Abstract

We present a method to fabricate a radially and azimuthally polarized light converter by deploying a patterned liquid crystal (LC) quarter-wave plates (QWP). The patterned QWP has been fabricated by providing the axially symmetric alignment to the LC layer by mean of photo-alignment. When the left handed circularly (LHC) or right handed circularly (RHC) polarized light passes through these patterned QWPs, the emergent light becomes radially or azimuthally polarized. Moreover, the proposed polarization converters are characterized by the fast response time, thus could find application in various fast photonic devices.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. Yamaguchi, T. Nose, and S. Sato, “Liquid crystal polarizers with axially symmetrical properties,” Jpn. J. Appl. Phys.28(Part 1, No. 9), 1730–1731 (1989).
    [CrossRef]
  2. M. Stalder and M. Schadt, “Linearly polarized light with axial symmetry generated by liquid-crystal polarization converters,” Opt. Lett.21(23), 1948–1950 (1996).
    [CrossRef] [PubMed]
  3. S. Slussarenko, A. Murauski, T. Du, V. Chigrinov, L. Marrucci, and E. Santamato, “Tunable liquid crystal q-plates with arbitrary topological charge,” Opt. Express19(5), 4085–4090 (2011).
    [CrossRef] [PubMed]
  4. S. C. McEldowney, D. M. Shemo, and R. A. Chipman, “Vortex retarders produced from photo-aligned liquid crystal polymers,” Opt. Express16(10), 7295–7308 (2008).
    [CrossRef] [PubMed]
  5. Q. Zhan, “Cylindrical vector beams: from mathematical concepts to applications,” Adv. Opt. Photon.1(1), 1–57 (2009).
    [CrossRef]
  6. L. Marrucci, C. Manzo, and D. Paparo, “Optical Spin-to-Orbital Angular Momentum Conversion in Inhomogeneous Anisotropic Media,” Phys. Rev. Lett.96(16), 163905 (2006).
    [CrossRef] [PubMed]
  7. M. Beresna, M. Geceviçius, P. G. Kazansky, and T. Gertus, “Radially polarized optical vortex converter created by femtosecond laser nanostructuring of glass,” Appl. Phys. Lett.98(20), 201101 (2011).
    [CrossRef]
  8. B. C. Lim, P. B. Phua, W. J. Lai, and M. H. Hong, “Fast switchable electro-optic radial polarization retarder,” Opt. Lett.33(9), 950–952 (2008).
    [CrossRef] [PubMed]
  9. Q. Zhan, “Trapping metallic Rayleigh particles with radial polarization,” Opt. Express12(15), 3377–3382 (2004).
    [CrossRef] [PubMed]
  10. R. Dorn, S. Quabis, and G. Leuchs, “Sharper Focus for a Radially Polarized Light Beam,” Phys. Rev. Lett.91(23), 233901 (2003).
    [CrossRef] [PubMed]
  11. A. V. Nesterov and V. G. Niziev, “Laser beams with axially symmetric polarization,” J. Phys. D Appl. Phys.33(15), 1817–1822 (2000).
    [CrossRef]
  12. Z. Bomzon, G. Biener, V. Kleiner, and E. Hasman, “Radially and azimuthally polarized beams generated by space-variant dielectric subwavelength gratings,” Opt. Lett.27(5), 285–287 (2002).
    [CrossRef] [PubMed]
  13. S. W. Ko, C. L. Ting, A. Y. G. Fuh, and T. H. Lin, “Polarization converters based on axially symmetric twisted nematic liquid crystal,” Opt. Express18(4), 3601–3607 (2010).
    [CrossRef] [PubMed]
  14. Y. Y. Tzeng, S. W. Ke, C. L. Ting, A. Y. G. Fuh, and T. H. Lin, “Axially symmetric polarization converters based on photo-aligned liquid crystal films,” Opt. Express16(6), 3768–3775 (2008).
    [CrossRef] [PubMed]
  15. H. Ren, Y. H. Lin, and S. T. Wu, “Linear to axial or radial polarization conversion using a liquid crystal gel,” Appl. Phys. Lett.89(5), 051114 (2006).
    [CrossRef]
  16. S. Nersisyan, N. Tabiryan, D. M. Steeves, and B. R. Kimball, “Fabrication of liquid crystal polymer axial waveplates for UV-IR wavelengths,” Opt. Express17(14), 11926–11934 (2009).
    [CrossRef] [PubMed]
  17. S. C. McEldowney, D. M. Shemo, R. A. Chipman, and P. K. Smith, “Creating vortex retarders using photoaligned liquid crystal polymers,” Opt. Lett.33(2), 134–136 (2008).
    [CrossRef] [PubMed]
  18. S. W. Ko, Y. Y. Tzeng, C. L. Ting, A. Y. G. Fuh, and T. H. Lin, “Axially symmetric liquid crystal devices based on double-side photo-alignment,” Opt. Express16(24), 19643–19648 (2008).
    [CrossRef] [PubMed]
  19. S. Nersisyan, N. Tabiryan, D. M. Steeves, and B. R. Kimball, “Axial polarizers based on dichroic liquid crystals,” J. Appl. Phys.108(3), 033101 (2010).
    [CrossRef]
  20. V. G. Chigrinov, V. M. Kozenkov, and H. S. Kwok, Photoalignment of Liquid Crystalline Materials (Wiley, 2008).
  21. B. E. A. Saleh and M. C. Teich, Fundamentals of Photonics, 2nd ed. (Wiley, 2007).

2011 (2)

S. Slussarenko, A. Murauski, T. Du, V. Chigrinov, L. Marrucci, and E. Santamato, “Tunable liquid crystal q-plates with arbitrary topological charge,” Opt. Express19(5), 4085–4090 (2011).
[CrossRef] [PubMed]

M. Beresna, M. Geceviçius, P. G. Kazansky, and T. Gertus, “Radially polarized optical vortex converter created by femtosecond laser nanostructuring of glass,” Appl. Phys. Lett.98(20), 201101 (2011).
[CrossRef]

2010 (2)

S. W. Ko, C. L. Ting, A. Y. G. Fuh, and T. H. Lin, “Polarization converters based on axially symmetric twisted nematic liquid crystal,” Opt. Express18(4), 3601–3607 (2010).
[CrossRef] [PubMed]

S. Nersisyan, N. Tabiryan, D. M. Steeves, and B. R. Kimball, “Axial polarizers based on dichroic liquid crystals,” J. Appl. Phys.108(3), 033101 (2010).
[CrossRef]

2009 (2)

2008 (5)

2006 (2)

H. Ren, Y. H. Lin, and S. T. Wu, “Linear to axial or radial polarization conversion using a liquid crystal gel,” Appl. Phys. Lett.89(5), 051114 (2006).
[CrossRef]

L. Marrucci, C. Manzo, and D. Paparo, “Optical Spin-to-Orbital Angular Momentum Conversion in Inhomogeneous Anisotropic Media,” Phys. Rev. Lett.96(16), 163905 (2006).
[CrossRef] [PubMed]

2004 (1)

2003 (1)

R. Dorn, S. Quabis, and G. Leuchs, “Sharper Focus for a Radially Polarized Light Beam,” Phys. Rev. Lett.91(23), 233901 (2003).
[CrossRef] [PubMed]

2002 (1)

2000 (1)

A. V. Nesterov and V. G. Niziev, “Laser beams with axially symmetric polarization,” J. Phys. D Appl. Phys.33(15), 1817–1822 (2000).
[CrossRef]

1996 (1)

1989 (1)

R. Yamaguchi, T. Nose, and S. Sato, “Liquid crystal polarizers with axially symmetrical properties,” Jpn. J. Appl. Phys.28(Part 1, No. 9), 1730–1731 (1989).
[CrossRef]

Beresna, M.

M. Beresna, M. Geceviçius, P. G. Kazansky, and T. Gertus, “Radially polarized optical vortex converter created by femtosecond laser nanostructuring of glass,” Appl. Phys. Lett.98(20), 201101 (2011).
[CrossRef]

Biener, G.

Bomzon, Z.

Chigrinov, V.

Chipman, R. A.

Dorn, R.

R. Dorn, S. Quabis, and G. Leuchs, “Sharper Focus for a Radially Polarized Light Beam,” Phys. Rev. Lett.91(23), 233901 (2003).
[CrossRef] [PubMed]

Du, T.

Fuh, A. Y. G.

Geceviçius, M.

M. Beresna, M. Geceviçius, P. G. Kazansky, and T. Gertus, “Radially polarized optical vortex converter created by femtosecond laser nanostructuring of glass,” Appl. Phys. Lett.98(20), 201101 (2011).
[CrossRef]

Gertus, T.

M. Beresna, M. Geceviçius, P. G. Kazansky, and T. Gertus, “Radially polarized optical vortex converter created by femtosecond laser nanostructuring of glass,” Appl. Phys. Lett.98(20), 201101 (2011).
[CrossRef]

Hasman, E.

Hong, M. H.

Kazansky, P. G.

M. Beresna, M. Geceviçius, P. G. Kazansky, and T. Gertus, “Radially polarized optical vortex converter created by femtosecond laser nanostructuring of glass,” Appl. Phys. Lett.98(20), 201101 (2011).
[CrossRef]

Ke, S. W.

Kimball, B. R.

S. Nersisyan, N. Tabiryan, D. M. Steeves, and B. R. Kimball, “Axial polarizers based on dichroic liquid crystals,” J. Appl. Phys.108(3), 033101 (2010).
[CrossRef]

S. Nersisyan, N. Tabiryan, D. M. Steeves, and B. R. Kimball, “Fabrication of liquid crystal polymer axial waveplates for UV-IR wavelengths,” Opt. Express17(14), 11926–11934 (2009).
[CrossRef] [PubMed]

Kleiner, V.

Ko, S. W.

Lai, W. J.

Leuchs, G.

R. Dorn, S. Quabis, and G. Leuchs, “Sharper Focus for a Radially Polarized Light Beam,” Phys. Rev. Lett.91(23), 233901 (2003).
[CrossRef] [PubMed]

Lim, B. C.

Lin, T. H.

Lin, Y. H.

H. Ren, Y. H. Lin, and S. T. Wu, “Linear to axial or radial polarization conversion using a liquid crystal gel,” Appl. Phys. Lett.89(5), 051114 (2006).
[CrossRef]

Manzo, C.

L. Marrucci, C. Manzo, and D. Paparo, “Optical Spin-to-Orbital Angular Momentum Conversion in Inhomogeneous Anisotropic Media,” Phys. Rev. Lett.96(16), 163905 (2006).
[CrossRef] [PubMed]

Marrucci, L.

S. Slussarenko, A. Murauski, T. Du, V. Chigrinov, L. Marrucci, and E. Santamato, “Tunable liquid crystal q-plates with arbitrary topological charge,” Opt. Express19(5), 4085–4090 (2011).
[CrossRef] [PubMed]

L. Marrucci, C. Manzo, and D. Paparo, “Optical Spin-to-Orbital Angular Momentum Conversion in Inhomogeneous Anisotropic Media,” Phys. Rev. Lett.96(16), 163905 (2006).
[CrossRef] [PubMed]

McEldowney, S. C.

Murauski, A.

Nersisyan, S.

S. Nersisyan, N. Tabiryan, D. M. Steeves, and B. R. Kimball, “Axial polarizers based on dichroic liquid crystals,” J. Appl. Phys.108(3), 033101 (2010).
[CrossRef]

S. Nersisyan, N. Tabiryan, D. M. Steeves, and B. R. Kimball, “Fabrication of liquid crystal polymer axial waveplates for UV-IR wavelengths,” Opt. Express17(14), 11926–11934 (2009).
[CrossRef] [PubMed]

Nesterov, A. V.

A. V. Nesterov and V. G. Niziev, “Laser beams with axially symmetric polarization,” J. Phys. D Appl. Phys.33(15), 1817–1822 (2000).
[CrossRef]

Niziev, V. G.

A. V. Nesterov and V. G. Niziev, “Laser beams with axially symmetric polarization,” J. Phys. D Appl. Phys.33(15), 1817–1822 (2000).
[CrossRef]

Nose, T.

R. Yamaguchi, T. Nose, and S. Sato, “Liquid crystal polarizers with axially symmetrical properties,” Jpn. J. Appl. Phys.28(Part 1, No. 9), 1730–1731 (1989).
[CrossRef]

Paparo, D.

L. Marrucci, C. Manzo, and D. Paparo, “Optical Spin-to-Orbital Angular Momentum Conversion in Inhomogeneous Anisotropic Media,” Phys. Rev. Lett.96(16), 163905 (2006).
[CrossRef] [PubMed]

Phua, P. B.

Quabis, S.

R. Dorn, S. Quabis, and G. Leuchs, “Sharper Focus for a Radially Polarized Light Beam,” Phys. Rev. Lett.91(23), 233901 (2003).
[CrossRef] [PubMed]

Ren, H.

H. Ren, Y. H. Lin, and S. T. Wu, “Linear to axial or radial polarization conversion using a liquid crystal gel,” Appl. Phys. Lett.89(5), 051114 (2006).
[CrossRef]

Santamato, E.

Sato, S.

R. Yamaguchi, T. Nose, and S. Sato, “Liquid crystal polarizers with axially symmetrical properties,” Jpn. J. Appl. Phys.28(Part 1, No. 9), 1730–1731 (1989).
[CrossRef]

Schadt, M.

Shemo, D. M.

Slussarenko, S.

Smith, P. K.

Stalder, M.

Steeves, D. M.

S. Nersisyan, N. Tabiryan, D. M. Steeves, and B. R. Kimball, “Axial polarizers based on dichroic liquid crystals,” J. Appl. Phys.108(3), 033101 (2010).
[CrossRef]

S. Nersisyan, N. Tabiryan, D. M. Steeves, and B. R. Kimball, “Fabrication of liquid crystal polymer axial waveplates for UV-IR wavelengths,” Opt. Express17(14), 11926–11934 (2009).
[CrossRef] [PubMed]

Tabiryan, N.

S. Nersisyan, N. Tabiryan, D. M. Steeves, and B. R. Kimball, “Axial polarizers based on dichroic liquid crystals,” J. Appl. Phys.108(3), 033101 (2010).
[CrossRef]

S. Nersisyan, N. Tabiryan, D. M. Steeves, and B. R. Kimball, “Fabrication of liquid crystal polymer axial waveplates for UV-IR wavelengths,” Opt. Express17(14), 11926–11934 (2009).
[CrossRef] [PubMed]

Ting, C. L.

Tzeng, Y. Y.

Wu, S. T.

H. Ren, Y. H. Lin, and S. T. Wu, “Linear to axial or radial polarization conversion using a liquid crystal gel,” Appl. Phys. Lett.89(5), 051114 (2006).
[CrossRef]

Yamaguchi, R.

R. Yamaguchi, T. Nose, and S. Sato, “Liquid crystal polarizers with axially symmetrical properties,” Jpn. J. Appl. Phys.28(Part 1, No. 9), 1730–1731 (1989).
[CrossRef]

Zhan, Q.

Adv. Opt. Photon. (1)

Appl. Phys. Lett. (2)

M. Beresna, M. Geceviçius, P. G. Kazansky, and T. Gertus, “Radially polarized optical vortex converter created by femtosecond laser nanostructuring of glass,” Appl. Phys. Lett.98(20), 201101 (2011).
[CrossRef]

H. Ren, Y. H. Lin, and S. T. Wu, “Linear to axial or radial polarization conversion using a liquid crystal gel,” Appl. Phys. Lett.89(5), 051114 (2006).
[CrossRef]

J. Appl. Phys. (1)

S. Nersisyan, N. Tabiryan, D. M. Steeves, and B. R. Kimball, “Axial polarizers based on dichroic liquid crystals,” J. Appl. Phys.108(3), 033101 (2010).
[CrossRef]

J. Phys. D Appl. Phys. (1)

A. V. Nesterov and V. G. Niziev, “Laser beams with axially symmetric polarization,” J. Phys. D Appl. Phys.33(15), 1817–1822 (2000).
[CrossRef]

Jpn. J. Appl. Phys. (1)

R. Yamaguchi, T. Nose, and S. Sato, “Liquid crystal polarizers with axially symmetrical properties,” Jpn. J. Appl. Phys.28(Part 1, No. 9), 1730–1731 (1989).
[CrossRef]

Opt. Express (7)

Opt. Lett. (4)

Phys. Rev. Lett. (2)

L. Marrucci, C. Manzo, and D. Paparo, “Optical Spin-to-Orbital Angular Momentum Conversion in Inhomogeneous Anisotropic Media,” Phys. Rev. Lett.96(16), 163905 (2006).
[CrossRef] [PubMed]

R. Dorn, S. Quabis, and G. Leuchs, “Sharper Focus for a Radially Polarized Light Beam,” Phys. Rev. Lett.91(23), 233901 (2003).
[CrossRef] [PubMed]

Other (2)

V. G. Chigrinov, V. M. Kozenkov, and H. S. Kwok, Photoalignment of Liquid Crystalline Materials (Wiley, 2008).

B. E. A. Saleh and M. C. Teich, Fundamentals of Photonics, 2nd ed. (Wiley, 2007).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Description of radially and azimuthally polarized light. (a) polar coordinates model (b) radially polarized light, (c)azimuthally polarized light.

Fig. 2
Fig. 2

(a) LHC and (b) RHC polarized light passing through the QWP.

Fig. 3
Fig. 3

Patterned QWP with property of q=1,α = 0 π/4 working as (a) radial polarization converter and (b) azimuthal polarization converter.

Fig. 4
Fig. 4

Experiment setup for the patterned photo-alignment.

Fig. 5
Fig. 5

Illustration of the working principle of the proposed patterned QWP polarization converter. (a), (b) and (c) represent different optical setups for measurements, where (a) the polarization converter placed under the crossed polarizers (b) the polarization converter has been illuminated by LHC, and in (c) the polarization converter has been illuminated by RHC. Here P and A represent the polarizer and analyzer respectively. The (d), (e) and (f) represent experimental images for the top view of (a), (b) and (c) here the arrow shows the direction of optic axis of analyzer and white marker is equal to 2mm. (g) and (h) represent the angular transmittance profile, along the yellow circles shown in (e) and (f) respectively, for the radially and azimuthally converted polarized light. The open legends represent the experimental data while the solid red line represents the best theoretical fit.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

φ( r,θ )=qθ+φ 0
E L =( cosβ sinβ sinβ cosβ )( 1 0 0 exp(i π 2 ) )( cosβ sinβ sinβ cosβ ) 1 2 [ 1 j ]=exp(jβ)[ cos(βπ/4) sin(βπ/4) ]
E R =( cosβ sinβ sinβ cosβ )( 1 0 0 exp(i π 2 ) )( cosβ sinβ sinβ cosβ ) 1 2 [ 1 j ]=exp(jβ)[ cos(β+π/4) sin(β+π/4) ]
α( r,θ )=qθ+ α 0 =qθ+ φ 0 ±π/4
T radially = | [ 1 0 ][ cos(θ) sin(θ) ] | 2 = cos 2 (θ)
T azimuthally = | [ 1 0 ][ cos(θ+π/2) sin(θ+π/2) ] | 2 = sin 2 (θ)
Z(a,b)= x y [ t(a+x,b+y)t(ax,by) ] 2

Metrics