Abstract

Current division-of-focal-plane polarization imaging sensors can perceive intensity and polarization in real time with high spatial resolution, but are oblivious to spectral information. We present the design of such a sensor, which is also spectrally selective in the visible regime. We describe its extensive spectral and polarimetric characterization. The sensor has a pixel pitch of 5 µm and an imaging array of 168 by 256 elements. Each element comprises spectrally sensitive vertically stacked photodetectors integrated with a 140 nm pitch nanowire linear polarizer. The sensor has a maximum measured SNR of 45 dB, extinction ratio of ~3.5, QE of 12%, and linearity error of 1% in the green channel. We present sample spectral-polarization images.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. Chen and L. B. Wolff, “Polarization phase-based method for material classification in computer vision,” Int. J. Comput. Vis.28(1), 73–83 (1998).
    [CrossRef]
  2. S. S. Lin, K. M. Yemelyanov, E. N. Pugh, and N. Engheta, “Polarization-based and specular-reflection-based noncontact latent fingerprint imaging and lifting,” J. Opt. Soc. Am. A23(9), 2137–2153 (2006).
    [CrossRef] [PubMed]
  3. S. Shwartz, E. Namer, and Y. Y. Schechner, “Blind haze separation,” Proc. IEEE Comp. Vision and Pat. Recog. 2, 1984–1991 (2006).
  4. Y. Y. Schechner and N. Karpel, “Recovery of underwater visibility and structure by polarization analysis,” IEEE J. Oceanic Eng.30(3), 570–587 (2005).
    [CrossRef]
  5. D. A. Glenar, J. J. Hillman, B. Saif, and J. Bergstralh, “Acousto-optic imaging spectropolarimetry for remote sensing,” Appl. Opt.33(31), 7412–7424 (1994).
    [CrossRef] [PubMed]
  6. R. Antonucci and J. Miller, “Spectropolarimetry and the nature of NGC 1068,” Astrophys. J.297, 621–632 (1985).
    [CrossRef]
  7. A. N. Yaroslavsky, V. Neel, and R. R. Anderson, “Demarcation of nonmelanoma skin cancer margins in thick excisions using multispectral polarized light imaging,” J. Invest. Dermatol.121(2), 259–266 (2003).
    [CrossRef] [PubMed]
  8. S. K. Nayar, X. S. Fang, and T. Boult, “Separation of reflection components using color and polarization,” Int. J. Comput. Vis.21(3), 163–186 (1997).
    [CrossRef]
  9. D. Lemke, F. Garzon, H. P. Gemuend, U. Groezinger, I. Heinrichsen, U. Klaas, W. Kraetschmer, E. Kreysa, P. Luetzow-Wentzky, and J. Schubert, “Far-infrared imaging, polarimetry, and spectrophotometry on the Infrared Space Observatory,” Opt. Eng.33(1), 20–25 (1994).
    [CrossRef]
  10. R. S. Loe and M. J. Duggin, “Hyperspectral imaging polarimeter design and calibration,” Proc. SPIE4481, 195–205 (2002).
    [CrossRef]
  11. J. S. Tyo, D. L. Goldstein, D. B. Chenault, and J. A. Shaw, “Review of passive imaging polarimetry for remote sensing applications,” Appl. Opt.45(22), 5453–5469 (2006).
    [CrossRef] [PubMed]
  12. D. Sabatke, A. Locke, E. L. Dereniak, M. Descour, J. Garcia, T. Hamilton, and R. W. McMillan, “Snapshot imaging spectropolarimeter,” Opt. Eng.41(5), 1048–1054 (2002).
    [CrossRef]
  13. N. Hagen and E. L. Dereniak, “Analysis of computed tomographic imaging spectrometers. I. Spatial and spectral resolution,” Appl. Opt.47(28), F85–F95 (2008).
    [CrossRef] [PubMed]
  14. M. Kulkarni and V. Gruev, “A division-of-focal-plane spectral-polarization imaging sensor,” Proc. SPIE8364, 83640K, 83640K-11 (2012).
    [CrossRef]
  15. V. Gruev, R. Perkins, and T. York, “CCD polarization imaging sensor with aluminum nanowire optical filters,” Opt. Express18(18), 19087–19094 (2010).
    [CrossRef] [PubMed]
  16. D. A. Miller, D. W. Wilson, and E. L. Dereniak, “Novel design and alignment of wire-grid diffraction gratings on a visible focal plane array,” Opt. Eng.51(1), 014001 (2012).
    [CrossRef]
  17. M. A. Green and M. J. Keevers, “Optical properties of intrinsic silicon at 300 K,” Prog. Photovolt. Res. Appl.3(3), 189–192 (1995).
    [CrossRef]
  18. R. B. Merrill, “Color separation in an active pixel cell imaging array using a triple-well structure,” (US Patent 1999).
  19. B. G. Streetman and S. Banerjee, Solid State Electronic Devices (Prentice Hall, 1995).
  20. V. Gruev, A. Ortu, N. Lazarus, J. Van der Spiegel, and N. Engheta, “Fabrication of a dual-tier thin film micropolarization array,” Opt. Express15(8), 4994–5007 (2007).
    [CrossRef] [PubMed]
  21. J. J. Wang, F. Walters, X. Liu, P. Sciortino, and X. Deng, “High-performance, large area, deep ultraviolet to infrared polarizers based on 40 nm line/78 nm space nanowire grids,” Appl. Phys. Lett.90(6), 061104 (2007).
    [CrossRef]
  22. S. Gao and V. Gruev, “Bilinear and bicubic interpolation methods for division of focal plane polarimeters,” Opt. Express19(27), 26161–26173 (2011).
    [CrossRef] [PubMed]
  23. X. Xu, M. Kulkarni, A. Nehorai, and V. Gruev, “A correlation-based interpolation algorithm for division-of-focal-plane polarization sensors,” Proc. SPIE8364, 83640L, 83640L-8 (2012).
    [CrossRef]
  24. B. M. Ratliff, C. F. LaCasse, and J. S. Tyo, “Interpolation strategies for reducing IFOV artifacts in microgrid polarimeter imagery,” Opt. Express17(11), 9112–9125 (2009).
    [CrossRef] [PubMed]
  25. D. H. Goldstein, Polarized Light (CRC Press, 2010).
  26. T. York and V. Gruev, “Characterization of a visible spectrum division-of-focal-plane polarimeter,” Appl. Opt.51(22), 5392–5400 (2012).
    [CrossRef] [PubMed]
  27. J. Nakamura, Image Sensors and Signal Processing forDigital Still Cameras (Taylor & Francis, 2006).
  28. D. L. Gilblom, S. K. Yoo, and P. Ventura, “Operation and performance of a color image sensor with layered photodiodes,” Proc. SPIE5074, 318–331 (2003).
    [CrossRef]
  29. D. L. Gilblom, S. K. Yoo, and P. Ventura, “Real-time color imaging with a CMOS sensor having stacked photodiodes,” Proc. SPIE5210, 105–115 (2004).
    [CrossRef]
  30. Kodak, “KAI-1020 Datasheet,” http://www.truesenseimaging.com/products/interline-transfer-ccd/27-KAI-1020 .
  31. A. Rush and P. Hubel, “X3 sensor characteristics,” J. Soc. Photogr. Sci. Technol. Jpn.66, 57–60 (2003).
  32. J. R. Janesick, Photon Transfer (SPIE Press, 2007).
  33. V. Gruev, Z. Yang, J. Van der Spiegel, and R. Etienne-Cummings, “Current mode image sensor with two transistors per pixel,” IEEE Trans. Circuits Syst. I57(6), 1154–1165 (2010).
    [CrossRef]
  34. X. Liu, “CMOS image sensors dynamic range and SNR enhancement via statistical signal processing, ” (Stanford University, 2002).
  35. T. York and V. Gruev, “Optical characterization of a polarization imager,” IEEE International Symposium on Circuits and Systems, 1576–1579 (2011).
  36. D. L. Bowers, J. K. Boger, L. D. Wellems, S. E. Ortega, M. P. Fetrow, J. E. Hubbs, W. T. Black, B. M. Ratliff, and J. S. Tyo, “Unpolarized calibration and nonuniformity correction for long-wave infrared microgrid imaging polarimeters,” Opt. Eng.47(4), 046403 (2008).
    [CrossRef]
  37. T. York and V. Gruev, “Calibration method for division of focal plane polarimeters in the optical and near-infrared regime,” Proc. SPIE8012, 80120H, 80120H-7 (2011).
    [CrossRef]
  38. D. Miyazaki, R. T. Tan, K. Hara, and K. Ikeuchi, “Polarization-based inverse rendering from a single view,” Proc. IEEE Comp. Vision and Pat. Recog. 9, 982–987 (2003).

2012

M. Kulkarni and V. Gruev, “A division-of-focal-plane spectral-polarization imaging sensor,” Proc. SPIE8364, 83640K, 83640K-11 (2012).
[CrossRef]

D. A. Miller, D. W. Wilson, and E. L. Dereniak, “Novel design and alignment of wire-grid diffraction gratings on a visible focal plane array,” Opt. Eng.51(1), 014001 (2012).
[CrossRef]

X. Xu, M. Kulkarni, A. Nehorai, and V. Gruev, “A correlation-based interpolation algorithm for division-of-focal-plane polarization sensors,” Proc. SPIE8364, 83640L, 83640L-8 (2012).
[CrossRef]

T. York and V. Gruev, “Characterization of a visible spectrum division-of-focal-plane polarimeter,” Appl. Opt.51(22), 5392–5400 (2012).
[CrossRef] [PubMed]

2011

S. Gao and V. Gruev, “Bilinear and bicubic interpolation methods for division of focal plane polarimeters,” Opt. Express19(27), 26161–26173 (2011).
[CrossRef] [PubMed]

T. York and V. Gruev, “Calibration method for division of focal plane polarimeters in the optical and near-infrared regime,” Proc. SPIE8012, 80120H, 80120H-7 (2011).
[CrossRef]

2010

V. Gruev, Z. Yang, J. Van der Spiegel, and R. Etienne-Cummings, “Current mode image sensor with two transistors per pixel,” IEEE Trans. Circuits Syst. I57(6), 1154–1165 (2010).
[CrossRef]

V. Gruev, R. Perkins, and T. York, “CCD polarization imaging sensor with aluminum nanowire optical filters,” Opt. Express18(18), 19087–19094 (2010).
[CrossRef] [PubMed]

2009

2008

N. Hagen and E. L. Dereniak, “Analysis of computed tomographic imaging spectrometers. I. Spatial and spectral resolution,” Appl. Opt.47(28), F85–F95 (2008).
[CrossRef] [PubMed]

D. L. Bowers, J. K. Boger, L. D. Wellems, S. E. Ortega, M. P. Fetrow, J. E. Hubbs, W. T. Black, B. M. Ratliff, and J. S. Tyo, “Unpolarized calibration and nonuniformity correction for long-wave infrared microgrid imaging polarimeters,” Opt. Eng.47(4), 046403 (2008).
[CrossRef]

2007

V. Gruev, A. Ortu, N. Lazarus, J. Van der Spiegel, and N. Engheta, “Fabrication of a dual-tier thin film micropolarization array,” Opt. Express15(8), 4994–5007 (2007).
[CrossRef] [PubMed]

J. J. Wang, F. Walters, X. Liu, P. Sciortino, and X. Deng, “High-performance, large area, deep ultraviolet to infrared polarizers based on 40 nm line/78 nm space nanowire grids,” Appl. Phys. Lett.90(6), 061104 (2007).
[CrossRef]

2006

2005

Y. Y. Schechner and N. Karpel, “Recovery of underwater visibility and structure by polarization analysis,” IEEE J. Oceanic Eng.30(3), 570–587 (2005).
[CrossRef]

2004

D. L. Gilblom, S. K. Yoo, and P. Ventura, “Real-time color imaging with a CMOS sensor having stacked photodiodes,” Proc. SPIE5210, 105–115 (2004).
[CrossRef]

2003

A. Rush and P. Hubel, “X3 sensor characteristics,” J. Soc. Photogr. Sci. Technol. Jpn.66, 57–60 (2003).

D. L. Gilblom, S. K. Yoo, and P. Ventura, “Operation and performance of a color image sensor with layered photodiodes,” Proc. SPIE5074, 318–331 (2003).
[CrossRef]

A. N. Yaroslavsky, V. Neel, and R. R. Anderson, “Demarcation of nonmelanoma skin cancer margins in thick excisions using multispectral polarized light imaging,” J. Invest. Dermatol.121(2), 259–266 (2003).
[CrossRef] [PubMed]

2002

R. S. Loe and M. J. Duggin, “Hyperspectral imaging polarimeter design and calibration,” Proc. SPIE4481, 195–205 (2002).
[CrossRef]

D. Sabatke, A. Locke, E. L. Dereniak, M. Descour, J. Garcia, T. Hamilton, and R. W. McMillan, “Snapshot imaging spectropolarimeter,” Opt. Eng.41(5), 1048–1054 (2002).
[CrossRef]

1998

H. Chen and L. B. Wolff, “Polarization phase-based method for material classification in computer vision,” Int. J. Comput. Vis.28(1), 73–83 (1998).
[CrossRef]

1997

S. K. Nayar, X. S. Fang, and T. Boult, “Separation of reflection components using color and polarization,” Int. J. Comput. Vis.21(3), 163–186 (1997).
[CrossRef]

1995

M. A. Green and M. J. Keevers, “Optical properties of intrinsic silicon at 300 K,” Prog. Photovolt. Res. Appl.3(3), 189–192 (1995).
[CrossRef]

1994

D. Lemke, F. Garzon, H. P. Gemuend, U. Groezinger, I. Heinrichsen, U. Klaas, W. Kraetschmer, E. Kreysa, P. Luetzow-Wentzky, and J. Schubert, “Far-infrared imaging, polarimetry, and spectrophotometry on the Infrared Space Observatory,” Opt. Eng.33(1), 20–25 (1994).
[CrossRef]

D. A. Glenar, J. J. Hillman, B. Saif, and J. Bergstralh, “Acousto-optic imaging spectropolarimetry for remote sensing,” Appl. Opt.33(31), 7412–7424 (1994).
[CrossRef] [PubMed]

1985

R. Antonucci and J. Miller, “Spectropolarimetry and the nature of NGC 1068,” Astrophys. J.297, 621–632 (1985).
[CrossRef]

Anderson, R. R.

A. N. Yaroslavsky, V. Neel, and R. R. Anderson, “Demarcation of nonmelanoma skin cancer margins in thick excisions using multispectral polarized light imaging,” J. Invest. Dermatol.121(2), 259–266 (2003).
[CrossRef] [PubMed]

Antonucci, R.

R. Antonucci and J. Miller, “Spectropolarimetry and the nature of NGC 1068,” Astrophys. J.297, 621–632 (1985).
[CrossRef]

Bergstralh, J.

Black, W. T.

D. L. Bowers, J. K. Boger, L. D. Wellems, S. E. Ortega, M. P. Fetrow, J. E. Hubbs, W. T. Black, B. M. Ratliff, and J. S. Tyo, “Unpolarized calibration and nonuniformity correction for long-wave infrared microgrid imaging polarimeters,” Opt. Eng.47(4), 046403 (2008).
[CrossRef]

Boger, J. K.

D. L. Bowers, J. K. Boger, L. D. Wellems, S. E. Ortega, M. P. Fetrow, J. E. Hubbs, W. T. Black, B. M. Ratliff, and J. S. Tyo, “Unpolarized calibration and nonuniformity correction for long-wave infrared microgrid imaging polarimeters,” Opt. Eng.47(4), 046403 (2008).
[CrossRef]

Boult, T.

S. K. Nayar, X. S. Fang, and T. Boult, “Separation of reflection components using color and polarization,” Int. J. Comput. Vis.21(3), 163–186 (1997).
[CrossRef]

Bowers, D. L.

D. L. Bowers, J. K. Boger, L. D. Wellems, S. E. Ortega, M. P. Fetrow, J. E. Hubbs, W. T. Black, B. M. Ratliff, and J. S. Tyo, “Unpolarized calibration and nonuniformity correction for long-wave infrared microgrid imaging polarimeters,” Opt. Eng.47(4), 046403 (2008).
[CrossRef]

Chen, H.

H. Chen and L. B. Wolff, “Polarization phase-based method for material classification in computer vision,” Int. J. Comput. Vis.28(1), 73–83 (1998).
[CrossRef]

Chenault, D. B.

Deng, X.

J. J. Wang, F. Walters, X. Liu, P. Sciortino, and X. Deng, “High-performance, large area, deep ultraviolet to infrared polarizers based on 40 nm line/78 nm space nanowire grids,” Appl. Phys. Lett.90(6), 061104 (2007).
[CrossRef]

Dereniak, E. L.

D. A. Miller, D. W. Wilson, and E. L. Dereniak, “Novel design and alignment of wire-grid diffraction gratings on a visible focal plane array,” Opt. Eng.51(1), 014001 (2012).
[CrossRef]

N. Hagen and E. L. Dereniak, “Analysis of computed tomographic imaging spectrometers. I. Spatial and spectral resolution,” Appl. Opt.47(28), F85–F95 (2008).
[CrossRef] [PubMed]

D. Sabatke, A. Locke, E. L. Dereniak, M. Descour, J. Garcia, T. Hamilton, and R. W. McMillan, “Snapshot imaging spectropolarimeter,” Opt. Eng.41(5), 1048–1054 (2002).
[CrossRef]

Descour, M.

D. Sabatke, A. Locke, E. L. Dereniak, M. Descour, J. Garcia, T. Hamilton, and R. W. McMillan, “Snapshot imaging spectropolarimeter,” Opt. Eng.41(5), 1048–1054 (2002).
[CrossRef]

Duggin, M. J.

R. S. Loe and M. J. Duggin, “Hyperspectral imaging polarimeter design and calibration,” Proc. SPIE4481, 195–205 (2002).
[CrossRef]

Engheta, N.

Etienne-Cummings, R.

V. Gruev, Z. Yang, J. Van der Spiegel, and R. Etienne-Cummings, “Current mode image sensor with two transistors per pixel,” IEEE Trans. Circuits Syst. I57(6), 1154–1165 (2010).
[CrossRef]

Fang, X. S.

S. K. Nayar, X. S. Fang, and T. Boult, “Separation of reflection components using color and polarization,” Int. J. Comput. Vis.21(3), 163–186 (1997).
[CrossRef]

Fetrow, M. P.

D. L. Bowers, J. K. Boger, L. D. Wellems, S. E. Ortega, M. P. Fetrow, J. E. Hubbs, W. T. Black, B. M. Ratliff, and J. S. Tyo, “Unpolarized calibration and nonuniformity correction for long-wave infrared microgrid imaging polarimeters,” Opt. Eng.47(4), 046403 (2008).
[CrossRef]

Gao, S.

Garcia, J.

D. Sabatke, A. Locke, E. L. Dereniak, M. Descour, J. Garcia, T. Hamilton, and R. W. McMillan, “Snapshot imaging spectropolarimeter,” Opt. Eng.41(5), 1048–1054 (2002).
[CrossRef]

Garzon, F.

D. Lemke, F. Garzon, H. P. Gemuend, U. Groezinger, I. Heinrichsen, U. Klaas, W. Kraetschmer, E. Kreysa, P. Luetzow-Wentzky, and J. Schubert, “Far-infrared imaging, polarimetry, and spectrophotometry on the Infrared Space Observatory,” Opt. Eng.33(1), 20–25 (1994).
[CrossRef]

Gemuend, H. P.

D. Lemke, F. Garzon, H. P. Gemuend, U. Groezinger, I. Heinrichsen, U. Klaas, W. Kraetschmer, E. Kreysa, P. Luetzow-Wentzky, and J. Schubert, “Far-infrared imaging, polarimetry, and spectrophotometry on the Infrared Space Observatory,” Opt. Eng.33(1), 20–25 (1994).
[CrossRef]

Gilblom, D. L.

D. L. Gilblom, S. K. Yoo, and P. Ventura, “Real-time color imaging with a CMOS sensor having stacked photodiodes,” Proc. SPIE5210, 105–115 (2004).
[CrossRef]

D. L. Gilblom, S. K. Yoo, and P. Ventura, “Operation and performance of a color image sensor with layered photodiodes,” Proc. SPIE5074, 318–331 (2003).
[CrossRef]

Glenar, D. A.

Goldstein, D. L.

Green, M. A.

M. A. Green and M. J. Keevers, “Optical properties of intrinsic silicon at 300 K,” Prog. Photovolt. Res. Appl.3(3), 189–192 (1995).
[CrossRef]

Groezinger, U.

D. Lemke, F. Garzon, H. P. Gemuend, U. Groezinger, I. Heinrichsen, U. Klaas, W. Kraetschmer, E. Kreysa, P. Luetzow-Wentzky, and J. Schubert, “Far-infrared imaging, polarimetry, and spectrophotometry on the Infrared Space Observatory,” Opt. Eng.33(1), 20–25 (1994).
[CrossRef]

Gruev, V.

T. York and V. Gruev, “Characterization of a visible spectrum division-of-focal-plane polarimeter,” Appl. Opt.51(22), 5392–5400 (2012).
[CrossRef] [PubMed]

M. Kulkarni and V. Gruev, “A division-of-focal-plane spectral-polarization imaging sensor,” Proc. SPIE8364, 83640K, 83640K-11 (2012).
[CrossRef]

X. Xu, M. Kulkarni, A. Nehorai, and V. Gruev, “A correlation-based interpolation algorithm for division-of-focal-plane polarization sensors,” Proc. SPIE8364, 83640L, 83640L-8 (2012).
[CrossRef]

S. Gao and V. Gruev, “Bilinear and bicubic interpolation methods for division of focal plane polarimeters,” Opt. Express19(27), 26161–26173 (2011).
[CrossRef] [PubMed]

T. York and V. Gruev, “Calibration method for division of focal plane polarimeters in the optical and near-infrared regime,” Proc. SPIE8012, 80120H, 80120H-7 (2011).
[CrossRef]

V. Gruev, Z. Yang, J. Van der Spiegel, and R. Etienne-Cummings, “Current mode image sensor with two transistors per pixel,” IEEE Trans. Circuits Syst. I57(6), 1154–1165 (2010).
[CrossRef]

V. Gruev, R. Perkins, and T. York, “CCD polarization imaging sensor with aluminum nanowire optical filters,” Opt. Express18(18), 19087–19094 (2010).
[CrossRef] [PubMed]

V. Gruev, A. Ortu, N. Lazarus, J. Van der Spiegel, and N. Engheta, “Fabrication of a dual-tier thin film micropolarization array,” Opt. Express15(8), 4994–5007 (2007).
[CrossRef] [PubMed]

Hagen, N.

Hamilton, T.

D. Sabatke, A. Locke, E. L. Dereniak, M. Descour, J. Garcia, T. Hamilton, and R. W. McMillan, “Snapshot imaging spectropolarimeter,” Opt. Eng.41(5), 1048–1054 (2002).
[CrossRef]

Heinrichsen, I.

D. Lemke, F. Garzon, H. P. Gemuend, U. Groezinger, I. Heinrichsen, U. Klaas, W. Kraetschmer, E. Kreysa, P. Luetzow-Wentzky, and J. Schubert, “Far-infrared imaging, polarimetry, and spectrophotometry on the Infrared Space Observatory,” Opt. Eng.33(1), 20–25 (1994).
[CrossRef]

Hillman, J. J.

Hubbs, J. E.

D. L. Bowers, J. K. Boger, L. D. Wellems, S. E. Ortega, M. P. Fetrow, J. E. Hubbs, W. T. Black, B. M. Ratliff, and J. S. Tyo, “Unpolarized calibration and nonuniformity correction for long-wave infrared microgrid imaging polarimeters,” Opt. Eng.47(4), 046403 (2008).
[CrossRef]

Hubel, P.

A. Rush and P. Hubel, “X3 sensor characteristics,” J. Soc. Photogr. Sci. Technol. Jpn.66, 57–60 (2003).

Karpel, N.

Y. Y. Schechner and N. Karpel, “Recovery of underwater visibility and structure by polarization analysis,” IEEE J. Oceanic Eng.30(3), 570–587 (2005).
[CrossRef]

Keevers, M. J.

M. A. Green and M. J. Keevers, “Optical properties of intrinsic silicon at 300 K,” Prog. Photovolt. Res. Appl.3(3), 189–192 (1995).
[CrossRef]

Klaas, U.

D. Lemke, F. Garzon, H. P. Gemuend, U. Groezinger, I. Heinrichsen, U. Klaas, W. Kraetschmer, E. Kreysa, P. Luetzow-Wentzky, and J. Schubert, “Far-infrared imaging, polarimetry, and spectrophotometry on the Infrared Space Observatory,” Opt. Eng.33(1), 20–25 (1994).
[CrossRef]

Kraetschmer, W.

D. Lemke, F. Garzon, H. P. Gemuend, U. Groezinger, I. Heinrichsen, U. Klaas, W. Kraetschmer, E. Kreysa, P. Luetzow-Wentzky, and J. Schubert, “Far-infrared imaging, polarimetry, and spectrophotometry on the Infrared Space Observatory,” Opt. Eng.33(1), 20–25 (1994).
[CrossRef]

Kreysa, E.

D. Lemke, F. Garzon, H. P. Gemuend, U. Groezinger, I. Heinrichsen, U. Klaas, W. Kraetschmer, E. Kreysa, P. Luetzow-Wentzky, and J. Schubert, “Far-infrared imaging, polarimetry, and spectrophotometry on the Infrared Space Observatory,” Opt. Eng.33(1), 20–25 (1994).
[CrossRef]

Kulkarni, M.

M. Kulkarni and V. Gruev, “A division-of-focal-plane spectral-polarization imaging sensor,” Proc. SPIE8364, 83640K, 83640K-11 (2012).
[CrossRef]

X. Xu, M. Kulkarni, A. Nehorai, and V. Gruev, “A correlation-based interpolation algorithm for division-of-focal-plane polarization sensors,” Proc. SPIE8364, 83640L, 83640L-8 (2012).
[CrossRef]

LaCasse, C. F.

Lazarus, N.

Lemke, D.

D. Lemke, F. Garzon, H. P. Gemuend, U. Groezinger, I. Heinrichsen, U. Klaas, W. Kraetschmer, E. Kreysa, P. Luetzow-Wentzky, and J. Schubert, “Far-infrared imaging, polarimetry, and spectrophotometry on the Infrared Space Observatory,” Opt. Eng.33(1), 20–25 (1994).
[CrossRef]

Lin, S. S.

Liu, X.

J. J. Wang, F. Walters, X. Liu, P. Sciortino, and X. Deng, “High-performance, large area, deep ultraviolet to infrared polarizers based on 40 nm line/78 nm space nanowire grids,” Appl. Phys. Lett.90(6), 061104 (2007).
[CrossRef]

Locke, A.

D. Sabatke, A. Locke, E. L. Dereniak, M. Descour, J. Garcia, T. Hamilton, and R. W. McMillan, “Snapshot imaging spectropolarimeter,” Opt. Eng.41(5), 1048–1054 (2002).
[CrossRef]

Loe, R. S.

R. S. Loe and M. J. Duggin, “Hyperspectral imaging polarimeter design and calibration,” Proc. SPIE4481, 195–205 (2002).
[CrossRef]

Luetzow-Wentzky, P.

D. Lemke, F. Garzon, H. P. Gemuend, U. Groezinger, I. Heinrichsen, U. Klaas, W. Kraetschmer, E. Kreysa, P. Luetzow-Wentzky, and J. Schubert, “Far-infrared imaging, polarimetry, and spectrophotometry on the Infrared Space Observatory,” Opt. Eng.33(1), 20–25 (1994).
[CrossRef]

McMillan, R. W.

D. Sabatke, A. Locke, E. L. Dereniak, M. Descour, J. Garcia, T. Hamilton, and R. W. McMillan, “Snapshot imaging spectropolarimeter,” Opt. Eng.41(5), 1048–1054 (2002).
[CrossRef]

Miller, D. A.

D. A. Miller, D. W. Wilson, and E. L. Dereniak, “Novel design and alignment of wire-grid diffraction gratings on a visible focal plane array,” Opt. Eng.51(1), 014001 (2012).
[CrossRef]

Miller, J.

R. Antonucci and J. Miller, “Spectropolarimetry and the nature of NGC 1068,” Astrophys. J.297, 621–632 (1985).
[CrossRef]

Nayar, S. K.

S. K. Nayar, X. S. Fang, and T. Boult, “Separation of reflection components using color and polarization,” Int. J. Comput. Vis.21(3), 163–186 (1997).
[CrossRef]

Neel, V.

A. N. Yaroslavsky, V. Neel, and R. R. Anderson, “Demarcation of nonmelanoma skin cancer margins in thick excisions using multispectral polarized light imaging,” J. Invest. Dermatol.121(2), 259–266 (2003).
[CrossRef] [PubMed]

Nehorai, A.

X. Xu, M. Kulkarni, A. Nehorai, and V. Gruev, “A correlation-based interpolation algorithm for division-of-focal-plane polarization sensors,” Proc. SPIE8364, 83640L, 83640L-8 (2012).
[CrossRef]

Ortega, S. E.

D. L. Bowers, J. K. Boger, L. D. Wellems, S. E. Ortega, M. P. Fetrow, J. E. Hubbs, W. T. Black, B. M. Ratliff, and J. S. Tyo, “Unpolarized calibration and nonuniformity correction for long-wave infrared microgrid imaging polarimeters,” Opt. Eng.47(4), 046403 (2008).
[CrossRef]

Ortu, A.

Perkins, R.

Pugh, E. N.

Ratliff, B. M.

B. M. Ratliff, C. F. LaCasse, and J. S. Tyo, “Interpolation strategies for reducing IFOV artifacts in microgrid polarimeter imagery,” Opt. Express17(11), 9112–9125 (2009).
[CrossRef] [PubMed]

D. L. Bowers, J. K. Boger, L. D. Wellems, S. E. Ortega, M. P. Fetrow, J. E. Hubbs, W. T. Black, B. M. Ratliff, and J. S. Tyo, “Unpolarized calibration and nonuniformity correction for long-wave infrared microgrid imaging polarimeters,” Opt. Eng.47(4), 046403 (2008).
[CrossRef]

Rush, A.

A. Rush and P. Hubel, “X3 sensor characteristics,” J. Soc. Photogr. Sci. Technol. Jpn.66, 57–60 (2003).

Sabatke, D.

D. Sabatke, A. Locke, E. L. Dereniak, M. Descour, J. Garcia, T. Hamilton, and R. W. McMillan, “Snapshot imaging spectropolarimeter,” Opt. Eng.41(5), 1048–1054 (2002).
[CrossRef]

Saif, B.

Schechner, Y. Y.

Y. Y. Schechner and N. Karpel, “Recovery of underwater visibility and structure by polarization analysis,” IEEE J. Oceanic Eng.30(3), 570–587 (2005).
[CrossRef]

Schubert, J.

D. Lemke, F. Garzon, H. P. Gemuend, U. Groezinger, I. Heinrichsen, U. Klaas, W. Kraetschmer, E. Kreysa, P. Luetzow-Wentzky, and J. Schubert, “Far-infrared imaging, polarimetry, and spectrophotometry on the Infrared Space Observatory,” Opt. Eng.33(1), 20–25 (1994).
[CrossRef]

Sciortino, P.

J. J. Wang, F. Walters, X. Liu, P. Sciortino, and X. Deng, “High-performance, large area, deep ultraviolet to infrared polarizers based on 40 nm line/78 nm space nanowire grids,” Appl. Phys. Lett.90(6), 061104 (2007).
[CrossRef]

Shaw, J. A.

Tyo, J. S.

B. M. Ratliff, C. F. LaCasse, and J. S. Tyo, “Interpolation strategies for reducing IFOV artifacts in microgrid polarimeter imagery,” Opt. Express17(11), 9112–9125 (2009).
[CrossRef] [PubMed]

D. L. Bowers, J. K. Boger, L. D. Wellems, S. E. Ortega, M. P. Fetrow, J. E. Hubbs, W. T. Black, B. M. Ratliff, and J. S. Tyo, “Unpolarized calibration and nonuniformity correction for long-wave infrared microgrid imaging polarimeters,” Opt. Eng.47(4), 046403 (2008).
[CrossRef]

J. S. Tyo, D. L. Goldstein, D. B. Chenault, and J. A. Shaw, “Review of passive imaging polarimetry for remote sensing applications,” Appl. Opt.45(22), 5453–5469 (2006).
[CrossRef] [PubMed]

Van der Spiegel, J.

V. Gruev, Z. Yang, J. Van der Spiegel, and R. Etienne-Cummings, “Current mode image sensor with two transistors per pixel,” IEEE Trans. Circuits Syst. I57(6), 1154–1165 (2010).
[CrossRef]

V. Gruev, A. Ortu, N. Lazarus, J. Van der Spiegel, and N. Engheta, “Fabrication of a dual-tier thin film micropolarization array,” Opt. Express15(8), 4994–5007 (2007).
[CrossRef] [PubMed]

Ventura, P.

D. L. Gilblom, S. K. Yoo, and P. Ventura, “Real-time color imaging with a CMOS sensor having stacked photodiodes,” Proc. SPIE5210, 105–115 (2004).
[CrossRef]

D. L. Gilblom, S. K. Yoo, and P. Ventura, “Operation and performance of a color image sensor with layered photodiodes,” Proc. SPIE5074, 318–331 (2003).
[CrossRef]

Walters, F.

J. J. Wang, F. Walters, X. Liu, P. Sciortino, and X. Deng, “High-performance, large area, deep ultraviolet to infrared polarizers based on 40 nm line/78 nm space nanowire grids,” Appl. Phys. Lett.90(6), 061104 (2007).
[CrossRef]

Wang, J. J.

J. J. Wang, F. Walters, X. Liu, P. Sciortino, and X. Deng, “High-performance, large area, deep ultraviolet to infrared polarizers based on 40 nm line/78 nm space nanowire grids,” Appl. Phys. Lett.90(6), 061104 (2007).
[CrossRef]

Wellems, L. D.

D. L. Bowers, J. K. Boger, L. D. Wellems, S. E. Ortega, M. P. Fetrow, J. E. Hubbs, W. T. Black, B. M. Ratliff, and J. S. Tyo, “Unpolarized calibration and nonuniformity correction for long-wave infrared microgrid imaging polarimeters,” Opt. Eng.47(4), 046403 (2008).
[CrossRef]

Wilson, D. W.

D. A. Miller, D. W. Wilson, and E. L. Dereniak, “Novel design and alignment of wire-grid diffraction gratings on a visible focal plane array,” Opt. Eng.51(1), 014001 (2012).
[CrossRef]

Wolff, L. B.

H. Chen and L. B. Wolff, “Polarization phase-based method for material classification in computer vision,” Int. J. Comput. Vis.28(1), 73–83 (1998).
[CrossRef]

Xu, X.

X. Xu, M. Kulkarni, A. Nehorai, and V. Gruev, “A correlation-based interpolation algorithm for division-of-focal-plane polarization sensors,” Proc. SPIE8364, 83640L, 83640L-8 (2012).
[CrossRef]

Yang, Z.

V. Gruev, Z. Yang, J. Van der Spiegel, and R. Etienne-Cummings, “Current mode image sensor with two transistors per pixel,” IEEE Trans. Circuits Syst. I57(6), 1154–1165 (2010).
[CrossRef]

Yaroslavsky, A. N.

A. N. Yaroslavsky, V. Neel, and R. R. Anderson, “Demarcation of nonmelanoma skin cancer margins in thick excisions using multispectral polarized light imaging,” J. Invest. Dermatol.121(2), 259–266 (2003).
[CrossRef] [PubMed]

Yemelyanov, K. M.

Yoo, S. K.

D. L. Gilblom, S. K. Yoo, and P. Ventura, “Real-time color imaging with a CMOS sensor having stacked photodiodes,” Proc. SPIE5210, 105–115 (2004).
[CrossRef]

D. L. Gilblom, S. K. Yoo, and P. Ventura, “Operation and performance of a color image sensor with layered photodiodes,” Proc. SPIE5074, 318–331 (2003).
[CrossRef]

York, T.

Appl. Opt.

Appl. Phys. Lett.

J. J. Wang, F. Walters, X. Liu, P. Sciortino, and X. Deng, “High-performance, large area, deep ultraviolet to infrared polarizers based on 40 nm line/78 nm space nanowire grids,” Appl. Phys. Lett.90(6), 061104 (2007).
[CrossRef]

Astrophys. J.

R. Antonucci and J. Miller, “Spectropolarimetry and the nature of NGC 1068,” Astrophys. J.297, 621–632 (1985).
[CrossRef]

IEEE J. Oceanic Eng.

Y. Y. Schechner and N. Karpel, “Recovery of underwater visibility and structure by polarization analysis,” IEEE J. Oceanic Eng.30(3), 570–587 (2005).
[CrossRef]

IEEE Trans. Circuits Syst. I

V. Gruev, Z. Yang, J. Van der Spiegel, and R. Etienne-Cummings, “Current mode image sensor with two transistors per pixel,” IEEE Trans. Circuits Syst. I57(6), 1154–1165 (2010).
[CrossRef]

Int. J. Comput. Vis.

H. Chen and L. B. Wolff, “Polarization phase-based method for material classification in computer vision,” Int. J. Comput. Vis.28(1), 73–83 (1998).
[CrossRef]

S. K. Nayar, X. S. Fang, and T. Boult, “Separation of reflection components using color and polarization,” Int. J. Comput. Vis.21(3), 163–186 (1997).
[CrossRef]

J. Invest. Dermatol.

A. N. Yaroslavsky, V. Neel, and R. R. Anderson, “Demarcation of nonmelanoma skin cancer margins in thick excisions using multispectral polarized light imaging,” J. Invest. Dermatol.121(2), 259–266 (2003).
[CrossRef] [PubMed]

J. Opt. Soc. Am. A

J. Soc. Photogr. Sci. Technol. Jpn.

A. Rush and P. Hubel, “X3 sensor characteristics,” J. Soc. Photogr. Sci. Technol. Jpn.66, 57–60 (2003).

Opt. Eng.

D. A. Miller, D. W. Wilson, and E. L. Dereniak, “Novel design and alignment of wire-grid diffraction gratings on a visible focal plane array,” Opt. Eng.51(1), 014001 (2012).
[CrossRef]

D. Lemke, F. Garzon, H. P. Gemuend, U. Groezinger, I. Heinrichsen, U. Klaas, W. Kraetschmer, E. Kreysa, P. Luetzow-Wentzky, and J. Schubert, “Far-infrared imaging, polarimetry, and spectrophotometry on the Infrared Space Observatory,” Opt. Eng.33(1), 20–25 (1994).
[CrossRef]

D. Sabatke, A. Locke, E. L. Dereniak, M. Descour, J. Garcia, T. Hamilton, and R. W. McMillan, “Snapshot imaging spectropolarimeter,” Opt. Eng.41(5), 1048–1054 (2002).
[CrossRef]

D. L. Bowers, J. K. Boger, L. D. Wellems, S. E. Ortega, M. P. Fetrow, J. E. Hubbs, W. T. Black, B. M. Ratliff, and J. S. Tyo, “Unpolarized calibration and nonuniformity correction for long-wave infrared microgrid imaging polarimeters,” Opt. Eng.47(4), 046403 (2008).
[CrossRef]

Opt. Express

Proc. SPIE

X. Xu, M. Kulkarni, A. Nehorai, and V. Gruev, “A correlation-based interpolation algorithm for division-of-focal-plane polarization sensors,” Proc. SPIE8364, 83640L, 83640L-8 (2012).
[CrossRef]

T. York and V. Gruev, “Calibration method for division of focal plane polarimeters in the optical and near-infrared regime,” Proc. SPIE8012, 80120H, 80120H-7 (2011).
[CrossRef]

M. Kulkarni and V. Gruev, “A division-of-focal-plane spectral-polarization imaging sensor,” Proc. SPIE8364, 83640K, 83640K-11 (2012).
[CrossRef]

R. S. Loe and M. J. Duggin, “Hyperspectral imaging polarimeter design and calibration,” Proc. SPIE4481, 195–205 (2002).
[CrossRef]

D. L. Gilblom, S. K. Yoo, and P. Ventura, “Operation and performance of a color image sensor with layered photodiodes,” Proc. SPIE5074, 318–331 (2003).
[CrossRef]

D. L. Gilblom, S. K. Yoo, and P. Ventura, “Real-time color imaging with a CMOS sensor having stacked photodiodes,” Proc. SPIE5210, 105–115 (2004).
[CrossRef]

Prog. Photovolt. Res. Appl.

M. A. Green and M. J. Keevers, “Optical properties of intrinsic silicon at 300 K,” Prog. Photovolt. Res. Appl.3(3), 189–192 (1995).
[CrossRef]

Other

R. B. Merrill, “Color separation in an active pixel cell imaging array using a triple-well structure,” (US Patent 1999).

B. G. Streetman and S. Banerjee, Solid State Electronic Devices (Prentice Hall, 1995).

J. Nakamura, Image Sensors and Signal Processing forDigital Still Cameras (Taylor & Francis, 2006).

Kodak, “KAI-1020 Datasheet,” http://www.truesenseimaging.com/products/interline-transfer-ccd/27-KAI-1020 .

J. R. Janesick, Photon Transfer (SPIE Press, 2007).

S. Shwartz, E. Namer, and Y. Y. Schechner, “Blind haze separation,” Proc. IEEE Comp. Vision and Pat. Recog. 2, 1984–1991 (2006).

D. Miyazaki, R. T. Tan, K. Hara, and K. Ikeuchi, “Polarization-based inverse rendering from a single view,” Proc. IEEE Comp. Vision and Pat. Recog. 9, 982–987 (2003).

X. Liu, “CMOS image sensors dynamic range and SNR enhancement via statistical signal processing, ” (Stanford University, 2002).

T. York and V. Gruev, “Optical characterization of a polarization imager,” IEEE International Symposium on Circuits and Systems, 1576–1579 (2011).

D. H. Goldstein, Polarized Light (CRC Press, 2010).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (17)

Fig. 1
Fig. 1

Spectral-polarization imaging sensor. A ruler and a US quarter are placed next to the camera in order to provide a sense of scale.

Fig. 2
Fig. 2

The wavelength dependence of the absorption depth of light in silicon, for varying levels of absorption.

Fig. 3
Fig. 3

A pixel of the spectral image sensor containing vertically stacked photodiodes and associated circuitry.

Fig. 4
Fig. 4

Block diagram of spectral-polarization sensor array. Each pixel of the sensor is integrated with nanowire polarization filters with transmission axis at 0°, 45°, 90° or 135°, enabling the capture of spectral and polarization information simultaneously.

Fig. 5
Fig. 5

Experimental setup for spectral characterization of integrated spectral-polarization sensor.

Fig. 6
Fig. 6

Measured quantum efficiency of each spectral channel of the sensor.

Fig. 7
Fig. 7

Linear fit for (a) red, (b) green and (c) blue channel responses as integration time is increased, for 550 nm incident light. The corresponding residual errors are shown in (d), (e) and (f) respectively.

Fig. 8
Fig. 8

Mean SNR across a 50 by 50 array (a) plotted against number of incident photons and (b) normalized with quantum efficiency, for 550 nm incident light.

Fig. 9
Fig. 9

Experimental setup for polarimetric characterization of integrated sensor.

Fig. 10
Fig. 10

Polarization responses of the integrated sensor at (a) 550 nm, (b) 650 nm and (c) 480 nm for the three spectral channels over a 50 by 50 pixel region.

Fig. 11
Fig. 11

Extinction ratio across wavelength, averaged over a 50 by 50 array for (a) 0°, (b) 45°, (c) 90°, (d) 135° polarization pixels.

Fig. 12
Fig. 12

Extinction ratio across integration time @ 550 nm, averaged over a 50 by 50 array for (a) 0°, (b) 45°, (c) 90°, (d) 135° polarization pixels.

Fig. 13
Fig. 13

Experimental setup for testing error in DoLP measurement. A rotating quarter-wave retarder is included in the setup.

Fig. 14
Fig. 14

(a) Plot of DoLP as measured by a single super pixel of the green channel of the integrated sensor against a reference measurement, (b) Absolute error in measured DoLP.

Fig. 15
Fig. 15

Spectral image recorded by the integrated sensor. From right to left: a Macbeth color checker chart, silicon ingot, and polarization filter wheel form the imaged scene.

Fig. 16
Fig. 16

Degree of linear polarization image recorded by the integrated sensor.

Fig. 17
Fig. 17

Angle of polarization image recorded by the integrated sensor, for when there is significant polarization information in the scene (DoLP > 0.5).

Tables (1)

Tables Icon

Table 1 Summary of Sensor Characteristics

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

I(λ,x)= I incident × e αx
S 0 = 0.5×( I 0 + I 45 + I 90 + I 135 )
S 1 = I 0 I 90
S 2 = I 45 I 135
DoLP= S 1 2 + S 2 2 S 0
AoP= 1 2 tan 1 ( S 2 S 1 )
QE(λ) = N e N ph
N ph = I×λ× t int × A pd hc
QE(λ) = hc × (DV/0.06) I × λ × t int × A pd
I θ =I cos 2 (θ-ϕ)

Metrics