Abstract

The concept of internal homogenization is introduced as a complementary approach to the conventional homogenization schemes, which could be termed as external homogenization. The theory for the internal homogenization of the permittivity of subwavelength coated spheres is presented. The effective permittivity derived from the internal homogenization of coreshells is discussed for plasmonic and dielectric constituent materials. The effective model provided by the homogenization is a useful design tool in constructing coated particles with desired resonant properties.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. Mie, “Beitrage zur optik trüber medien, speziell kolloidaler metallösungen,” Ann. Phys.330(3), 377–445 (1908).
    [CrossRef]
  2. U. Kreibig and M. Vollmer, Optical Properties of Metal Clusters (Springer, 2011).
  3. A. L. Aden and M. Kerker, “Scattering of electromagnetic waves from two concentric spheres,” J. Appl. Phys.22(10), 1242–1246 (1951).
    [CrossRef]
  4. A. E. Neeves and M. H. Birnboim, “Composite structures for the enhancement of nonlinear-optical susceptibility,” J. Opt. Soc. Am. B6(4), 787–796 (1989).
    [CrossRef]
  5. S. J. Oldenburg, R. D. Averitt, S. L. Westcott, and N. J. Halas, “Nanoengineering of optical resonances,” Chem. Phys. Lett.288(2-4), 243–247 (1998).
    [CrossRef]
  6. R. Baer, D. Neuhauser, and S. Weiss, “Enhanced absorption induced by a metallic nanoshell,” Nano Lett.4(1), 85–88 (2004).
    [CrossRef]
  7. R. Lombardini, R. Acevedo, N. J. Halas, and B. R. Johnson, “Plasmonic enhancement of Raman optical activity in molecules near metal nanoshells: theoretical comparison of circular polarization methods,” J. Phys. Chem. C114(16), 7390–7400 (2010).
    [CrossRef]
  8. J. B. Jackson, S. L. Westcott, L. R. Hirsch, J. L. West, and N. J. Halas, “Controlling the surface enhanced Raman effect via the nanoshell geometry,” Appl. Phys. Lett.82(2), 257–259 (2003).
    [CrossRef]
  9. A. Alù and N. Engheta, “Achieving transparency with plasmonic and metamaterial coatings,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.72(1), 016623 (2005).
    [CrossRef] [PubMed]
  10. A. Alù and N. Engheta, “Plasmonic and metamaterial cloaking: physical mechanisms and potentials,” J. Opt. A10(9), 093002 (2008).
    [CrossRef]
  11. A. Alù and N. Engheta, “Multifrequency optical invisibility cloak with layered plasmonic shells,” Phys. Rev. Lett.100(11), 113901 (2008).
    [CrossRef] [PubMed]
  12. U. K. Chettiar, R. F. Garcia, S. A. Maier, and N. Engheta, “Enhancement of radiation from dielectric waveguides using resonant plasmonic coreshells,” Opt. Express20(14), 16104–16112 (2012).
    [CrossRef] [PubMed]
  13. N. Halas, “Playing with plasmons: tuning the optical resonant properties of metallic nanoshells,” MRS Bull.30(05), 362–367 (2005).
    [CrossRef]
  14. R. Huschka, J. Zuloaga, M. W. Knight, L. V. Brown, P. Nordlander, and N. J. Halas, “Light-induced release of DNA from gold nanoparticles: nanoshells and nanorods,” J. Am. Chem. Soc.133(31), 12247–12255 (2011).
    [CrossRef] [PubMed]
  15. R. Bardhan, S. Lal, A. Joshi, and N. J. Halas, “Theranostic nanoshells: from probe design to imaging and treatment of cancer,” Acc. Chem. Res.44(10), 936–946 (2011).
    [CrossRef] [PubMed]
  16. G. W. Milton, The Theory of Composites (Cambridge University Press, 2004).
  17. D. J. Bergman and D. Stroud, “Physical properties of macroscopically inhomogeneous media,” Solid State Phys.46, 147–269 (1992).
    [CrossRef]
  18. V. M. Shalaev, “Electromagnetic properties of small-particle composites,” Phys. Rep.272(2-3), 61–137 (1996).
    [CrossRef]
  19. V. M. Shalaev, Nonlinear Optics of Random Media: Fractal Composites and Metal-dielectric Films (Springer, 2000).
  20. D. A. G. Bruggeman, “Berechnung verschiedener physikalischer konstanten von heterogenen substanzen,” Ann. Phys.416(7), 636–664 (1935).
    [CrossRef]
  21. A. H. Sihvola, Electromagnetic Mixing Formulas and Applications (Institution of Electrical Engineers, 2008).
  22. L. W. Mochán and R. G. Barrera, “Electromagnetic response of systems with spatial fluctuations. I. general formalism,” Phys. Rev. B32, 32–36 (1985).
  23. M. G. Silveirinha, “Nonlocal homogenization theory of structured materials,” in Theory and Phenomena of Metamaterials, F. Capolino ed. (CRC Press, 2009).
  24. A. Alù, “First-principles homogenization theory for periodic metamaterials,” Phys. Rev. B84(7), 075153 (2011).
    [CrossRef]
  25. D. R. Smith and J. B. Pendry, “Homogenization of metamaterials by field averaging,” J. Opt. Soc. Am. B23(3), 391–403 (2006).
    [CrossRef]
  26. C. Fietz and G. Shvets, “Current-driven metamaterial homogenization,” Physica B405(14), 2930–2934 (2010).
    [CrossRef]
  27. C. R. Simovski and S. A. Tretyakov, “Local constitutive parameters of metamaterials from an effective-medium perspective,” Phys. Rev. B75(19), 195111 (2007).
    [CrossRef]
  28. G. P. Ortiz, B. E. Martínez-Zérega, B. S. Mendoza, and L. W. Mochán, “Effective optical response of metamaterials,” Phys. Rev. B79(24), 245132 (2009).
    [CrossRef]
  29. M. Silveirinha and N. Engheta, “Effective medium approach to electron waves: graphene superlattices,” Phys. Rev. B85(19), 195413 (2012).
    [CrossRef]
  30. C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles, 2nd ed. (Wiley-VCH, 2008).
  31. A. B. Evlyukhin and S. I. Bozhevolnyi, “Point-dipole approximation for surface plasmon polariton scattering: Implications and limitations,” Phys. Rev. B71(13), 134304 (2005).
    [CrossRef]
  32. P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B6(12), 4370–4379 (1972).
    [CrossRef]
  33. R. C. Aster, C. H. Thurber, and B. Borchers, Parameter Estimation and Inverse Problems (Elsevier Academic Press, 2005).
  34. J. A. Snyman, Practical Mathematical Optimization (Springer, 2005).

2012

2011

A. Alù, “First-principles homogenization theory for periodic metamaterials,” Phys. Rev. B84(7), 075153 (2011).
[CrossRef]

R. Huschka, J. Zuloaga, M. W. Knight, L. V. Brown, P. Nordlander, and N. J. Halas, “Light-induced release of DNA from gold nanoparticles: nanoshells and nanorods,” J. Am. Chem. Soc.133(31), 12247–12255 (2011).
[CrossRef] [PubMed]

R. Bardhan, S. Lal, A. Joshi, and N. J. Halas, “Theranostic nanoshells: from probe design to imaging and treatment of cancer,” Acc. Chem. Res.44(10), 936–946 (2011).
[CrossRef] [PubMed]

2010

R. Lombardini, R. Acevedo, N. J. Halas, and B. R. Johnson, “Plasmonic enhancement of Raman optical activity in molecules near metal nanoshells: theoretical comparison of circular polarization methods,” J. Phys. Chem. C114(16), 7390–7400 (2010).
[CrossRef]

C. Fietz and G. Shvets, “Current-driven metamaterial homogenization,” Physica B405(14), 2930–2934 (2010).
[CrossRef]

2009

G. P. Ortiz, B. E. Martínez-Zérega, B. S. Mendoza, and L. W. Mochán, “Effective optical response of metamaterials,” Phys. Rev. B79(24), 245132 (2009).
[CrossRef]

2008

A. Alù and N. Engheta, “Plasmonic and metamaterial cloaking: physical mechanisms and potentials,” J. Opt. A10(9), 093002 (2008).
[CrossRef]

A. Alù and N. Engheta, “Multifrequency optical invisibility cloak with layered plasmonic shells,” Phys. Rev. Lett.100(11), 113901 (2008).
[CrossRef] [PubMed]

2007

C. R. Simovski and S. A. Tretyakov, “Local constitutive parameters of metamaterials from an effective-medium perspective,” Phys. Rev. B75(19), 195111 (2007).
[CrossRef]

2006

2005

A. B. Evlyukhin and S. I. Bozhevolnyi, “Point-dipole approximation for surface plasmon polariton scattering: Implications and limitations,” Phys. Rev. B71(13), 134304 (2005).
[CrossRef]

N. Halas, “Playing with plasmons: tuning the optical resonant properties of metallic nanoshells,” MRS Bull.30(05), 362–367 (2005).
[CrossRef]

A. Alù and N. Engheta, “Achieving transparency with plasmonic and metamaterial coatings,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.72(1), 016623 (2005).
[CrossRef] [PubMed]

2004

R. Baer, D. Neuhauser, and S. Weiss, “Enhanced absorption induced by a metallic nanoshell,” Nano Lett.4(1), 85–88 (2004).
[CrossRef]

2003

J. B. Jackson, S. L. Westcott, L. R. Hirsch, J. L. West, and N. J. Halas, “Controlling the surface enhanced Raman effect via the nanoshell geometry,” Appl. Phys. Lett.82(2), 257–259 (2003).
[CrossRef]

1998

S. J. Oldenburg, R. D. Averitt, S. L. Westcott, and N. J. Halas, “Nanoengineering of optical resonances,” Chem. Phys. Lett.288(2-4), 243–247 (1998).
[CrossRef]

1996

V. M. Shalaev, “Electromagnetic properties of small-particle composites,” Phys. Rep.272(2-3), 61–137 (1996).
[CrossRef]

1992

D. J. Bergman and D. Stroud, “Physical properties of macroscopically inhomogeneous media,” Solid State Phys.46, 147–269 (1992).
[CrossRef]

1989

1985

L. W. Mochán and R. G. Barrera, “Electromagnetic response of systems with spatial fluctuations. I. general formalism,” Phys. Rev. B32, 32–36 (1985).

1972

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B6(12), 4370–4379 (1972).
[CrossRef]

1951

A. L. Aden and M. Kerker, “Scattering of electromagnetic waves from two concentric spheres,” J. Appl. Phys.22(10), 1242–1246 (1951).
[CrossRef]

1935

D. A. G. Bruggeman, “Berechnung verschiedener physikalischer konstanten von heterogenen substanzen,” Ann. Phys.416(7), 636–664 (1935).
[CrossRef]

1908

G. Mie, “Beitrage zur optik trüber medien, speziell kolloidaler metallösungen,” Ann. Phys.330(3), 377–445 (1908).
[CrossRef]

Acevedo, R.

R. Lombardini, R. Acevedo, N. J. Halas, and B. R. Johnson, “Plasmonic enhancement of Raman optical activity in molecules near metal nanoshells: theoretical comparison of circular polarization methods,” J. Phys. Chem. C114(16), 7390–7400 (2010).
[CrossRef]

Aden, A. L.

A. L. Aden and M. Kerker, “Scattering of electromagnetic waves from two concentric spheres,” J. Appl. Phys.22(10), 1242–1246 (1951).
[CrossRef]

Alù, A.

A. Alù, “First-principles homogenization theory for periodic metamaterials,” Phys. Rev. B84(7), 075153 (2011).
[CrossRef]

A. Alù and N. Engheta, “Plasmonic and metamaterial cloaking: physical mechanisms and potentials,” J. Opt. A10(9), 093002 (2008).
[CrossRef]

A. Alù and N. Engheta, “Multifrequency optical invisibility cloak with layered plasmonic shells,” Phys. Rev. Lett.100(11), 113901 (2008).
[CrossRef] [PubMed]

A. Alù and N. Engheta, “Achieving transparency with plasmonic and metamaterial coatings,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.72(1), 016623 (2005).
[CrossRef] [PubMed]

Averitt, R. D.

S. J. Oldenburg, R. D. Averitt, S. L. Westcott, and N. J. Halas, “Nanoengineering of optical resonances,” Chem. Phys. Lett.288(2-4), 243–247 (1998).
[CrossRef]

Baer, R.

R. Baer, D. Neuhauser, and S. Weiss, “Enhanced absorption induced by a metallic nanoshell,” Nano Lett.4(1), 85–88 (2004).
[CrossRef]

Bardhan, R.

R. Bardhan, S. Lal, A. Joshi, and N. J. Halas, “Theranostic nanoshells: from probe design to imaging and treatment of cancer,” Acc. Chem. Res.44(10), 936–946 (2011).
[CrossRef] [PubMed]

Barrera, R. G.

L. W. Mochán and R. G. Barrera, “Electromagnetic response of systems with spatial fluctuations. I. general formalism,” Phys. Rev. B32, 32–36 (1985).

Bergman, D. J.

D. J. Bergman and D. Stroud, “Physical properties of macroscopically inhomogeneous media,” Solid State Phys.46, 147–269 (1992).
[CrossRef]

Birnboim, M. H.

Bozhevolnyi, S. I.

A. B. Evlyukhin and S. I. Bozhevolnyi, “Point-dipole approximation for surface plasmon polariton scattering: Implications and limitations,” Phys. Rev. B71(13), 134304 (2005).
[CrossRef]

Brown, L. V.

R. Huschka, J. Zuloaga, M. W. Knight, L. V. Brown, P. Nordlander, and N. J. Halas, “Light-induced release of DNA from gold nanoparticles: nanoshells and nanorods,” J. Am. Chem. Soc.133(31), 12247–12255 (2011).
[CrossRef] [PubMed]

Bruggeman, D. A. G.

D. A. G. Bruggeman, “Berechnung verschiedener physikalischer konstanten von heterogenen substanzen,” Ann. Phys.416(7), 636–664 (1935).
[CrossRef]

Chettiar, U. K.

Christy, R. W.

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B6(12), 4370–4379 (1972).
[CrossRef]

Engheta, N.

M. Silveirinha and N. Engheta, “Effective medium approach to electron waves: graphene superlattices,” Phys. Rev. B85(19), 195413 (2012).
[CrossRef]

U. K. Chettiar, R. F. Garcia, S. A. Maier, and N. Engheta, “Enhancement of radiation from dielectric waveguides using resonant plasmonic coreshells,” Opt. Express20(14), 16104–16112 (2012).
[CrossRef] [PubMed]

A. Alù and N. Engheta, “Multifrequency optical invisibility cloak with layered plasmonic shells,” Phys. Rev. Lett.100(11), 113901 (2008).
[CrossRef] [PubMed]

A. Alù and N. Engheta, “Plasmonic and metamaterial cloaking: physical mechanisms and potentials,” J. Opt. A10(9), 093002 (2008).
[CrossRef]

A. Alù and N. Engheta, “Achieving transparency with plasmonic and metamaterial coatings,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.72(1), 016623 (2005).
[CrossRef] [PubMed]

Evlyukhin, A. B.

A. B. Evlyukhin and S. I. Bozhevolnyi, “Point-dipole approximation for surface plasmon polariton scattering: Implications and limitations,” Phys. Rev. B71(13), 134304 (2005).
[CrossRef]

Fietz, C.

C. Fietz and G. Shvets, “Current-driven metamaterial homogenization,” Physica B405(14), 2930–2934 (2010).
[CrossRef]

Garcia, R. F.

Halas, N.

N. Halas, “Playing with plasmons: tuning the optical resonant properties of metallic nanoshells,” MRS Bull.30(05), 362–367 (2005).
[CrossRef]

Halas, N. J.

R. Bardhan, S. Lal, A. Joshi, and N. J. Halas, “Theranostic nanoshells: from probe design to imaging and treatment of cancer,” Acc. Chem. Res.44(10), 936–946 (2011).
[CrossRef] [PubMed]

R. Huschka, J. Zuloaga, M. W. Knight, L. V. Brown, P. Nordlander, and N. J. Halas, “Light-induced release of DNA from gold nanoparticles: nanoshells and nanorods,” J. Am. Chem. Soc.133(31), 12247–12255 (2011).
[CrossRef] [PubMed]

R. Lombardini, R. Acevedo, N. J. Halas, and B. R. Johnson, “Plasmonic enhancement of Raman optical activity in molecules near metal nanoshells: theoretical comparison of circular polarization methods,” J. Phys. Chem. C114(16), 7390–7400 (2010).
[CrossRef]

J. B. Jackson, S. L. Westcott, L. R. Hirsch, J. L. West, and N. J. Halas, “Controlling the surface enhanced Raman effect via the nanoshell geometry,” Appl. Phys. Lett.82(2), 257–259 (2003).
[CrossRef]

S. J. Oldenburg, R. D. Averitt, S. L. Westcott, and N. J. Halas, “Nanoengineering of optical resonances,” Chem. Phys. Lett.288(2-4), 243–247 (1998).
[CrossRef]

Hirsch, L. R.

J. B. Jackson, S. L. Westcott, L. R. Hirsch, J. L. West, and N. J. Halas, “Controlling the surface enhanced Raman effect via the nanoshell geometry,” Appl. Phys. Lett.82(2), 257–259 (2003).
[CrossRef]

Huschka, R.

R. Huschka, J. Zuloaga, M. W. Knight, L. V. Brown, P. Nordlander, and N. J. Halas, “Light-induced release of DNA from gold nanoparticles: nanoshells and nanorods,” J. Am. Chem. Soc.133(31), 12247–12255 (2011).
[CrossRef] [PubMed]

Jackson, J. B.

J. B. Jackson, S. L. Westcott, L. R. Hirsch, J. L. West, and N. J. Halas, “Controlling the surface enhanced Raman effect via the nanoshell geometry,” Appl. Phys. Lett.82(2), 257–259 (2003).
[CrossRef]

Johnson, B. R.

R. Lombardini, R. Acevedo, N. J. Halas, and B. R. Johnson, “Plasmonic enhancement of Raman optical activity in molecules near metal nanoshells: theoretical comparison of circular polarization methods,” J. Phys. Chem. C114(16), 7390–7400 (2010).
[CrossRef]

Johnson, P. B.

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B6(12), 4370–4379 (1972).
[CrossRef]

Joshi, A.

R. Bardhan, S. Lal, A. Joshi, and N. J. Halas, “Theranostic nanoshells: from probe design to imaging and treatment of cancer,” Acc. Chem. Res.44(10), 936–946 (2011).
[CrossRef] [PubMed]

Kerker, M.

A. L. Aden and M. Kerker, “Scattering of electromagnetic waves from two concentric spheres,” J. Appl. Phys.22(10), 1242–1246 (1951).
[CrossRef]

Knight, M. W.

R. Huschka, J. Zuloaga, M. W. Knight, L. V. Brown, P. Nordlander, and N. J. Halas, “Light-induced release of DNA from gold nanoparticles: nanoshells and nanorods,” J. Am. Chem. Soc.133(31), 12247–12255 (2011).
[CrossRef] [PubMed]

Lal, S.

R. Bardhan, S. Lal, A. Joshi, and N. J. Halas, “Theranostic nanoshells: from probe design to imaging and treatment of cancer,” Acc. Chem. Res.44(10), 936–946 (2011).
[CrossRef] [PubMed]

Lombardini, R.

R. Lombardini, R. Acevedo, N. J. Halas, and B. R. Johnson, “Plasmonic enhancement of Raman optical activity in molecules near metal nanoshells: theoretical comparison of circular polarization methods,” J. Phys. Chem. C114(16), 7390–7400 (2010).
[CrossRef]

Maier, S. A.

Martínez-Zérega, B. E.

G. P. Ortiz, B. E. Martínez-Zérega, B. S. Mendoza, and L. W. Mochán, “Effective optical response of metamaterials,” Phys. Rev. B79(24), 245132 (2009).
[CrossRef]

Mendoza, B. S.

G. P. Ortiz, B. E. Martínez-Zérega, B. S. Mendoza, and L. W. Mochán, “Effective optical response of metamaterials,” Phys. Rev. B79(24), 245132 (2009).
[CrossRef]

Mie, G.

G. Mie, “Beitrage zur optik trüber medien, speziell kolloidaler metallösungen,” Ann. Phys.330(3), 377–445 (1908).
[CrossRef]

Mochán, L. W.

G. P. Ortiz, B. E. Martínez-Zérega, B. S. Mendoza, and L. W. Mochán, “Effective optical response of metamaterials,” Phys. Rev. B79(24), 245132 (2009).
[CrossRef]

L. W. Mochán and R. G. Barrera, “Electromagnetic response of systems with spatial fluctuations. I. general formalism,” Phys. Rev. B32, 32–36 (1985).

Neeves, A. E.

Neuhauser, D.

R. Baer, D. Neuhauser, and S. Weiss, “Enhanced absorption induced by a metallic nanoshell,” Nano Lett.4(1), 85–88 (2004).
[CrossRef]

Nordlander, P.

R. Huschka, J. Zuloaga, M. W. Knight, L. V. Brown, P. Nordlander, and N. J. Halas, “Light-induced release of DNA from gold nanoparticles: nanoshells and nanorods,” J. Am. Chem. Soc.133(31), 12247–12255 (2011).
[CrossRef] [PubMed]

Oldenburg, S. J.

S. J. Oldenburg, R. D. Averitt, S. L. Westcott, and N. J. Halas, “Nanoengineering of optical resonances,” Chem. Phys. Lett.288(2-4), 243–247 (1998).
[CrossRef]

Ortiz, G. P.

G. P. Ortiz, B. E. Martínez-Zérega, B. S. Mendoza, and L. W. Mochán, “Effective optical response of metamaterials,” Phys. Rev. B79(24), 245132 (2009).
[CrossRef]

Pendry, J. B.

Shalaev, V. M.

V. M. Shalaev, “Electromagnetic properties of small-particle composites,” Phys. Rep.272(2-3), 61–137 (1996).
[CrossRef]

Shvets, G.

C. Fietz and G. Shvets, “Current-driven metamaterial homogenization,” Physica B405(14), 2930–2934 (2010).
[CrossRef]

Silveirinha, M.

M. Silveirinha and N. Engheta, “Effective medium approach to electron waves: graphene superlattices,” Phys. Rev. B85(19), 195413 (2012).
[CrossRef]

Simovski, C. R.

C. R. Simovski and S. A. Tretyakov, “Local constitutive parameters of metamaterials from an effective-medium perspective,” Phys. Rev. B75(19), 195111 (2007).
[CrossRef]

Smith, D. R.

Stroud, D.

D. J. Bergman and D. Stroud, “Physical properties of macroscopically inhomogeneous media,” Solid State Phys.46, 147–269 (1992).
[CrossRef]

Tretyakov, S. A.

C. R. Simovski and S. A. Tretyakov, “Local constitutive parameters of metamaterials from an effective-medium perspective,” Phys. Rev. B75(19), 195111 (2007).
[CrossRef]

Weiss, S.

R. Baer, D. Neuhauser, and S. Weiss, “Enhanced absorption induced by a metallic nanoshell,” Nano Lett.4(1), 85–88 (2004).
[CrossRef]

West, J. L.

J. B. Jackson, S. L. Westcott, L. R. Hirsch, J. L. West, and N. J. Halas, “Controlling the surface enhanced Raman effect via the nanoshell geometry,” Appl. Phys. Lett.82(2), 257–259 (2003).
[CrossRef]

Westcott, S. L.

J. B. Jackson, S. L. Westcott, L. R. Hirsch, J. L. West, and N. J. Halas, “Controlling the surface enhanced Raman effect via the nanoshell geometry,” Appl. Phys. Lett.82(2), 257–259 (2003).
[CrossRef]

S. J. Oldenburg, R. D. Averitt, S. L. Westcott, and N. J. Halas, “Nanoengineering of optical resonances,” Chem. Phys. Lett.288(2-4), 243–247 (1998).
[CrossRef]

Zuloaga, J.

R. Huschka, J. Zuloaga, M. W. Knight, L. V. Brown, P. Nordlander, and N. J. Halas, “Light-induced release of DNA from gold nanoparticles: nanoshells and nanorods,” J. Am. Chem. Soc.133(31), 12247–12255 (2011).
[CrossRef] [PubMed]

Acc. Chem. Res.

R. Bardhan, S. Lal, A. Joshi, and N. J. Halas, “Theranostic nanoshells: from probe design to imaging and treatment of cancer,” Acc. Chem. Res.44(10), 936–946 (2011).
[CrossRef] [PubMed]

Ann. Phys.

G. Mie, “Beitrage zur optik trüber medien, speziell kolloidaler metallösungen,” Ann. Phys.330(3), 377–445 (1908).
[CrossRef]

D. A. G. Bruggeman, “Berechnung verschiedener physikalischer konstanten von heterogenen substanzen,” Ann. Phys.416(7), 636–664 (1935).
[CrossRef]

Appl. Phys. Lett.

J. B. Jackson, S. L. Westcott, L. R. Hirsch, J. L. West, and N. J. Halas, “Controlling the surface enhanced Raman effect via the nanoshell geometry,” Appl. Phys. Lett.82(2), 257–259 (2003).
[CrossRef]

Chem. Phys. Lett.

S. J. Oldenburg, R. D. Averitt, S. L. Westcott, and N. J. Halas, “Nanoengineering of optical resonances,” Chem. Phys. Lett.288(2-4), 243–247 (1998).
[CrossRef]

J. Am. Chem. Soc.

R. Huschka, J. Zuloaga, M. W. Knight, L. V. Brown, P. Nordlander, and N. J. Halas, “Light-induced release of DNA from gold nanoparticles: nanoshells and nanorods,” J. Am. Chem. Soc.133(31), 12247–12255 (2011).
[CrossRef] [PubMed]

J. Appl. Phys.

A. L. Aden and M. Kerker, “Scattering of electromagnetic waves from two concentric spheres,” J. Appl. Phys.22(10), 1242–1246 (1951).
[CrossRef]

J. Opt. A

A. Alù and N. Engheta, “Plasmonic and metamaterial cloaking: physical mechanisms and potentials,” J. Opt. A10(9), 093002 (2008).
[CrossRef]

J. Opt. Soc. Am. B

J. Phys. Chem. C

R. Lombardini, R. Acevedo, N. J. Halas, and B. R. Johnson, “Plasmonic enhancement of Raman optical activity in molecules near metal nanoshells: theoretical comparison of circular polarization methods,” J. Phys. Chem. C114(16), 7390–7400 (2010).
[CrossRef]

MRS Bull.

N. Halas, “Playing with plasmons: tuning the optical resonant properties of metallic nanoshells,” MRS Bull.30(05), 362–367 (2005).
[CrossRef]

Nano Lett.

R. Baer, D. Neuhauser, and S. Weiss, “Enhanced absorption induced by a metallic nanoshell,” Nano Lett.4(1), 85–88 (2004).
[CrossRef]

Opt. Express

Phys. Rep.

V. M. Shalaev, “Electromagnetic properties of small-particle composites,” Phys. Rep.272(2-3), 61–137 (1996).
[CrossRef]

Phys. Rev. B

L. W. Mochán and R. G. Barrera, “Electromagnetic response of systems with spatial fluctuations. I. general formalism,” Phys. Rev. B32, 32–36 (1985).

A. Alù, “First-principles homogenization theory for periodic metamaterials,” Phys. Rev. B84(7), 075153 (2011).
[CrossRef]

C. R. Simovski and S. A. Tretyakov, “Local constitutive parameters of metamaterials from an effective-medium perspective,” Phys. Rev. B75(19), 195111 (2007).
[CrossRef]

G. P. Ortiz, B. E. Martínez-Zérega, B. S. Mendoza, and L. W. Mochán, “Effective optical response of metamaterials,” Phys. Rev. B79(24), 245132 (2009).
[CrossRef]

M. Silveirinha and N. Engheta, “Effective medium approach to electron waves: graphene superlattices,” Phys. Rev. B85(19), 195413 (2012).
[CrossRef]

A. B. Evlyukhin and S. I. Bozhevolnyi, “Point-dipole approximation for surface plasmon polariton scattering: Implications and limitations,” Phys. Rev. B71(13), 134304 (2005).
[CrossRef]

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B6(12), 4370–4379 (1972).
[CrossRef]

Phys. Rev. E Stat. Nonlin. Soft Matter Phys.

A. Alù and N. Engheta, “Achieving transparency with plasmonic and metamaterial coatings,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.72(1), 016623 (2005).
[CrossRef] [PubMed]

Phys. Rev. Lett.

A. Alù and N. Engheta, “Multifrequency optical invisibility cloak with layered plasmonic shells,” Phys. Rev. Lett.100(11), 113901 (2008).
[CrossRef] [PubMed]

Physica B

C. Fietz and G. Shvets, “Current-driven metamaterial homogenization,” Physica B405(14), 2930–2934 (2010).
[CrossRef]

Solid State Phys.

D. J. Bergman and D. Stroud, “Physical properties of macroscopically inhomogeneous media,” Solid State Phys.46, 147–269 (1992).
[CrossRef]

Other

M. G. Silveirinha, “Nonlocal homogenization theory of structured materials,” in Theory and Phenomena of Metamaterials, F. Capolino ed. (CRC Press, 2009).

V. M. Shalaev, Nonlinear Optics of Random Media: Fractal Composites and Metal-dielectric Films (Springer, 2000).

A. H. Sihvola, Electromagnetic Mixing Formulas and Applications (Institution of Electrical Engineers, 2008).

R. C. Aster, C. H. Thurber, and B. Borchers, Parameter Estimation and Inverse Problems (Elsevier Academic Press, 2005).

J. A. Snyman, Practical Mathematical Optimization (Springer, 2005).

C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles, 2nd ed. (Wiley-VCH, 2008).

G. W. Milton, The Theory of Composites (Cambridge University Press, 2004).

U. Kreibig and M. Vollmer, Optical Properties of Metal Clusters (Springer, 2011).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Internal homogenization compared to external homogenization.

Fig. 2
Fig. 2

Schematic of the core-shell internal homogenization problem.

Fig. 3
Fig. 3

Effective plasma frequency (a) and effective ε (b) of the core-shell as a function of the radius. (c) Comparing of the exact effective permittivity with the Drude approximation for a silver coated silica sphere with b/a = 0.9.

Fig. 4
Fig. 4

Oscillator strength (a), resonance frequency (b) and effective ε (c) of the core-shell as a function of the radius ratio. (d) Comparing of the exact effective permittivity with the Lorentz approximation for a silica coated silver sphere with b/a = 0.9.

Fig. 5
Fig. 5

Effective plasma frequency (a), effective ε (b) and collision frequency (c) of the core-shell as a function of the radius ratio. (d) Comparison of the exact effective permittivity with the Drude approximation when b/a = 0.6.

Fig. 6
Fig. 6

(a) Extinction efficiency for a two layered core shell particle for various radius ratios. (b) Extinction efficiency for a solid sphere with different values of Γ. Dotted line shows the extinction efficiency of the core shell particle with b/a = 0.7.

Equations (16)

Equations on this page are rendered with MathJax. Learn more.

α 1 =4π ε 0 ( ε e ε 0 ε e +2 ε 0 ) a 3 α 2 =4π ε 0 ( a 3 ( ε c +2 ε s )( ε s ε 0 )+ b 3 ( ε c ε s )( 2 ε s + ε 0 ) ) 2 b 3 ( ε c ε s )( ε s ε 0 )+ a 3 ( ε c +2 ε s )( ε s +2 ε 0 ) a 3
ε e = ε s a 3 ( ε c +2 ε s )+2 b 3 ( ε c ε s ) a 3 ( ε c +2 ε s ) b 3 ( ε c ε s )
ε e = ε a 3 ( ε c +2 ε )+2 b 3 ( ε c ε ) a 3 ( ε c +2 ε ) b 3 ( ε c ε ) 2 ω p 2 ( a 3 b 3 ) ( 2 a 3 + b 3 )ω( ω+iΓ )
ε ,e = ε a 3 ( ε c +2 ε )+2 b 3 ( ε c ε ) a 3 ( ε c +2 ε ) b 3 ( ε c ε ) ω p,e = ω p 2( a 3 b 3 ) ( 2 a 3 + b 3 ) Γ e =Γ
ε c = ε ω p 2 ω( ω+iΓ )
ε e = ε ,e + f e ω n,e 2 ω n,e 2 ω( ω+i Γ e )
ε ,e = ε s a 3 ( 2 ε s + ε )+2 b 3 ( ε ε s ) a 3 ( 2 ε s + ε ) b 3 ( ε ε s ) f e = 9 a 3 b 3 ε s 2 ( a 3 b 3 )[ a 3 ( 2 ε s + ε ) b 3 ( ε ε s ) ] ω n,e = ω p ( a 3 b 3 ) a 3 ( 2 ε s + ε ) b 3 ( ε ε s ) Γ e =Γ
ε c = ε ,c ω p,c 2 ω( ω+i Γ c ) ε s = ε ,s ω p,s 2 ω( ω+i Γ s )
ε e = ε ,e ω p,e 2 ω( ω+i Γ e ) ε ,e = ε ,s a 3 ( ε ,c +2 ε ,s )+2 b 3 ( ε ,c ε ,s ) a 3 ( ε ,c +2 ε ,s ) b 3 ( ε ,c ε ,s ) ω p,e = ω p,s a 3 ( ω p,c 2 +2 ω p,s 2 )+2 b 3 ( ω p,c 2 ω p,s 2 ) a 3 ( ω p,c 2 +2 ω p,s 2 ) b 3 ( ω p,c 2 ω p,s 2 ) Γ e = Γ s ω p,e 2 ω p,s 2 ( a 3 ( ω p,c 2 Γ s +2 ω p,s 2 Γ c ) b 3 ( ω p,c 2 Γ s ω p,s 2 Γ c ) a 3 ( ω p,c 2 Γ s +2 ω p,s 2 Γ c )+2 b 3 ( ω p,c 2 Γ s ω p,s 2 Γ c ) )
ε 1,2 = ε 2 r 2 3 ( ε 1 +2 ε 2 )+2 r 1 3 ( ε 1 ε 2 ) r 2 3 ( ε 1 +2 ε 2 ) r 1 3 ( ε 1 ε 2 )
ε e = ε 3 r 3 3 ( ε 1,2 +2 ε 3 )+2 r 2 3 ( ε 1,2 ε 3 ) r 3 3 ( ε 1,2 +2 ε 3 ) r 2 3 ( ε 1,2 ε 3 )
α ¯ ¯ E ¯ 0 = V ( ε ¯ ¯ ε 0 I ¯ ¯ ) E ¯ dV
α ¯ ¯ = V ( ε ¯ ¯ ε 0 I ¯ ¯ ) E ¯ ¯ dV
α e ¯ ¯ = V ( ε e ¯ ¯ ε 0 I ¯ ¯ ) E e ¯ ¯ dV
CF( ε e ¯ ¯ ) α ¯ ¯ α e ¯ ¯ 2 = V [ ( ε ¯ ¯ ε 0 I ¯ ¯ ) E ¯ ¯ ( ε e ¯ ¯ ε 0 I ¯ ¯ ) E e ¯ ¯ ]dV 2
( ε ¯ ¯ ϕ )=0

Metrics