency comb generator,” IEEE J. Quantum Electron.43(12), 1163–1174 (2007).
[CrossRef]

Leaird, D. E.

V. Torres-Company, A. J. Metcalf, D. E. Leaird, and A. M. Weiner, “Multichannel radio-frequency arbitrary waveform generation based on multiwavelength comb switching and 2-D line-by-line pulse shaping,” IEEE Photon. Technol. Lett.24(11), 891–893 (2012).
[CrossRef]

C.-B. Huang, Z. Jiang, D. E. Leaird, and A. M. Weiner, “Quantitative study of optical frequency noise to intensity noise conversion in line-by-line pulse shaping,” IEEE J. Quantum Electron.45(6), 661–673 (2009).
[CrossRef]

Z. Jiang, D. E. Leaird, C.-B. Huang, H. Miao, M. Kourogi, K. Imai, and A. M. Weiner, “Spectral line-by-line pulse shaping on an optical frequency comb generator,” IEEE J. Quantum Electron.43(12), 1163–1174 (2007).
[CrossRef]

Z. Jiang, C.-B. Huang, D. E. Leaird, and A. M. Weiner, “Optical arbitrary waveform processing of more than 100 spectral comb lines,” Nat. Photonics1(8), 463–467 (2007).
[CrossRef]

Z. Jiang, D. E. Leaird, and A. M. Weiner, “Optical arbitrary waveform generation and characterization using spectral line-by-line control” IEEE/OSA. J. Lightwave Technol.24(7), 2487–2494 (2006).
[CrossRef]

Z. Jiang, D. E. Leaird, and A. M. Weiner, “Line-by-line pulse shaping control for optical arbitrary waveform generation,” Opt. Express13(25), 10431–10439 (2005).
[CrossRef] [PubMed]

Levit, B.

N. K. Berger, B. Levit, and B. Fischer, “Reshaping periodic light pulses using cascaded uniform fiber Bragg gratings,” IEEE/OSA J. Lightwave Technol.24(7), 2746–2751 (2006).
[CrossRef]

Liou, K. Y.

F. M. Soares, N. K. Fontaine, R. P. Scott, J. H. Baek, X. Zhou, T. Su, S. Cheung, Y. Wang, C. Junesand, S. Lourdudoss, K. Y. Liou, R. A. Hamm, W. Wang, B. Patel, L. A. Gruezke, W. T. Tsang, J. P. Heritage, and S. J. B. Yoo, “Monolithic InP 100-Channel × 10-GHz device for optical arbitrary waveform generation,” IEEE Photon. Journal3(6), 975–985 (2011).
[CrossRef]

Lourdudoss, S.

F. M. Soares, N. K. Fontaine, R. P. Scott, J. H. Baek, X. Zhou, T. Su, S. Cheung, Y. Wang, C. Junesand, S. Lourdudoss, K. Y. Liou, R. A. Hamm, W. Wang, B. Patel, L. A. Gruezke, W. T. Tsang, J. P. Heritage, and S. J. B. Yoo, “Monolithic InP 100-Channel × 10-GHz device for optical arbitrary waveform generation,” IEEE Photon. Journal3(6), 975–985 (2011).
[CrossRef]

Metcalf, A. J.

V. Torres-Company, A. J. Metcalf, D. E. Leaird, and A. M. Weiner, “Multichannel radio-frequency arbitrary waveform generation based on multiwavelength comb switching and 2-D line-by-line pulse shaping,” IEEE Photon. Technol. Lett.24(11), 891–893 (2012).
[CrossRef]

Miao, H.

Z. Jiang, D. E. Leaird, C.-B. Huang, H. Miao, M. Kourogi, K. Imai, and A. M. Weiner, “Spectral line-by-line pulse shaping on an optical frequency comb generator,” IEEE J. Quantum Electron.43(12), 1163–1174 (2007).
[CrossRef]

Paraschis, L.

Patel, B.

F. M. Soares, N. K. Fontaine, R. P. Scott, J. H. Baek, X. Zhou, T. Su, S. Cheung, Y. Wang, C. Junesand, S. Lourdudoss, K. Y. Liou, R. A. Hamm, W. Wang, B. Patel, L. A. Gruezke, W. T. Tsang, J. P. Heritage, and S. J. B. Yoo, “Monolithic InP 100-Channel × 10-GHz device for optical arbitrary waveform generation,” IEEE Photon. Journal3(6), 975–985 (2011).
[CrossRef]

Petropoulos, P.

P. Petropoulos, M. Ibsen, A. D. Ellis, and D. J. Richardson, “Rectangular pulse generation based on pulse reshaping using a superstructured fiber Bragg grating,” IEEE/OSA J. Lightwave Technol.19(5), 746–752 (2001).
[CrossRef]

P. Petropoulos, M. Ibsen, M. N. Zervas, and D. J. Richardson, “Generation of a 40-GHz pulse stream by pulse multiplication with a sampled fiber Bragg grating,” Opt. Lett.25(8), 521–523 (2000).
[CrossRef] [PubMed]

Qian, L.

Richardson, D. J.

P. Petropoulos, M. Ibsen, A. D. Ellis, and D. J. Richardson, “Rectangular pulse generation based on pulse reshaping using a superstructured fiber Bragg grating,” IEEE/OSA J. Lightwave Technol.19(5), 746–752 (2001).
[CrossRef]

P. Petropoulos, M. Ibsen, M. N. Zervas, and D. J. Richardson, “Generation of a 40-GHz pulse stream by pulse multiplication with a sampled fiber Bragg grating,” Opt. Lett.25(8), 521–523 (2000).
[CrossRef] [PubMed]

Scott, R. P.

F. M. Soares, N. K. Fontaine, R. P. Scott, J. H. Baek, X. Zhou, T. Su, S. Cheung, Y. Wang, C. Junesand, S. Lourdudoss, K. Y. Liou, R. A. Hamm, W. Wang, B. Patel, L. A. Gruezke, W. T. Tsang, J. P. Heritage, and S. J. B. Yoo, “Monolithic InP 100-Channel × 10-GHz device for optical arbitrary waveform generation,” IEEE Photon. Journal3(6), 975–985 (2011).
[CrossRef]

D. J. Geisler, N. K. Fontaine, T.-T. He, R. P. Scott, L. Paraschis, J. P. Heritage, and S. J. B. Yoo, “Modulation-format agile, reconfigurable Tb/s transmitter based on optical arbitrary waveform generation,” Opt. Express17(18), 15911–15925 (2009).
[CrossRef] [PubMed]

Soares, F. M.

F. M. Soares, N. K. Fontaine, R. P. Scott, J. H. Baek, X. Zhou, T. Su, S. Cheung, Y. Wang, C. Junesand, S. Lourdudoss, K. Y. Liou, R. A. Hamm, W. Wang, B. Patel, L. A. Gruezke, W. T. Tsang, J. P. Heritage, and S. J. B. Yoo, “Monolithic InP 100-Channel × 10-GHz device for optical arbitrary waveform generation,” IEEE Photon. Journal3(6), 975–985 (2011).
[CrossRef]

Su, T.

F. M. Soares, N. K. Fontaine, R. P. Scott, J. H. Baek, X. Zhou, T. Su, S. Cheung, Y. Wang, C. Junesand, S. Lourdudoss, K. Y. Liou, R. A. Hamm, W. Wang, B. Patel, L. A. Gruezke, W. T. Tsang, J. P. Heritage, and S. J. B. Yoo, “Monolithic InP 100-Channel × 10-GHz device for optical arbitrary waveform generation,” IEEE Photon. Journal3(6), 975–985 (2011).
[CrossRef]

Torres-Company, V.

V. Torres-Company, A. J. Metcalf, D. E. Leaird, and A. M. Weiner, “Multichannel radio-frequency arbitrary waveform generation based on multiwavelength comb switching and 2-D line-by-line pulse shaping,” IEEE Photon. Technol. Lett.24(11), 891–893 (2012).
[CrossRef]

Tsang, W. T.

F. M. Soares, N. K. Fontaine, R. P. Scott, J. H. Baek, X. Zhou, T. Su, S. Cheung, Y. Wang, C. Junesand, S. Lourdudoss, K. Y. Liou, R. A. Hamm, W. Wang, B. Patel, L. A. Gruezke, W. T. Tsang, J. P. Heritage, and S. J. B. Yoo, “Monolithic InP 100-Channel × 10-GHz device for optical arbitrary waveform generation,” IEEE Photon. Journal3(6), 975–985 (2011).
[CrossRef]

Wang, W.

F. M. Soares, N. K. Fontaine, R. P. Scott, J. H. Baek, X. Zhou, T. Su, S. Cheung, Y. Wang, C. Junesand, S. Lourdudoss, K. Y. Liou, R. A. Hamm, W. Wang, B. Patel, L. A. Gruezke, W. T. Tsang, J. P. Heritage, and S. J. B. Yoo, “Monolithic InP 100-Channel × 10-GHz device for optical arbitrary waveform generation,” IEEE Photon. Journal3(6), 975–985 (2011).
[CrossRef]

Wang, Y.

F. M. Soares, N. K. Fontaine, R. P. Scott, J. H. Baek, X. Zhou, T. Su, S. Cheung, Y. Wang, C. Junesand, S. Lourdudoss, K. Y. Liou, R. A. Hamm, W. Wang, B. Patel, L. A. Gruezke, W. T. Tsang, J. P. Heritage, and S. J. B. Yoo, “Monolithic InP 100-Channel × 10-GHz device for optical arbitrary waveform generation,” IEEE Photon. Journal3(6), 975–985 (2011).
[CrossRef]

Weiner, A. M.

V. Torres-Company, A. J. Metcalf, D. E. Leaird, and A. M. Weiner, “Multichannel radio-frequency arbitrary waveform generation based on multiwavelength comb switching and 2-D line-by-line pulse shaping,” IEEE Photon. Technol. Lett.24(11), 891–893 (2012).
[CrossRef]

S. T. Cundiff and A. M. Weiner, “Optical arbitrary waveform generation,” Nat. Photonics4(11), 760–766 (2010).
[CrossRef]

C.-B. Huang, Z. Jiang, D. E. Leaird, and A. M. Weiner, “Quantitative study of optical frequency noise to intensity noise conversion in line-by-line pulse shaping,” IEEE J. Quantum Electron.45(6), 661–673 (2009).
[CrossRef]

Z. Jiang, D. E. Leaird, C.-B. Huang, H. Miao, M. Kourogi, K. Imai, and A. M. Weiner, “Spectral line-by-line pulse shaping on an optical frequency comb generator,” IEEE J. Quantum Electron.43(12), 1163–1174 (2007).
[CrossRef]

Z. Jiang, C.-B. Huang, D. E. Leaird, and A. M. Weiner, “Optical arbitrary waveform processing of more than 100 spectral comb lines,” Nat. Photonics1(8), 463–467 (2007).
[CrossRef]

Z. Jiang, D. E. Leaird, and A. M. Weiner, “Optical arbitrary waveform generation and characterization using spectral line-by-line control” IEEE/OSA. J. Lightwave Technol.24(7), 2487–2494 (2006).
[CrossRef]

Z. Jiang, D. E. Leaird, and A. M. Weiner, “Line-by-line pulse shaping control for optical arbitrary waveform generation,” Opt. Express13(25), 10431–10439 (2005).
[CrossRef] [PubMed]

A. M. Weiner, “Femtosecond optical pulse shaping and processing,” Prog. Quantum Electron.19(3), 161–237 (1995).
[CrossRef]

A. M. Weiner and J. P. Heritage, “Picosecond and femtosecond Fourier pulse shape synthesis,” Rev. Phys. Appl. (Paris)22(12), 1619–1628 (1987).
[CrossRef]

Yoo, S. J. B.

F. M. Soares, N. K. Fontaine, R. P. Scott, J. H. Baek, X. Zhou, T. Su, S. Cheung, Y. Wang, C. Junesand, S. Lourdudoss, K. Y. Liou, R. A. Hamm, W. Wang, B. Patel, L. A. Gruezke, W. T. Tsang, J. P. Heritage, and S. J. B. Yoo, “Monolithic InP 100-Channel × 10-GHz device for optical arbitrary waveform generation,” IEEE Photon. Journal3(6), 975–985 (2011).
[CrossRef]

D. J. Geisler, N. K. Fontaine, T.-T. He, R. P. Scott, L. Paraschis, J. P. Heritage, and S. J. B. Yoo, “Modulation-format agile, reconfigurable Tb/s transmitter based on optical arbitrary waveform generation,” Opt. Express17(18), 15911–15925 (2009).
[CrossRef] [PubMed]

Zervas, M. N.

Zhou, X.

F. M. Soares, N. K. Fontaine, R. P. Scott, J. H. Baek, X. Zhou, T. Su, S. Cheung, Y. Wang, C. Junesand, S. Lourdudoss, K. Y. Liou, R. A. Hamm, W. Wang, B. Patel, L. A. Gruezke, W. T. Tsang, J. P. Heritage, and S. J. B. Yoo, “Monolithic InP 100-Channel × 10-GHz device for optical arbitrary waveform generation,” IEEE Photon. Journal3(6), 975–985 (2011).
[CrossRef]

IEEE J. Quantum Electron. (2)

Z. Jiang, D. E. Leaird, C.-B. Huang, H. Miao, M. Kourogi, K. Imai, and A. M. Weiner, “Spectral line-by-line pulse shaping on an optical frequency comb generator,” IEEE J. Quantum Electron.43(12), 1163–1174 (2007).
[CrossRef]

C.-B. Huang, Z. Jiang, D. E. Leaird, and A. M. Weiner, “Quantitative study of optical frequency noise to intensity noise conversion in line-by-line pulse shaping,” IEEE J. Quantum Electron.45(6), 661–673 (2009).
[CrossRef]

IEEE Photon. Journal (1)

F. M. Soares, N. K. Fontaine, R. P. Scott, J. H. Baek, X. Zhou, T. Su, S. Cheung, Y. Wang, C. Junesand, S. Lourdudoss, K. Y. Liou, R. A. Hamm, W. Wang, B. Patel, L. A. Gruezke, W. T. Tsang, J. P. Heritage, and S. J. B. Yoo, “Monolithic InP 100-Channel × 10-GHz device for optical arbitrary waveform generation,” IEEE Photon. Journal3(6), 975–985 (2011).
[CrossRef]

IEEE Photon. Technol. Lett. (2)

P. Emplit, M. Haelterman, R. Kashyap, and M. De Lathouwer, “Fiber Bragg grating for optical dark soliton generation,” IEEE Photon. Technol. Lett.9(8), 1122–1124 (1997).
[CrossRef]

V. Torres-Company, A. J. Metcalf, D. E. Leaird, and A. M. Weiner, “Multichannel radio-frequency arbitrary waveform generation based on multiwavelength comb switching and 2-D line-by-line pulse shaping,” IEEE Photon. Technol. Lett.24(11), 891–893 (2012).
[CrossRef]

IEEE/OSA J. Lightwave Technol. (2)

N. K. Berger, B. Levit, and B. Fischer, “Reshaping periodic light pulses using cascaded uniform fiber Bragg gratings,” IEEE/OSA J. Lightwave Technol.24(7), 2746–2751 (2006).
[CrossRef]

P. Petropoulos, M. Ibsen, A. D. Ellis, and D. J. Richardson, “Rectangular pulse generation based on pulse reshaping using a superstructured fiber Bragg grating,” IEEE/OSA J. Lightwave Technol.19(5), 746–752 (2001).
[CrossRef]

IEEE/OSA. J. Lightwave Technol. (1)

Z. Jiang, D. E. Leaird, and A. M. Weiner, “Optical arbitrary waveform generation and characterization using spectral line-by-line control” IEEE/OSA. J. Lightwave Technol.24(7), 2487–2494 (2006).
[CrossRef]

Nat. Photonics (2)

S. T. Cundiff and A. M. Weiner, “Optical arbitrary waveform generation,” Nat. Photonics4(11), 760–766 (2010).
[CrossRef]

Z. Jiang, C.-B. Huang, D. E. Leaird, and A. M. Weiner, “Optical arbitrary waveform processing of more than 100 spectral comb lines,” Nat. Photonics1(8), 463–467 (2007).
[CrossRef]

Opt. Express (2)

Opt. Lett. (2)

Prog. Quantum Electron. (1)

A. M. Weiner, “Femtosecond optical pulse shaping and processing,” Prog. Quantum Electron.19(3), 161–237 (1995).
[CrossRef]

Rev. Phys. Appl. (Paris) (1)

A. M. Weiner and J. P. Heritage, “Picosecond and femtosecond Fourier pulse shape synthesis,” Rev. Phys. Appl. (Paris)22(12), 1619–1628 (1987).
[CrossRef]

Other (5)

G. P. Agrawal, Applications of Nonlinear Fiber Optics (Academic & New York, 2007), chap. 3.

Z. Jiang, C.-B. Huang, D. E. Leaird, and A. M. Weiner, “Optical arbitrary pulse train generation via spectral line-by-line pulse shaping,” in IEEE/LEOS Summer Topical Meetings, Technical Digest (CD) (IEEE, 2007), 170–171, paper TuC1.2.

K. Mandai, T. Suzuki, H. Tsuda, T. Kurokawa, and T. Kawanishi, “Arbitrary optical short pulse generator using a high-resolution arrayed-waveguide grating,” in IEEE Topical Meeting on Microwave Photonics, Technical Digest (CD) (IEEE, 2004), 107–110, paper MC-20.

N. K. Fontaine, R. P. Scott, C. Yang, D. J. Geisler, K. Okamoto, J. P. Heritage, and S. J. B. Yoo, “Integrated, ultrahigh-fidelity 17 × 40 GHz OAWG,” in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science and Photonic Applications Systems Technologies, (Optical Society of America, 2008), paper CTuA5, http://www.opticsinfobase.org/abstract.cfm?URI=CLEO-2008-CTuA5 .

D. Wang, J. Suzuki, K. Thanakom, C. S. Goh, S. Y. Set, and K. Kikuchi, “Multiplication of optical-pulse repetition rate from 40 GHz to 160 GHz by using phase-sampled fiber Bragg gratings,” in the 17th Annual Meeting of IEEE on Lasers and Electro-Optics Society, (IEEE, 2004), 390–391, paper TuZ2.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Schematic diagram structure of the proposed dynamic O-AWG. (OFCS: Optical frequency comb source, OI: Optical isolator, OC: Optical coupler, FBG: Fiber Bragg grating, FS: Fiber stretcher.)

Fig. 2
Fig. 2

Incident OFC. (a) Ideal incident OFC. The inset is waveform in time domain. (b) Non-ideal incident OFC. The inset is waveform in time domain.

Fig. 3
Fig. 3

Generation of Gaussian waveform optical pulse. (a) Amplitude in spectral domain. (b) Phase in spectral domain. (c) Gaussian waveform in time domain.

Fig. 4
Fig. 4

Generation of rectangular waveform optical pulse. (a) Amplitude in spectral domain. (b) Phase in spectral domain. (c) Rectangular waveform in time domain.

Fig. 5
Fig. 5

Generation of Gaussian pulse trains with nonuniform intensity, pulse spacing and pulse width under the assumption that phase offset resulting from FS0 in the first array for the central spectral line is Δθ = 0, 0.01π, and 0.1π, respectively. (a-1) Spectral amplitude of Gaussian pulse trains with nonuniform intensity. (a-2) Spectral phase of Gaussian pulse trains with nonuniform intensity. (a-3) Output Gaussian pulse trains with nonuniform intensity. (b-1) Spectral amplitude of Gaussian pulse trains with nonuniform pulse spacing. (b-2) Spectral phase of Gaussian pulse trains with nonuniform pulse spacing. (b-3) Output Gaussian pulse trains with nonuniform pulse spacing. (c-1) Spectral amplitude of Gaussian pulse trains with nonuniform pulse width and intensity. (c-2) Spectral phase of Gaussian pulse trains with nonuniform pulse width and intensity. (c-3) Output Gaussian pulse trains with nonuniform pulse width and intensity.

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

S(ω)= n=N n=N | S n | e j ψ n δ(ωnΩ ω 0 ) .
( F'(ω) F (ω) )=( α i 1α i 1α α )( H 1 (ω) 0 0 H 2 (ω) )( α i 1α i 1α α )( S(ω) 0 ).
F(ω)= n=N n=N | S n | α(1α) e j( ψ n + φ n +π/2) (| ρ 1n |+| ρ 2n | e jΔ φ n )δ(ωnΩ ω 0 ) .
| F n |=| S n | α(1α) ρ 1n 2 + ρ 2n 2 +2| ρ 1n || ρ 2n |cos(Δ φ n ) .
p n = ψ n +π/2+ φ n +arctan( | ρ 2n |sinΔ φ n | ρ 1n |+| ρ 2n |cosΔ φ n ).
Δ φ n =arccos( F n 2 S n 2 α(1α)( ρ 1n 2 + ρ 2n 2 ) 2 S n 2 α(1α)| ρ 1n || ρ 2n | ).
φ n = p n ψ n π/2arctan( | ρ 2n |sinΔ φ n | ρ 1n |+| ρ 2n |cosΔ φ n ).
H(ω)= k exp(iω τ k ) H k (ω) .

Metrics