Abstract

Effects and mechanisms of conductivity variation of chemically vapor deposited single-layer graphene covering silver nanoparticles on SiO2/Si are reported based on blue-light (405nm) induced plasmonic coupling and electrical current induced annealing and desorption of surface adsorbates. With 1V applied voltage, photoconductivity is positive except a brief negative period when the graphene is first illuminated by light. At 10mV applied voltage, negative photoconductivity persists for hours. In comparison, negative photoconductivity of graphene on pristine SiO2/Si persists for tens of hours. When the applied voltage is increased to 1V, it takes tens of hours of light illumination to change to positive photoconductivity.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V. Grigorieva, S. V. Dubonos, and A. A. Firsov, “Two-dimensional gas of massless dirac fermions in graphene,” Nature 438(7065), 197–200 (2005).
    [CrossRef] [PubMed]
  2. H. P. Boehm, A. Clauss, G. O. Fischer, and U. Hofmann, “The adsorption behavior of very thin carbon films,” Z. Anorg. Allg. Chem. 316, 119–127 (1962).
    [CrossRef]
  3. K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbon films,” Science 306(5696), 666–669 (2004).
    [CrossRef] [PubMed]
  4. A. K. Geim and K. S. Novoselov, “The rise of graphene,” Nat. Mater. 6(3), 183–191 (2007).
    [CrossRef] [PubMed]
  5. F. Bonaccorso, Z. Sun, T. Hasan, and A. C. Ferrari, “Graphene photonics and optoelectronics,” Nat. Photonics 4(9), 611–622 (2010).
    [CrossRef]
  6. A. H. Castro Neto, F. Guinea, N. M. R. Peres, K. S. Novoselov, and A. K. Geim, “The electronic properties of graphene,” Rev. Mod. Phys. 81(1), 109–162 (2009).
    [CrossRef]
  7. C. Biswas, F. Güneş, D. L. Duong, S. C. Lim, M. S. Jeong, D. Pribat, and Y. H. Lee, “Negative and positive persistent photoconductance in graphene,” Nano Lett. 11(11), 4682–4687 (2011).
    [CrossRef] [PubMed]
  8. F. Schedin, A. K. Geim, S. V. Morozov, E. W. Hill, P. Blake, M. I. Katsnelson, and K. S. Novoselov, “Detection of individual gas molecules adsorbed on graphene,” Nat. Mater. 6(9), 652–655 (2007).
    [CrossRef] [PubMed]
  9. O. Leenaerts, B. Partoens, and F. M. Peeters, “Adsorption of H2O, NH3, CO, NO2, and NO on graphene: a first-principles study,” Phys. Rev. B 77(12), 125416 (2008).
    [CrossRef]
  10. J. C. Meyer, C. O. Girit, M. F. Crommie, and A. Zettl, “Imaging and dynamics of light atoms and molecules on graphene,” Nature 454(7202), 319–322 (2008).
    [CrossRef] [PubMed]
  11. A. C. Ferrari, J. C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K. S. Novoselov, S. Roth, and A. K. Geim, “Raman spectrum of graphene and graphene layers,” Phys. Rev. Lett. 97(18), 187401 (2006).
    [CrossRef] [PubMed]
  12. W. Chen, C.-H. Tu, K.-C. Liang, C.-Y. Liu, C.-P. Liu, and Y. Tzeng, “Low-stress transfer of graphene and it tunable resistance by remote plasma treatments in hydrogen,” in Proceedings of IEEE Nanotechnology Conference, (Portland, OR, 2011), pp. 15–18.
  13. C. Y. Liu, K. C. Liang, W. L. Chen, C. H. Tu, C. P. Liu, and Y. Tzeng, “Plasmonic coupling of silver nanoparticles covered by hydrogen-terminated graphene for surface-enhanced raman spectroscopy,” Opt. Express 19(18), 17092–17098 (2011).
    [CrossRef] [PubMed]
  14. C. H. Huang, H. Y. Lin, Y. H. Tzeng, C. H. Fan, C. Y. Liu, C. Y. Li, C. W. Huang, and H. C. Chui, “Tunable photoconductivity of porous anodic aluminum oxide with silver nanoparticles,” Electrochem. Solid-State Lett. 15(3), J14–J17 (2012).
    [CrossRef]
  15. X. R. Wang, X. L. Li, L. Zhang, Y. Yoon, P. K. Weber, H. L. Wang, J. Guo, and H. J. Dai, “N-doping of graphene through electrothermal reactions with ammonia,” Science 324(5928), 768–771 (2009).
    [CrossRef] [PubMed]
  16. C. H. Huang, H. Y. Lin, B. C. Lau, C. Y. Liu, H. C. Chui, and Y. Tzeng, “Plasmon-induced optical switching of electrical conductivity in porous anodic aluminum oxide films encapsulated with silver nanoparticle arrays,” Opt. Express 18(26), 27891–27899 (2010).
    [CrossRef] [PubMed]
  17. C. H. Huang, H. Y. Lin, Y. Tzeng, C. H. Fan, C. Y. Liu, C. Y. Li, C. W. Huang, N. K. Chen, and H. C. Chui, “Optical characteristics of pore size on porous anodic aluminium oxide films with embedded silver nanoparticles,” Sens. Actuator, A 180, 49–54 (2012).
    [CrossRef]
  18. B. C. Lau, C. Y. Liu, H. Y. Lin, C. H. Huang, H. C. Chui, and Y. Tzeng, “Electrochemical fabrication of anodic aluminum oxide films with encapsulated silver nanoparticles as plasmonic photoconductors,” Electrochem. Solid-State Lett. 14(5), E15–E17 (2011).
    [CrossRef]

2012 (2)

C. H. Huang, H. Y. Lin, Y. H. Tzeng, C. H. Fan, C. Y. Liu, C. Y. Li, C. W. Huang, and H. C. Chui, “Tunable photoconductivity of porous anodic aluminum oxide with silver nanoparticles,” Electrochem. Solid-State Lett. 15(3), J14–J17 (2012).
[CrossRef]

C. H. Huang, H. Y. Lin, Y. Tzeng, C. H. Fan, C. Y. Liu, C. Y. Li, C. W. Huang, N. K. Chen, and H. C. Chui, “Optical characteristics of pore size on porous anodic aluminium oxide films with embedded silver nanoparticles,” Sens. Actuator, A 180, 49–54 (2012).
[CrossRef]

2011 (3)

B. C. Lau, C. Y. Liu, H. Y. Lin, C. H. Huang, H. C. Chui, and Y. Tzeng, “Electrochemical fabrication of anodic aluminum oxide films with encapsulated silver nanoparticles as plasmonic photoconductors,” Electrochem. Solid-State Lett. 14(5), E15–E17 (2011).
[CrossRef]

C. Y. Liu, K. C. Liang, W. L. Chen, C. H. Tu, C. P. Liu, and Y. Tzeng, “Plasmonic coupling of silver nanoparticles covered by hydrogen-terminated graphene for surface-enhanced raman spectroscopy,” Opt. Express 19(18), 17092–17098 (2011).
[CrossRef] [PubMed]

C. Biswas, F. Güneş, D. L. Duong, S. C. Lim, M. S. Jeong, D. Pribat, and Y. H. Lee, “Negative and positive persistent photoconductance in graphene,” Nano Lett. 11(11), 4682–4687 (2011).
[CrossRef] [PubMed]

2010 (2)

2009 (2)

X. R. Wang, X. L. Li, L. Zhang, Y. Yoon, P. K. Weber, H. L. Wang, J. Guo, and H. J. Dai, “N-doping of graphene through electrothermal reactions with ammonia,” Science 324(5928), 768–771 (2009).
[CrossRef] [PubMed]

A. H. Castro Neto, F. Guinea, N. M. R. Peres, K. S. Novoselov, and A. K. Geim, “The electronic properties of graphene,” Rev. Mod. Phys. 81(1), 109–162 (2009).
[CrossRef]

2008 (2)

O. Leenaerts, B. Partoens, and F. M. Peeters, “Adsorption of H2O, NH3, CO, NO2, and NO on graphene: a first-principles study,” Phys. Rev. B 77(12), 125416 (2008).
[CrossRef]

J. C. Meyer, C. O. Girit, M. F. Crommie, and A. Zettl, “Imaging and dynamics of light atoms and molecules on graphene,” Nature 454(7202), 319–322 (2008).
[CrossRef] [PubMed]

2007 (2)

F. Schedin, A. K. Geim, S. V. Morozov, E. W. Hill, P. Blake, M. I. Katsnelson, and K. S. Novoselov, “Detection of individual gas molecules adsorbed on graphene,” Nat. Mater. 6(9), 652–655 (2007).
[CrossRef] [PubMed]

A. K. Geim and K. S. Novoselov, “The rise of graphene,” Nat. Mater. 6(3), 183–191 (2007).
[CrossRef] [PubMed]

2006 (1)

A. C. Ferrari, J. C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K. S. Novoselov, S. Roth, and A. K. Geim, “Raman spectrum of graphene and graphene layers,” Phys. Rev. Lett. 97(18), 187401 (2006).
[CrossRef] [PubMed]

2005 (1)

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V. Grigorieva, S. V. Dubonos, and A. A. Firsov, “Two-dimensional gas of massless dirac fermions in graphene,” Nature 438(7065), 197–200 (2005).
[CrossRef] [PubMed]

2004 (1)

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbon films,” Science 306(5696), 666–669 (2004).
[CrossRef] [PubMed]

1962 (1)

H. P. Boehm, A. Clauss, G. O. Fischer, and U. Hofmann, “The adsorption behavior of very thin carbon films,” Z. Anorg. Allg. Chem. 316, 119–127 (1962).
[CrossRef]

Biswas, C.

C. Biswas, F. Güneş, D. L. Duong, S. C. Lim, M. S. Jeong, D. Pribat, and Y. H. Lee, “Negative and positive persistent photoconductance in graphene,” Nano Lett. 11(11), 4682–4687 (2011).
[CrossRef] [PubMed]

Blake, P.

F. Schedin, A. K. Geim, S. V. Morozov, E. W. Hill, P. Blake, M. I. Katsnelson, and K. S. Novoselov, “Detection of individual gas molecules adsorbed on graphene,” Nat. Mater. 6(9), 652–655 (2007).
[CrossRef] [PubMed]

Boehm, H. P.

H. P. Boehm, A. Clauss, G. O. Fischer, and U. Hofmann, “The adsorption behavior of very thin carbon films,” Z. Anorg. Allg. Chem. 316, 119–127 (1962).
[CrossRef]

Bonaccorso, F.

F. Bonaccorso, Z. Sun, T. Hasan, and A. C. Ferrari, “Graphene photonics and optoelectronics,” Nat. Photonics 4(9), 611–622 (2010).
[CrossRef]

Casiraghi, C.

A. C. Ferrari, J. C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K. S. Novoselov, S. Roth, and A. K. Geim, “Raman spectrum of graphene and graphene layers,” Phys. Rev. Lett. 97(18), 187401 (2006).
[CrossRef] [PubMed]

Castro Neto, A. H.

A. H. Castro Neto, F. Guinea, N. M. R. Peres, K. S. Novoselov, and A. K. Geim, “The electronic properties of graphene,” Rev. Mod. Phys. 81(1), 109–162 (2009).
[CrossRef]

Chen, N. K.

C. H. Huang, H. Y. Lin, Y. Tzeng, C. H. Fan, C. Y. Liu, C. Y. Li, C. W. Huang, N. K. Chen, and H. C. Chui, “Optical characteristics of pore size on porous anodic aluminium oxide films with embedded silver nanoparticles,” Sens. Actuator, A 180, 49–54 (2012).
[CrossRef]

Chen, W. L.

Chui, H. C.

C. H. Huang, H. Y. Lin, Y. H. Tzeng, C. H. Fan, C. Y. Liu, C. Y. Li, C. W. Huang, and H. C. Chui, “Tunable photoconductivity of porous anodic aluminum oxide with silver nanoparticles,” Electrochem. Solid-State Lett. 15(3), J14–J17 (2012).
[CrossRef]

C. H. Huang, H. Y. Lin, Y. Tzeng, C. H. Fan, C. Y. Liu, C. Y. Li, C. W. Huang, N. K. Chen, and H. C. Chui, “Optical characteristics of pore size on porous anodic aluminium oxide films with embedded silver nanoparticles,” Sens. Actuator, A 180, 49–54 (2012).
[CrossRef]

B. C. Lau, C. Y. Liu, H. Y. Lin, C. H. Huang, H. C. Chui, and Y. Tzeng, “Electrochemical fabrication of anodic aluminum oxide films with encapsulated silver nanoparticles as plasmonic photoconductors,” Electrochem. Solid-State Lett. 14(5), E15–E17 (2011).
[CrossRef]

C. H. Huang, H. Y. Lin, B. C. Lau, C. Y. Liu, H. C. Chui, and Y. Tzeng, “Plasmon-induced optical switching of electrical conductivity in porous anodic aluminum oxide films encapsulated with silver nanoparticle arrays,” Opt. Express 18(26), 27891–27899 (2010).
[CrossRef] [PubMed]

Clauss, A.

H. P. Boehm, A. Clauss, G. O. Fischer, and U. Hofmann, “The adsorption behavior of very thin carbon films,” Z. Anorg. Allg. Chem. 316, 119–127 (1962).
[CrossRef]

Crommie, M. F.

J. C. Meyer, C. O. Girit, M. F. Crommie, and A. Zettl, “Imaging and dynamics of light atoms and molecules on graphene,” Nature 454(7202), 319–322 (2008).
[CrossRef] [PubMed]

Dai, H. J.

X. R. Wang, X. L. Li, L. Zhang, Y. Yoon, P. K. Weber, H. L. Wang, J. Guo, and H. J. Dai, “N-doping of graphene through electrothermal reactions with ammonia,” Science 324(5928), 768–771 (2009).
[CrossRef] [PubMed]

Dubonos, S. V.

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V. Grigorieva, S. V. Dubonos, and A. A. Firsov, “Two-dimensional gas of massless dirac fermions in graphene,” Nature 438(7065), 197–200 (2005).
[CrossRef] [PubMed]

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbon films,” Science 306(5696), 666–669 (2004).
[CrossRef] [PubMed]

Duong, D. L.

C. Biswas, F. Güneş, D. L. Duong, S. C. Lim, M. S. Jeong, D. Pribat, and Y. H. Lee, “Negative and positive persistent photoconductance in graphene,” Nano Lett. 11(11), 4682–4687 (2011).
[CrossRef] [PubMed]

Fan, C. H.

C. H. Huang, H. Y. Lin, Y. H. Tzeng, C. H. Fan, C. Y. Liu, C. Y. Li, C. W. Huang, and H. C. Chui, “Tunable photoconductivity of porous anodic aluminum oxide with silver nanoparticles,” Electrochem. Solid-State Lett. 15(3), J14–J17 (2012).
[CrossRef]

C. H. Huang, H. Y. Lin, Y. Tzeng, C. H. Fan, C. Y. Liu, C. Y. Li, C. W. Huang, N. K. Chen, and H. C. Chui, “Optical characteristics of pore size on porous anodic aluminium oxide films with embedded silver nanoparticles,” Sens. Actuator, A 180, 49–54 (2012).
[CrossRef]

Ferrari, A. C.

F. Bonaccorso, Z. Sun, T. Hasan, and A. C. Ferrari, “Graphene photonics and optoelectronics,” Nat. Photonics 4(9), 611–622 (2010).
[CrossRef]

A. C. Ferrari, J. C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K. S. Novoselov, S. Roth, and A. K. Geim, “Raman spectrum of graphene and graphene layers,” Phys. Rev. Lett. 97(18), 187401 (2006).
[CrossRef] [PubMed]

Firsov, A. A.

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V. Grigorieva, S. V. Dubonos, and A. A. Firsov, “Two-dimensional gas of massless dirac fermions in graphene,” Nature 438(7065), 197–200 (2005).
[CrossRef] [PubMed]

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbon films,” Science 306(5696), 666–669 (2004).
[CrossRef] [PubMed]

Fischer, G. O.

H. P. Boehm, A. Clauss, G. O. Fischer, and U. Hofmann, “The adsorption behavior of very thin carbon films,” Z. Anorg. Allg. Chem. 316, 119–127 (1962).
[CrossRef]

Geim, A. K.

A. H. Castro Neto, F. Guinea, N. M. R. Peres, K. S. Novoselov, and A. K. Geim, “The electronic properties of graphene,” Rev. Mod. Phys. 81(1), 109–162 (2009).
[CrossRef]

F. Schedin, A. K. Geim, S. V. Morozov, E. W. Hill, P. Blake, M. I. Katsnelson, and K. S. Novoselov, “Detection of individual gas molecules adsorbed on graphene,” Nat. Mater. 6(9), 652–655 (2007).
[CrossRef] [PubMed]

A. K. Geim and K. S. Novoselov, “The rise of graphene,” Nat. Mater. 6(3), 183–191 (2007).
[CrossRef] [PubMed]

A. C. Ferrari, J. C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K. S. Novoselov, S. Roth, and A. K. Geim, “Raman spectrum of graphene and graphene layers,” Phys. Rev. Lett. 97(18), 187401 (2006).
[CrossRef] [PubMed]

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V. Grigorieva, S. V. Dubonos, and A. A. Firsov, “Two-dimensional gas of massless dirac fermions in graphene,” Nature 438(7065), 197–200 (2005).
[CrossRef] [PubMed]

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbon films,” Science 306(5696), 666–669 (2004).
[CrossRef] [PubMed]

Girit, C. O.

J. C. Meyer, C. O. Girit, M. F. Crommie, and A. Zettl, “Imaging and dynamics of light atoms and molecules on graphene,” Nature 454(7202), 319–322 (2008).
[CrossRef] [PubMed]

Grigorieva, I. V.

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V. Grigorieva, S. V. Dubonos, and A. A. Firsov, “Two-dimensional gas of massless dirac fermions in graphene,” Nature 438(7065), 197–200 (2005).
[CrossRef] [PubMed]

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbon films,” Science 306(5696), 666–669 (2004).
[CrossRef] [PubMed]

Guinea, F.

A. H. Castro Neto, F. Guinea, N. M. R. Peres, K. S. Novoselov, and A. K. Geim, “The electronic properties of graphene,” Rev. Mod. Phys. 81(1), 109–162 (2009).
[CrossRef]

Günes, F.

C. Biswas, F. Güneş, D. L. Duong, S. C. Lim, M. S. Jeong, D. Pribat, and Y. H. Lee, “Negative and positive persistent photoconductance in graphene,” Nano Lett. 11(11), 4682–4687 (2011).
[CrossRef] [PubMed]

Guo, J.

X. R. Wang, X. L. Li, L. Zhang, Y. Yoon, P. K. Weber, H. L. Wang, J. Guo, and H. J. Dai, “N-doping of graphene through electrothermal reactions with ammonia,” Science 324(5928), 768–771 (2009).
[CrossRef] [PubMed]

Hasan, T.

F. Bonaccorso, Z. Sun, T. Hasan, and A. C. Ferrari, “Graphene photonics and optoelectronics,” Nat. Photonics 4(9), 611–622 (2010).
[CrossRef]

Hill, E. W.

F. Schedin, A. K. Geim, S. V. Morozov, E. W. Hill, P. Blake, M. I. Katsnelson, and K. S. Novoselov, “Detection of individual gas molecules adsorbed on graphene,” Nat. Mater. 6(9), 652–655 (2007).
[CrossRef] [PubMed]

Hofmann, U.

H. P. Boehm, A. Clauss, G. O. Fischer, and U. Hofmann, “The adsorption behavior of very thin carbon films,” Z. Anorg. Allg. Chem. 316, 119–127 (1962).
[CrossRef]

Huang, C. H.

C. H. Huang, H. Y. Lin, Y. H. Tzeng, C. H. Fan, C. Y. Liu, C. Y. Li, C. W. Huang, and H. C. Chui, “Tunable photoconductivity of porous anodic aluminum oxide with silver nanoparticles,” Electrochem. Solid-State Lett. 15(3), J14–J17 (2012).
[CrossRef]

C. H. Huang, H. Y. Lin, Y. Tzeng, C. H. Fan, C. Y. Liu, C. Y. Li, C. W. Huang, N. K. Chen, and H. C. Chui, “Optical characteristics of pore size on porous anodic aluminium oxide films with embedded silver nanoparticles,” Sens. Actuator, A 180, 49–54 (2012).
[CrossRef]

B. C. Lau, C. Y. Liu, H. Y. Lin, C. H. Huang, H. C. Chui, and Y. Tzeng, “Electrochemical fabrication of anodic aluminum oxide films with encapsulated silver nanoparticles as plasmonic photoconductors,” Electrochem. Solid-State Lett. 14(5), E15–E17 (2011).
[CrossRef]

C. H. Huang, H. Y. Lin, B. C. Lau, C. Y. Liu, H. C. Chui, and Y. Tzeng, “Plasmon-induced optical switching of electrical conductivity in porous anodic aluminum oxide films encapsulated with silver nanoparticle arrays,” Opt. Express 18(26), 27891–27899 (2010).
[CrossRef] [PubMed]

Huang, C. W.

C. H. Huang, H. Y. Lin, Y. Tzeng, C. H. Fan, C. Y. Liu, C. Y. Li, C. W. Huang, N. K. Chen, and H. C. Chui, “Optical characteristics of pore size on porous anodic aluminium oxide films with embedded silver nanoparticles,” Sens. Actuator, A 180, 49–54 (2012).
[CrossRef]

C. H. Huang, H. Y. Lin, Y. H. Tzeng, C. H. Fan, C. Y. Liu, C. Y. Li, C. W. Huang, and H. C. Chui, “Tunable photoconductivity of porous anodic aluminum oxide with silver nanoparticles,” Electrochem. Solid-State Lett. 15(3), J14–J17 (2012).
[CrossRef]

Jeong, M. S.

C. Biswas, F. Güneş, D. L. Duong, S. C. Lim, M. S. Jeong, D. Pribat, and Y. H. Lee, “Negative and positive persistent photoconductance in graphene,” Nano Lett. 11(11), 4682–4687 (2011).
[CrossRef] [PubMed]

Jiang, D.

A. C. Ferrari, J. C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K. S. Novoselov, S. Roth, and A. K. Geim, “Raman spectrum of graphene and graphene layers,” Phys. Rev. Lett. 97(18), 187401 (2006).
[CrossRef] [PubMed]

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V. Grigorieva, S. V. Dubonos, and A. A. Firsov, “Two-dimensional gas of massless dirac fermions in graphene,” Nature 438(7065), 197–200 (2005).
[CrossRef] [PubMed]

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbon films,” Science 306(5696), 666–669 (2004).
[CrossRef] [PubMed]

Katsnelson, M. I.

F. Schedin, A. K. Geim, S. V. Morozov, E. W. Hill, P. Blake, M. I. Katsnelson, and K. S. Novoselov, “Detection of individual gas molecules adsorbed on graphene,” Nat. Mater. 6(9), 652–655 (2007).
[CrossRef] [PubMed]

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V. Grigorieva, S. V. Dubonos, and A. A. Firsov, “Two-dimensional gas of massless dirac fermions in graphene,” Nature 438(7065), 197–200 (2005).
[CrossRef] [PubMed]

Lau, B. C.

B. C. Lau, C. Y. Liu, H. Y. Lin, C. H. Huang, H. C. Chui, and Y. Tzeng, “Electrochemical fabrication of anodic aluminum oxide films with encapsulated silver nanoparticles as plasmonic photoconductors,” Electrochem. Solid-State Lett. 14(5), E15–E17 (2011).
[CrossRef]

C. H. Huang, H. Y. Lin, B. C. Lau, C. Y. Liu, H. C. Chui, and Y. Tzeng, “Plasmon-induced optical switching of electrical conductivity in porous anodic aluminum oxide films encapsulated with silver nanoparticle arrays,” Opt. Express 18(26), 27891–27899 (2010).
[CrossRef] [PubMed]

Lazzeri, M.

A. C. Ferrari, J. C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K. S. Novoselov, S. Roth, and A. K. Geim, “Raman spectrum of graphene and graphene layers,” Phys. Rev. Lett. 97(18), 187401 (2006).
[CrossRef] [PubMed]

Lee, Y. H.

C. Biswas, F. Güneş, D. L. Duong, S. C. Lim, M. S. Jeong, D. Pribat, and Y. H. Lee, “Negative and positive persistent photoconductance in graphene,” Nano Lett. 11(11), 4682–4687 (2011).
[CrossRef] [PubMed]

Leenaerts, O.

O. Leenaerts, B. Partoens, and F. M. Peeters, “Adsorption of H2O, NH3, CO, NO2, and NO on graphene: a first-principles study,” Phys. Rev. B 77(12), 125416 (2008).
[CrossRef]

Li, C. Y.

C. H. Huang, H. Y. Lin, Y. Tzeng, C. H. Fan, C. Y. Liu, C. Y. Li, C. W. Huang, N. K. Chen, and H. C. Chui, “Optical characteristics of pore size on porous anodic aluminium oxide films with embedded silver nanoparticles,” Sens. Actuator, A 180, 49–54 (2012).
[CrossRef]

C. H. Huang, H. Y. Lin, Y. H. Tzeng, C. H. Fan, C. Y. Liu, C. Y. Li, C. W. Huang, and H. C. Chui, “Tunable photoconductivity of porous anodic aluminum oxide with silver nanoparticles,” Electrochem. Solid-State Lett. 15(3), J14–J17 (2012).
[CrossRef]

Li, X. L.

X. R. Wang, X. L. Li, L. Zhang, Y. Yoon, P. K. Weber, H. L. Wang, J. Guo, and H. J. Dai, “N-doping of graphene through electrothermal reactions with ammonia,” Science 324(5928), 768–771 (2009).
[CrossRef] [PubMed]

Liang, K. C.

Lim, S. C.

C. Biswas, F. Güneş, D. L. Duong, S. C. Lim, M. S. Jeong, D. Pribat, and Y. H. Lee, “Negative and positive persistent photoconductance in graphene,” Nano Lett. 11(11), 4682–4687 (2011).
[CrossRef] [PubMed]

Lin, H. Y.

C. H. Huang, H. Y. Lin, Y. H. Tzeng, C. H. Fan, C. Y. Liu, C. Y. Li, C. W. Huang, and H. C. Chui, “Tunable photoconductivity of porous anodic aluminum oxide with silver nanoparticles,” Electrochem. Solid-State Lett. 15(3), J14–J17 (2012).
[CrossRef]

C. H. Huang, H. Y. Lin, Y. Tzeng, C. H. Fan, C. Y. Liu, C. Y. Li, C. W. Huang, N. K. Chen, and H. C. Chui, “Optical characteristics of pore size on porous anodic aluminium oxide films with embedded silver nanoparticles,” Sens. Actuator, A 180, 49–54 (2012).
[CrossRef]

B. C. Lau, C. Y. Liu, H. Y. Lin, C. H. Huang, H. C. Chui, and Y. Tzeng, “Electrochemical fabrication of anodic aluminum oxide films with encapsulated silver nanoparticles as plasmonic photoconductors,” Electrochem. Solid-State Lett. 14(5), E15–E17 (2011).
[CrossRef]

C. H. Huang, H. Y. Lin, B. C. Lau, C. Y. Liu, H. C. Chui, and Y. Tzeng, “Plasmon-induced optical switching of electrical conductivity in porous anodic aluminum oxide films encapsulated with silver nanoparticle arrays,” Opt. Express 18(26), 27891–27899 (2010).
[CrossRef] [PubMed]

Liu, C. P.

Liu, C. Y.

C. H. Huang, H. Y. Lin, Y. H. Tzeng, C. H. Fan, C. Y. Liu, C. Y. Li, C. W. Huang, and H. C. Chui, “Tunable photoconductivity of porous anodic aluminum oxide with silver nanoparticles,” Electrochem. Solid-State Lett. 15(3), J14–J17 (2012).
[CrossRef]

C. H. Huang, H. Y. Lin, Y. Tzeng, C. H. Fan, C. Y. Liu, C. Y. Li, C. W. Huang, N. K. Chen, and H. C. Chui, “Optical characteristics of pore size on porous anodic aluminium oxide films with embedded silver nanoparticles,” Sens. Actuator, A 180, 49–54 (2012).
[CrossRef]

C. Y. Liu, K. C. Liang, W. L. Chen, C. H. Tu, C. P. Liu, and Y. Tzeng, “Plasmonic coupling of silver nanoparticles covered by hydrogen-terminated graphene for surface-enhanced raman spectroscopy,” Opt. Express 19(18), 17092–17098 (2011).
[CrossRef] [PubMed]

B. C. Lau, C. Y. Liu, H. Y. Lin, C. H. Huang, H. C. Chui, and Y. Tzeng, “Electrochemical fabrication of anodic aluminum oxide films with encapsulated silver nanoparticles as plasmonic photoconductors,” Electrochem. Solid-State Lett. 14(5), E15–E17 (2011).
[CrossRef]

C. H. Huang, H. Y. Lin, B. C. Lau, C. Y. Liu, H. C. Chui, and Y. Tzeng, “Plasmon-induced optical switching of electrical conductivity in porous anodic aluminum oxide films encapsulated with silver nanoparticle arrays,” Opt. Express 18(26), 27891–27899 (2010).
[CrossRef] [PubMed]

Mauri, F.

A. C. Ferrari, J. C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K. S. Novoselov, S. Roth, and A. K. Geim, “Raman spectrum of graphene and graphene layers,” Phys. Rev. Lett. 97(18), 187401 (2006).
[CrossRef] [PubMed]

Meyer, J. C.

J. C. Meyer, C. O. Girit, M. F. Crommie, and A. Zettl, “Imaging and dynamics of light atoms and molecules on graphene,” Nature 454(7202), 319–322 (2008).
[CrossRef] [PubMed]

A. C. Ferrari, J. C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K. S. Novoselov, S. Roth, and A. K. Geim, “Raman spectrum of graphene and graphene layers,” Phys. Rev. Lett. 97(18), 187401 (2006).
[CrossRef] [PubMed]

Morozov, S. V.

F. Schedin, A. K. Geim, S. V. Morozov, E. W. Hill, P. Blake, M. I. Katsnelson, and K. S. Novoselov, “Detection of individual gas molecules adsorbed on graphene,” Nat. Mater. 6(9), 652–655 (2007).
[CrossRef] [PubMed]

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V. Grigorieva, S. V. Dubonos, and A. A. Firsov, “Two-dimensional gas of massless dirac fermions in graphene,” Nature 438(7065), 197–200 (2005).
[CrossRef] [PubMed]

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbon films,” Science 306(5696), 666–669 (2004).
[CrossRef] [PubMed]

Novoselov, K. S.

A. H. Castro Neto, F. Guinea, N. M. R. Peres, K. S. Novoselov, and A. K. Geim, “The electronic properties of graphene,” Rev. Mod. Phys. 81(1), 109–162 (2009).
[CrossRef]

F. Schedin, A. K. Geim, S. V. Morozov, E. W. Hill, P. Blake, M. I. Katsnelson, and K. S. Novoselov, “Detection of individual gas molecules adsorbed on graphene,” Nat. Mater. 6(9), 652–655 (2007).
[CrossRef] [PubMed]

A. K. Geim and K. S. Novoselov, “The rise of graphene,” Nat. Mater. 6(3), 183–191 (2007).
[CrossRef] [PubMed]

A. C. Ferrari, J. C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K. S. Novoselov, S. Roth, and A. K. Geim, “Raman spectrum of graphene and graphene layers,” Phys. Rev. Lett. 97(18), 187401 (2006).
[CrossRef] [PubMed]

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V. Grigorieva, S. V. Dubonos, and A. A. Firsov, “Two-dimensional gas of massless dirac fermions in graphene,” Nature 438(7065), 197–200 (2005).
[CrossRef] [PubMed]

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbon films,” Science 306(5696), 666–669 (2004).
[CrossRef] [PubMed]

Partoens, B.

O. Leenaerts, B. Partoens, and F. M. Peeters, “Adsorption of H2O, NH3, CO, NO2, and NO on graphene: a first-principles study,” Phys. Rev. B 77(12), 125416 (2008).
[CrossRef]

Peeters, F. M.

O. Leenaerts, B. Partoens, and F. M. Peeters, “Adsorption of H2O, NH3, CO, NO2, and NO on graphene: a first-principles study,” Phys. Rev. B 77(12), 125416 (2008).
[CrossRef]

Peres, N. M. R.

A. H. Castro Neto, F. Guinea, N. M. R. Peres, K. S. Novoselov, and A. K. Geim, “The electronic properties of graphene,” Rev. Mod. Phys. 81(1), 109–162 (2009).
[CrossRef]

Piscanec, S.

A. C. Ferrari, J. C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K. S. Novoselov, S. Roth, and A. K. Geim, “Raman spectrum of graphene and graphene layers,” Phys. Rev. Lett. 97(18), 187401 (2006).
[CrossRef] [PubMed]

Pribat, D.

C. Biswas, F. Güneş, D. L. Duong, S. C. Lim, M. S. Jeong, D. Pribat, and Y. H. Lee, “Negative and positive persistent photoconductance in graphene,” Nano Lett. 11(11), 4682–4687 (2011).
[CrossRef] [PubMed]

Roth, S.

A. C. Ferrari, J. C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K. S. Novoselov, S. Roth, and A. K. Geim, “Raman spectrum of graphene and graphene layers,” Phys. Rev. Lett. 97(18), 187401 (2006).
[CrossRef] [PubMed]

Scardaci, V.

A. C. Ferrari, J. C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K. S. Novoselov, S. Roth, and A. K. Geim, “Raman spectrum of graphene and graphene layers,” Phys. Rev. Lett. 97(18), 187401 (2006).
[CrossRef] [PubMed]

Schedin, F.

F. Schedin, A. K. Geim, S. V. Morozov, E. W. Hill, P. Blake, M. I. Katsnelson, and K. S. Novoselov, “Detection of individual gas molecules adsorbed on graphene,” Nat. Mater. 6(9), 652–655 (2007).
[CrossRef] [PubMed]

Sun, Z.

F. Bonaccorso, Z. Sun, T. Hasan, and A. C. Ferrari, “Graphene photonics and optoelectronics,” Nat. Photonics 4(9), 611–622 (2010).
[CrossRef]

Tu, C. H.

Tzeng, Y.

C. H. Huang, H. Y. Lin, Y. Tzeng, C. H. Fan, C. Y. Liu, C. Y. Li, C. W. Huang, N. K. Chen, and H. C. Chui, “Optical characteristics of pore size on porous anodic aluminium oxide films with embedded silver nanoparticles,” Sens. Actuator, A 180, 49–54 (2012).
[CrossRef]

C. Y. Liu, K. C. Liang, W. L. Chen, C. H. Tu, C. P. Liu, and Y. Tzeng, “Plasmonic coupling of silver nanoparticles covered by hydrogen-terminated graphene for surface-enhanced raman spectroscopy,” Opt. Express 19(18), 17092–17098 (2011).
[CrossRef] [PubMed]

B. C. Lau, C. Y. Liu, H. Y. Lin, C. H. Huang, H. C. Chui, and Y. Tzeng, “Electrochemical fabrication of anodic aluminum oxide films with encapsulated silver nanoparticles as plasmonic photoconductors,” Electrochem. Solid-State Lett. 14(5), E15–E17 (2011).
[CrossRef]

C. H. Huang, H. Y. Lin, B. C. Lau, C. Y. Liu, H. C. Chui, and Y. Tzeng, “Plasmon-induced optical switching of electrical conductivity in porous anodic aluminum oxide films encapsulated with silver nanoparticle arrays,” Opt. Express 18(26), 27891–27899 (2010).
[CrossRef] [PubMed]

Tzeng, Y. H.

C. H. Huang, H. Y. Lin, Y. H. Tzeng, C. H. Fan, C. Y. Liu, C. Y. Li, C. W. Huang, and H. C. Chui, “Tunable photoconductivity of porous anodic aluminum oxide with silver nanoparticles,” Electrochem. Solid-State Lett. 15(3), J14–J17 (2012).
[CrossRef]

Wang, H. L.

X. R. Wang, X. L. Li, L. Zhang, Y. Yoon, P. K. Weber, H. L. Wang, J. Guo, and H. J. Dai, “N-doping of graphene through electrothermal reactions with ammonia,” Science 324(5928), 768–771 (2009).
[CrossRef] [PubMed]

Wang, X. R.

X. R. Wang, X. L. Li, L. Zhang, Y. Yoon, P. K. Weber, H. L. Wang, J. Guo, and H. J. Dai, “N-doping of graphene through electrothermal reactions with ammonia,” Science 324(5928), 768–771 (2009).
[CrossRef] [PubMed]

Weber, P. K.

X. R. Wang, X. L. Li, L. Zhang, Y. Yoon, P. K. Weber, H. L. Wang, J. Guo, and H. J. Dai, “N-doping of graphene through electrothermal reactions with ammonia,” Science 324(5928), 768–771 (2009).
[CrossRef] [PubMed]

Yoon, Y.

X. R. Wang, X. L. Li, L. Zhang, Y. Yoon, P. K. Weber, H. L. Wang, J. Guo, and H. J. Dai, “N-doping of graphene through electrothermal reactions with ammonia,” Science 324(5928), 768–771 (2009).
[CrossRef] [PubMed]

Zettl, A.

J. C. Meyer, C. O. Girit, M. F. Crommie, and A. Zettl, “Imaging and dynamics of light atoms and molecules on graphene,” Nature 454(7202), 319–322 (2008).
[CrossRef] [PubMed]

Zhang, L.

X. R. Wang, X. L. Li, L. Zhang, Y. Yoon, P. K. Weber, H. L. Wang, J. Guo, and H. J. Dai, “N-doping of graphene through electrothermal reactions with ammonia,” Science 324(5928), 768–771 (2009).
[CrossRef] [PubMed]

Zhang, Y.

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbon films,” Science 306(5696), 666–669 (2004).
[CrossRef] [PubMed]

Electrochem. Solid-State Lett. (2)

C. H. Huang, H. Y. Lin, Y. H. Tzeng, C. H. Fan, C. Y. Liu, C. Y. Li, C. W. Huang, and H. C. Chui, “Tunable photoconductivity of porous anodic aluminum oxide with silver nanoparticles,” Electrochem. Solid-State Lett. 15(3), J14–J17 (2012).
[CrossRef]

B. C. Lau, C. Y. Liu, H. Y. Lin, C. H. Huang, H. C. Chui, and Y. Tzeng, “Electrochemical fabrication of anodic aluminum oxide films with encapsulated silver nanoparticles as plasmonic photoconductors,” Electrochem. Solid-State Lett. 14(5), E15–E17 (2011).
[CrossRef]

Nano Lett. (1)

C. Biswas, F. Güneş, D. L. Duong, S. C. Lim, M. S. Jeong, D. Pribat, and Y. H. Lee, “Negative and positive persistent photoconductance in graphene,” Nano Lett. 11(11), 4682–4687 (2011).
[CrossRef] [PubMed]

Nat. Mater. (2)

F. Schedin, A. K. Geim, S. V. Morozov, E. W. Hill, P. Blake, M. I. Katsnelson, and K. S. Novoselov, “Detection of individual gas molecules adsorbed on graphene,” Nat. Mater. 6(9), 652–655 (2007).
[CrossRef] [PubMed]

A. K. Geim and K. S. Novoselov, “The rise of graphene,” Nat. Mater. 6(3), 183–191 (2007).
[CrossRef] [PubMed]

Nat. Photonics (1)

F. Bonaccorso, Z. Sun, T. Hasan, and A. C. Ferrari, “Graphene photonics and optoelectronics,” Nat. Photonics 4(9), 611–622 (2010).
[CrossRef]

Nature (2)

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V. Grigorieva, S. V. Dubonos, and A. A. Firsov, “Two-dimensional gas of massless dirac fermions in graphene,” Nature 438(7065), 197–200 (2005).
[CrossRef] [PubMed]

J. C. Meyer, C. O. Girit, M. F. Crommie, and A. Zettl, “Imaging and dynamics of light atoms and molecules on graphene,” Nature 454(7202), 319–322 (2008).
[CrossRef] [PubMed]

Opt. Express (2)

Phys. Rev. B (1)

O. Leenaerts, B. Partoens, and F. M. Peeters, “Adsorption of H2O, NH3, CO, NO2, and NO on graphene: a first-principles study,” Phys. Rev. B 77(12), 125416 (2008).
[CrossRef]

Phys. Rev. Lett. (1)

A. C. Ferrari, J. C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K. S. Novoselov, S. Roth, and A. K. Geim, “Raman spectrum of graphene and graphene layers,” Phys. Rev. Lett. 97(18), 187401 (2006).
[CrossRef] [PubMed]

Rev. Mod. Phys. (1)

A. H. Castro Neto, F. Guinea, N. M. R. Peres, K. S. Novoselov, and A. K. Geim, “The electronic properties of graphene,” Rev. Mod. Phys. 81(1), 109–162 (2009).
[CrossRef]

Science (2)

X. R. Wang, X. L. Li, L. Zhang, Y. Yoon, P. K. Weber, H. L. Wang, J. Guo, and H. J. Dai, “N-doping of graphene through electrothermal reactions with ammonia,” Science 324(5928), 768–771 (2009).
[CrossRef] [PubMed]

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbon films,” Science 306(5696), 666–669 (2004).
[CrossRef] [PubMed]

Sens. Actuator, A (1)

C. H. Huang, H. Y. Lin, Y. Tzeng, C. H. Fan, C. Y. Liu, C. Y. Li, C. W. Huang, N. K. Chen, and H. C. Chui, “Optical characteristics of pore size on porous anodic aluminium oxide films with embedded silver nanoparticles,” Sens. Actuator, A 180, 49–54 (2012).
[CrossRef]

Z. Anorg. Allg. Chem. (1)

H. P. Boehm, A. Clauss, G. O. Fischer, and U. Hofmann, “The adsorption behavior of very thin carbon films,” Z. Anorg. Allg. Chem. 316, 119–127 (1962).
[CrossRef]

Other (1)

W. Chen, C.-H. Tu, K.-C. Liang, C.-Y. Liu, C.-P. Liu, and Y. Tzeng, “Low-stress transfer of graphene and it tunable resistance by remote plasma treatments in hydrogen,” in Proceedings of IEEE Nanotechnology Conference, (Portland, OR, 2011), pp. 15–18.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

(a) Schematic diagram representing the thermal CVD system for growing graphene. (b) A Raman spectrum of a graphene film. (c) Apparatus for measuring photoconductivity of graphene. SMU stands for source-measurement-unit while CCD stands for charge coupled devices. (d) Schematic diagram of a test device with an exposed graphene film of 20μm x 400μm in size between two gold electrodes.

Fig. 2
Fig. 2

Electrical current evolution of graphene on SiO2/Si under a series of light-off and light-on cycles. The white and blue areas represent the durations of light off and on, respectively. The applied voltage in (a) is 1 V while that in (b) is 10 mV.

Fig. 3
Fig. 3

Time evolution of electrical current in a graphene film on Ag-nanoparticle-coated SiO2/Si under a series of light-off and light-on cycles. The white and blue areas represent the durations of light off and on, respectively. The applied voltage in (a) is 1 V while that in (b) is 10 mV.

Tables (1)

Tables Icon

Table 1 Duration when light illumination is off or on corresponding to data presented in Figs. 2 and 3.

Metrics