Abstract

Near infra-red (NIR) self-guided photo-polymerization is investigated in the context of micro-optics photo-fabrication on VCSELs (Vertical-Cavity Surface Emitting Lasers). We present the optimized process we have developed to allow for a collective fabrication on III-V devices wafers under real-time optical monitoring. The influence of photo-chemical parameters on final micro-elements dimensions is studied for two types of single mode 760nm VCSELs. The difference of the resulting tip shape between the two lasers is due to the strong differences of their emissions, as they are nicely reproduced by the computed near-field profiles. The tip shapes are also compared to those produced by the light emitted by an optical fiber and differences with VCSEL tips are discussed. Also the VCSEL characteristics with fabricated tips are discussed and found in good agreement with optical modeling.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. Bachelot, P. Royer, G. Wurtz, C. Ecoffet, A. Espanet, and D. J. Lougnot, French Patent N° PCT 9814385, (2001).
  2. O. Soppera, C. Turck, and D. J. Lougnot, “Fabrication of micro-optical devices by self-guiding photopolymerization in the near IR,” Opt. Lett. 34(4), 461–463 (2009).
    [CrossRef] [PubMed]
  3. V. Bardinal, B. Reig, T. Camps, E. Daran, J. B. Doucet, C. Vergnenègre, C. Turck, J. P. Malval, D. J. Lougnot, and O. Soppera, “A microtip self-written on a Vertical-Cavity Surface-Emitting Laser by photopolymerization,” Appl. Phys. Lett. 96(5), 051114 (2010).
    [CrossRef]
  4. C. Croutxe-Barghorn, O. Soppera, L. Simonin, and D. J. Lougnot, “On the unexpected rôle of oxygen in the generation of microlens arrays with self-developing photopolymers,” Adv. Mater. Opt. Electron. 10, 25–38 (2000).
    [CrossRef]
  5. I. Dika, J. P. Malval, O. Soppera, V. Bardinal, D. Barat, C. Turck, A. Spangenberg, and A. Bruyant, “Near-infrared photopolymerization: initiation process assisted by self-quenching and triplet-triplet annihilation of excited cyanine dyes,” Chem. Phys. Lett. 515(1-3), 91–95 (2011).
    [CrossRef]
  6. O. Soppera, S. Jradi, and D. J. Lougnot, “Photopolymerization with microscale resolution: influence of the physico-chemical and photonic parameters,” J. Polym. Sci. Part A: Polym. Chem. 46(11), 3783–3794 (2008).
    [CrossRef]
  7. I. S. Chung, P. Debernardi, Y. T. Lee, and J. Mørk, “Transverse-mode-selectable microlens vertical-cavity surface-emitting laser,” Opt. Express 18(5), 4138–4147 (2010).
    [CrossRef] [PubMed]
  8. C. Pang, F. Gesuele, A. Bruyant, S. Blaize, G. Lérondel, and P. Royer, “Enhanced light coupling in sub-wavelength single-mode silicon on insulator waveguides,” Opt. Express 17(9), 6939–6945 (2009).
    [CrossRef] [PubMed]
  9. R. Bachelot, S. Blaize, C. Pang, A. Bruyant, and P. Royer, “Polymer-tipped optical fibers,” Fiber Integrated Opt. 27(6), 542–558 (2008).
    [CrossRef]
  10. T. Camps, C. Bringer, V. Bardinal, G. Almuneau, C. Amat, E. Daran, P. Dubreuil, J. B. Doucet, and C. Fontaine, “High sensitivity integrated lateral detection in VCSELs,” Electron. Lett. 41(3), 129–131 (2005).
    [CrossRef]
  11. D. Heinis, C. Gorecki, C. Bringer, V. Bardinal, T. Camps, J. B. Doucet, P. Dubreuil, and C. Fontaine, “Miniaturized scanning near-field microscope sensor based on optical feedback inside a single-mode oxide-confined Vertical-Cavity Surface-Emitting Laser,” Jpn. J. Appl. Phys. 42(Part2), L1469– L1471 (2003).
    [CrossRef]
  12. T. Yamashita, A. Kawasaki, O. Watanabe, and M. Kagami, “Fabrication of self-written polymeric waveguides using near-infrared light from single-mode devices,” Microoptics Conference (MOC’11), 2011 17th, Sendai, Japan, 1–2, Oct. 30 2011-Nov. 2, 12460175 (2011).

2011 (1)

I. Dika, J. P. Malval, O. Soppera, V. Bardinal, D. Barat, C. Turck, A. Spangenberg, and A. Bruyant, “Near-infrared photopolymerization: initiation process assisted by self-quenching and triplet-triplet annihilation of excited cyanine dyes,” Chem. Phys. Lett. 515(1-3), 91–95 (2011).
[CrossRef]

2010 (2)

V. Bardinal, B. Reig, T. Camps, E. Daran, J. B. Doucet, C. Vergnenègre, C. Turck, J. P. Malval, D. J. Lougnot, and O. Soppera, “A microtip self-written on a Vertical-Cavity Surface-Emitting Laser by photopolymerization,” Appl. Phys. Lett. 96(5), 051114 (2010).
[CrossRef]

I. S. Chung, P. Debernardi, Y. T. Lee, and J. Mørk, “Transverse-mode-selectable microlens vertical-cavity surface-emitting laser,” Opt. Express 18(5), 4138–4147 (2010).
[CrossRef] [PubMed]

2009 (2)

2008 (2)

O. Soppera, S. Jradi, and D. J. Lougnot, “Photopolymerization with microscale resolution: influence of the physico-chemical and photonic parameters,” J. Polym. Sci. Part A: Polym. Chem. 46(11), 3783–3794 (2008).
[CrossRef]

R. Bachelot, S. Blaize, C. Pang, A. Bruyant, and P. Royer, “Polymer-tipped optical fibers,” Fiber Integrated Opt. 27(6), 542–558 (2008).
[CrossRef]

2005 (1)

T. Camps, C. Bringer, V. Bardinal, G. Almuneau, C. Amat, E. Daran, P. Dubreuil, J. B. Doucet, and C. Fontaine, “High sensitivity integrated lateral detection in VCSELs,” Electron. Lett. 41(3), 129–131 (2005).
[CrossRef]

2003 (1)

D. Heinis, C. Gorecki, C. Bringer, V. Bardinal, T. Camps, J. B. Doucet, P. Dubreuil, and C. Fontaine, “Miniaturized scanning near-field microscope sensor based on optical feedback inside a single-mode oxide-confined Vertical-Cavity Surface-Emitting Laser,” Jpn. J. Appl. Phys. 42(Part2), L1469– L1471 (2003).
[CrossRef]

2000 (1)

C. Croutxe-Barghorn, O. Soppera, L. Simonin, and D. J. Lougnot, “On the unexpected rôle of oxygen in the generation of microlens arrays with self-developing photopolymers,” Adv. Mater. Opt. Electron. 10, 25–38 (2000).
[CrossRef]

Almuneau, G.

T. Camps, C. Bringer, V. Bardinal, G. Almuneau, C. Amat, E. Daran, P. Dubreuil, J. B. Doucet, and C. Fontaine, “High sensitivity integrated lateral detection in VCSELs,” Electron. Lett. 41(3), 129–131 (2005).
[CrossRef]

Amat, C.

T. Camps, C. Bringer, V. Bardinal, G. Almuneau, C. Amat, E. Daran, P. Dubreuil, J. B. Doucet, and C. Fontaine, “High sensitivity integrated lateral detection in VCSELs,” Electron. Lett. 41(3), 129–131 (2005).
[CrossRef]

Bachelot, R.

R. Bachelot, S. Blaize, C. Pang, A. Bruyant, and P. Royer, “Polymer-tipped optical fibers,” Fiber Integrated Opt. 27(6), 542–558 (2008).
[CrossRef]

Barat, D.

I. Dika, J. P. Malval, O. Soppera, V. Bardinal, D. Barat, C. Turck, A. Spangenberg, and A. Bruyant, “Near-infrared photopolymerization: initiation process assisted by self-quenching and triplet-triplet annihilation of excited cyanine dyes,” Chem. Phys. Lett. 515(1-3), 91–95 (2011).
[CrossRef]

Bardinal, V.

I. Dika, J. P. Malval, O. Soppera, V. Bardinal, D. Barat, C. Turck, A. Spangenberg, and A. Bruyant, “Near-infrared photopolymerization: initiation process assisted by self-quenching and triplet-triplet annihilation of excited cyanine dyes,” Chem. Phys. Lett. 515(1-3), 91–95 (2011).
[CrossRef]

V. Bardinal, B. Reig, T. Camps, E. Daran, J. B. Doucet, C. Vergnenègre, C. Turck, J. P. Malval, D. J. Lougnot, and O. Soppera, “A microtip self-written on a Vertical-Cavity Surface-Emitting Laser by photopolymerization,” Appl. Phys. Lett. 96(5), 051114 (2010).
[CrossRef]

T. Camps, C. Bringer, V. Bardinal, G. Almuneau, C. Amat, E. Daran, P. Dubreuil, J. B. Doucet, and C. Fontaine, “High sensitivity integrated lateral detection in VCSELs,” Electron. Lett. 41(3), 129–131 (2005).
[CrossRef]

D. Heinis, C. Gorecki, C. Bringer, V. Bardinal, T. Camps, J. B. Doucet, P. Dubreuil, and C. Fontaine, “Miniaturized scanning near-field microscope sensor based on optical feedback inside a single-mode oxide-confined Vertical-Cavity Surface-Emitting Laser,” Jpn. J. Appl. Phys. 42(Part2), L1469– L1471 (2003).
[CrossRef]

Blaize, S.

Bringer, C.

T. Camps, C. Bringer, V. Bardinal, G. Almuneau, C. Amat, E. Daran, P. Dubreuil, J. B. Doucet, and C. Fontaine, “High sensitivity integrated lateral detection in VCSELs,” Electron. Lett. 41(3), 129–131 (2005).
[CrossRef]

D. Heinis, C. Gorecki, C. Bringer, V. Bardinal, T. Camps, J. B. Doucet, P. Dubreuil, and C. Fontaine, “Miniaturized scanning near-field microscope sensor based on optical feedback inside a single-mode oxide-confined Vertical-Cavity Surface-Emitting Laser,” Jpn. J. Appl. Phys. 42(Part2), L1469– L1471 (2003).
[CrossRef]

Bruyant, A.

I. Dika, J. P. Malval, O. Soppera, V. Bardinal, D. Barat, C. Turck, A. Spangenberg, and A. Bruyant, “Near-infrared photopolymerization: initiation process assisted by self-quenching and triplet-triplet annihilation of excited cyanine dyes,” Chem. Phys. Lett. 515(1-3), 91–95 (2011).
[CrossRef]

C. Pang, F. Gesuele, A. Bruyant, S. Blaize, G. Lérondel, and P. Royer, “Enhanced light coupling in sub-wavelength single-mode silicon on insulator waveguides,” Opt. Express 17(9), 6939–6945 (2009).
[CrossRef] [PubMed]

R. Bachelot, S. Blaize, C. Pang, A. Bruyant, and P. Royer, “Polymer-tipped optical fibers,” Fiber Integrated Opt. 27(6), 542–558 (2008).
[CrossRef]

Camps, T.

V. Bardinal, B. Reig, T. Camps, E. Daran, J. B. Doucet, C. Vergnenègre, C. Turck, J. P. Malval, D. J. Lougnot, and O. Soppera, “A microtip self-written on a Vertical-Cavity Surface-Emitting Laser by photopolymerization,” Appl. Phys. Lett. 96(5), 051114 (2010).
[CrossRef]

T. Camps, C. Bringer, V. Bardinal, G. Almuneau, C. Amat, E. Daran, P. Dubreuil, J. B. Doucet, and C. Fontaine, “High sensitivity integrated lateral detection in VCSELs,” Electron. Lett. 41(3), 129–131 (2005).
[CrossRef]

D. Heinis, C. Gorecki, C. Bringer, V. Bardinal, T. Camps, J. B. Doucet, P. Dubreuil, and C. Fontaine, “Miniaturized scanning near-field microscope sensor based on optical feedback inside a single-mode oxide-confined Vertical-Cavity Surface-Emitting Laser,” Jpn. J. Appl. Phys. 42(Part2), L1469– L1471 (2003).
[CrossRef]

Chung, I. S.

Croutxe-Barghorn, C.

C. Croutxe-Barghorn, O. Soppera, L. Simonin, and D. J. Lougnot, “On the unexpected rôle of oxygen in the generation of microlens arrays with self-developing photopolymers,” Adv. Mater. Opt. Electron. 10, 25–38 (2000).
[CrossRef]

Daran, E.

V. Bardinal, B. Reig, T. Camps, E. Daran, J. B. Doucet, C. Vergnenègre, C. Turck, J. P. Malval, D. J. Lougnot, and O. Soppera, “A microtip self-written on a Vertical-Cavity Surface-Emitting Laser by photopolymerization,” Appl. Phys. Lett. 96(5), 051114 (2010).
[CrossRef]

T. Camps, C. Bringer, V. Bardinal, G. Almuneau, C. Amat, E. Daran, P. Dubreuil, J. B. Doucet, and C. Fontaine, “High sensitivity integrated lateral detection in VCSELs,” Electron. Lett. 41(3), 129–131 (2005).
[CrossRef]

Debernardi, P.

Dika, I.

I. Dika, J. P. Malval, O. Soppera, V. Bardinal, D. Barat, C. Turck, A. Spangenberg, and A. Bruyant, “Near-infrared photopolymerization: initiation process assisted by self-quenching and triplet-triplet annihilation of excited cyanine dyes,” Chem. Phys. Lett. 515(1-3), 91–95 (2011).
[CrossRef]

Doucet, J. B.

V. Bardinal, B. Reig, T. Camps, E. Daran, J. B. Doucet, C. Vergnenègre, C. Turck, J. P. Malval, D. J. Lougnot, and O. Soppera, “A microtip self-written on a Vertical-Cavity Surface-Emitting Laser by photopolymerization,” Appl. Phys. Lett. 96(5), 051114 (2010).
[CrossRef]

T. Camps, C. Bringer, V. Bardinal, G. Almuneau, C. Amat, E. Daran, P. Dubreuil, J. B. Doucet, and C. Fontaine, “High sensitivity integrated lateral detection in VCSELs,” Electron. Lett. 41(3), 129–131 (2005).
[CrossRef]

D. Heinis, C. Gorecki, C. Bringer, V. Bardinal, T. Camps, J. B. Doucet, P. Dubreuil, and C. Fontaine, “Miniaturized scanning near-field microscope sensor based on optical feedback inside a single-mode oxide-confined Vertical-Cavity Surface-Emitting Laser,” Jpn. J. Appl. Phys. 42(Part2), L1469– L1471 (2003).
[CrossRef]

Dubreuil, P.

T. Camps, C. Bringer, V. Bardinal, G. Almuneau, C. Amat, E. Daran, P. Dubreuil, J. B. Doucet, and C. Fontaine, “High sensitivity integrated lateral detection in VCSELs,” Electron. Lett. 41(3), 129–131 (2005).
[CrossRef]

D. Heinis, C. Gorecki, C. Bringer, V. Bardinal, T. Camps, J. B. Doucet, P. Dubreuil, and C. Fontaine, “Miniaturized scanning near-field microscope sensor based on optical feedback inside a single-mode oxide-confined Vertical-Cavity Surface-Emitting Laser,” Jpn. J. Appl. Phys. 42(Part2), L1469– L1471 (2003).
[CrossRef]

Fontaine, C.

T. Camps, C. Bringer, V. Bardinal, G. Almuneau, C. Amat, E. Daran, P. Dubreuil, J. B. Doucet, and C. Fontaine, “High sensitivity integrated lateral detection in VCSELs,” Electron. Lett. 41(3), 129–131 (2005).
[CrossRef]

D. Heinis, C. Gorecki, C. Bringer, V. Bardinal, T. Camps, J. B. Doucet, P. Dubreuil, and C. Fontaine, “Miniaturized scanning near-field microscope sensor based on optical feedback inside a single-mode oxide-confined Vertical-Cavity Surface-Emitting Laser,” Jpn. J. Appl. Phys. 42(Part2), L1469– L1471 (2003).
[CrossRef]

Gesuele, F.

Gorecki, C.

D. Heinis, C. Gorecki, C. Bringer, V. Bardinal, T. Camps, J. B. Doucet, P. Dubreuil, and C. Fontaine, “Miniaturized scanning near-field microscope sensor based on optical feedback inside a single-mode oxide-confined Vertical-Cavity Surface-Emitting Laser,” Jpn. J. Appl. Phys. 42(Part2), L1469– L1471 (2003).
[CrossRef]

Heinis, D.

D. Heinis, C. Gorecki, C. Bringer, V. Bardinal, T. Camps, J. B. Doucet, P. Dubreuil, and C. Fontaine, “Miniaturized scanning near-field microscope sensor based on optical feedback inside a single-mode oxide-confined Vertical-Cavity Surface-Emitting Laser,” Jpn. J. Appl. Phys. 42(Part2), L1469– L1471 (2003).
[CrossRef]

Jradi, S.

O. Soppera, S. Jradi, and D. J. Lougnot, “Photopolymerization with microscale resolution: influence of the physico-chemical and photonic parameters,” J. Polym. Sci. Part A: Polym. Chem. 46(11), 3783–3794 (2008).
[CrossRef]

Lee, Y. T.

Lérondel, G.

Lougnot, D. J.

V. Bardinal, B. Reig, T. Camps, E. Daran, J. B. Doucet, C. Vergnenègre, C. Turck, J. P. Malval, D. J. Lougnot, and O. Soppera, “A microtip self-written on a Vertical-Cavity Surface-Emitting Laser by photopolymerization,” Appl. Phys. Lett. 96(5), 051114 (2010).
[CrossRef]

O. Soppera, C. Turck, and D. J. Lougnot, “Fabrication of micro-optical devices by self-guiding photopolymerization in the near IR,” Opt. Lett. 34(4), 461–463 (2009).
[CrossRef] [PubMed]

O. Soppera, S. Jradi, and D. J. Lougnot, “Photopolymerization with microscale resolution: influence of the physico-chemical and photonic parameters,” J. Polym. Sci. Part A: Polym. Chem. 46(11), 3783–3794 (2008).
[CrossRef]

C. Croutxe-Barghorn, O. Soppera, L. Simonin, and D. J. Lougnot, “On the unexpected rôle of oxygen in the generation of microlens arrays with self-developing photopolymers,” Adv. Mater. Opt. Electron. 10, 25–38 (2000).
[CrossRef]

Malval, J. P.

I. Dika, J. P. Malval, O. Soppera, V. Bardinal, D. Barat, C. Turck, A. Spangenberg, and A. Bruyant, “Near-infrared photopolymerization: initiation process assisted by self-quenching and triplet-triplet annihilation of excited cyanine dyes,” Chem. Phys. Lett. 515(1-3), 91–95 (2011).
[CrossRef]

V. Bardinal, B. Reig, T. Camps, E. Daran, J. B. Doucet, C. Vergnenègre, C. Turck, J. P. Malval, D. J. Lougnot, and O. Soppera, “A microtip self-written on a Vertical-Cavity Surface-Emitting Laser by photopolymerization,” Appl. Phys. Lett. 96(5), 051114 (2010).
[CrossRef]

Mørk, J.

Pang, C.

Reig, B.

V. Bardinal, B. Reig, T. Camps, E. Daran, J. B. Doucet, C. Vergnenègre, C. Turck, J. P. Malval, D. J. Lougnot, and O. Soppera, “A microtip self-written on a Vertical-Cavity Surface-Emitting Laser by photopolymerization,” Appl. Phys. Lett. 96(5), 051114 (2010).
[CrossRef]

Royer, P.

Simonin, L.

C. Croutxe-Barghorn, O. Soppera, L. Simonin, and D. J. Lougnot, “On the unexpected rôle of oxygen in the generation of microlens arrays with self-developing photopolymers,” Adv. Mater. Opt. Electron. 10, 25–38 (2000).
[CrossRef]

Soppera, O.

I. Dika, J. P. Malval, O. Soppera, V. Bardinal, D. Barat, C. Turck, A. Spangenberg, and A. Bruyant, “Near-infrared photopolymerization: initiation process assisted by self-quenching and triplet-triplet annihilation of excited cyanine dyes,” Chem. Phys. Lett. 515(1-3), 91–95 (2011).
[CrossRef]

V. Bardinal, B. Reig, T. Camps, E. Daran, J. B. Doucet, C. Vergnenègre, C. Turck, J. P. Malval, D. J. Lougnot, and O. Soppera, “A microtip self-written on a Vertical-Cavity Surface-Emitting Laser by photopolymerization,” Appl. Phys. Lett. 96(5), 051114 (2010).
[CrossRef]

O. Soppera, C. Turck, and D. J. Lougnot, “Fabrication of micro-optical devices by self-guiding photopolymerization in the near IR,” Opt. Lett. 34(4), 461–463 (2009).
[CrossRef] [PubMed]

O. Soppera, S. Jradi, and D. J. Lougnot, “Photopolymerization with microscale resolution: influence of the physico-chemical and photonic parameters,” J. Polym. Sci. Part A: Polym. Chem. 46(11), 3783–3794 (2008).
[CrossRef]

C. Croutxe-Barghorn, O. Soppera, L. Simonin, and D. J. Lougnot, “On the unexpected rôle of oxygen in the generation of microlens arrays with self-developing photopolymers,” Adv. Mater. Opt. Electron. 10, 25–38 (2000).
[CrossRef]

Spangenberg, A.

I. Dika, J. P. Malval, O. Soppera, V. Bardinal, D. Barat, C. Turck, A. Spangenberg, and A. Bruyant, “Near-infrared photopolymerization: initiation process assisted by self-quenching and triplet-triplet annihilation of excited cyanine dyes,” Chem. Phys. Lett. 515(1-3), 91–95 (2011).
[CrossRef]

Turck, C.

I. Dika, J. P. Malval, O. Soppera, V. Bardinal, D. Barat, C. Turck, A. Spangenberg, and A. Bruyant, “Near-infrared photopolymerization: initiation process assisted by self-quenching and triplet-triplet annihilation of excited cyanine dyes,” Chem. Phys. Lett. 515(1-3), 91–95 (2011).
[CrossRef]

V. Bardinal, B. Reig, T. Camps, E. Daran, J. B. Doucet, C. Vergnenègre, C. Turck, J. P. Malval, D. J. Lougnot, and O. Soppera, “A microtip self-written on a Vertical-Cavity Surface-Emitting Laser by photopolymerization,” Appl. Phys. Lett. 96(5), 051114 (2010).
[CrossRef]

O. Soppera, C. Turck, and D. J. Lougnot, “Fabrication of micro-optical devices by self-guiding photopolymerization in the near IR,” Opt. Lett. 34(4), 461–463 (2009).
[CrossRef] [PubMed]

Vergnenègre, C.

V. Bardinal, B. Reig, T. Camps, E. Daran, J. B. Doucet, C. Vergnenègre, C. Turck, J. P. Malval, D. J. Lougnot, and O. Soppera, “A microtip self-written on a Vertical-Cavity Surface-Emitting Laser by photopolymerization,” Appl. Phys. Lett. 96(5), 051114 (2010).
[CrossRef]

Adv. Mater. Opt. Electron. (1)

C. Croutxe-Barghorn, O. Soppera, L. Simonin, and D. J. Lougnot, “On the unexpected rôle of oxygen in the generation of microlens arrays with self-developing photopolymers,” Adv. Mater. Opt. Electron. 10, 25–38 (2000).
[CrossRef]

Appl. Phys. Lett. (1)

V. Bardinal, B. Reig, T. Camps, E. Daran, J. B. Doucet, C. Vergnenègre, C. Turck, J. P. Malval, D. J. Lougnot, and O. Soppera, “A microtip self-written on a Vertical-Cavity Surface-Emitting Laser by photopolymerization,” Appl. Phys. Lett. 96(5), 051114 (2010).
[CrossRef]

Chem. Phys. Lett. (1)

I. Dika, J. P. Malval, O. Soppera, V. Bardinal, D. Barat, C. Turck, A. Spangenberg, and A. Bruyant, “Near-infrared photopolymerization: initiation process assisted by self-quenching and triplet-triplet annihilation of excited cyanine dyes,” Chem. Phys. Lett. 515(1-3), 91–95 (2011).
[CrossRef]

Electron. Lett. (1)

T. Camps, C. Bringer, V. Bardinal, G. Almuneau, C. Amat, E. Daran, P. Dubreuil, J. B. Doucet, and C. Fontaine, “High sensitivity integrated lateral detection in VCSELs,” Electron. Lett. 41(3), 129–131 (2005).
[CrossRef]

Fiber Integrated Opt. (1)

R. Bachelot, S. Blaize, C. Pang, A. Bruyant, and P. Royer, “Polymer-tipped optical fibers,” Fiber Integrated Opt. 27(6), 542–558 (2008).
[CrossRef]

J. Polym. Sci. Part A: Polym. Chem. (1)

O. Soppera, S. Jradi, and D. J. Lougnot, “Photopolymerization with microscale resolution: influence of the physico-chemical and photonic parameters,” J. Polym. Sci. Part A: Polym. Chem. 46(11), 3783–3794 (2008).
[CrossRef]

Jpn. J. Appl. Phys. (1)

D. Heinis, C. Gorecki, C. Bringer, V. Bardinal, T. Camps, J. B. Doucet, P. Dubreuil, and C. Fontaine, “Miniaturized scanning near-field microscope sensor based on optical feedback inside a single-mode oxide-confined Vertical-Cavity Surface-Emitting Laser,” Jpn. J. Appl. Phys. 42(Part2), L1469– L1471 (2003).
[CrossRef]

Opt. Express (2)

Opt. Lett. (1)

Other (2)

T. Yamashita, A. Kawasaki, O. Watanabe, and M. Kagami, “Fabrication of self-written polymeric waveguides using near-infrared light from single-mode devices,” Microoptics Conference (MOC’11), 2011 17th, Sendai, Japan, 1–2, Oct. 30 2011-Nov. 2, 12460175 (2011).

R. Bachelot, P. Royer, G. Wurtz, C. Ecoffet, A. Espanet, and D. J. Lougnot, French Patent N° PCT 9814385, (2001).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (13)

Fig. 1
Fig. 1

Principle of tip fabrication on VCSEL: (a) VCSEL wafer before spin coating (b) electrical injection after photopolymer spin-coating (c) fabricated microtips after sample rinsing.

Fig. 2
Fig. 2

Optical signal measured in function of reaction time for different optical VCSEL power densities. The same trend is observed but bleaching time varies with the applied optical density.

Fig. 3
Fig. 3

Description of devices used for the comparative study a) optical fiber b) metallic aperture VCSEL c) oxide-confined VCSEL.

Fig. 4
Fig. 4

Scanning Electron Microscope images of micro-objects fabricated on a VCSEL (case of a metallic aperture) using the same photochemical conditions but for different initial resist thicknesses: (a) 5µm (b) 25µm (c) 60µm. The optimal range for resist thickness is 20-50µm.

Fig. 5
Fig. 5

Comparison of two series of microtips fabricated at the end of an optical fiber (top line) and on a VCSEL surface (bottom line) (metallic aperture case) for increasing exposure times. The power was adjusted between the two sets of experiments to take into account the difference of emission surfaces between the two configurations.

Fig. 6
Fig. 6

Tip height (triangles), tip RoC (squares) and tip diameter (circles) measured as a function of the optical dose (case of an oxide confined VCSEL, emission zone size: 3µm).

Fig. 7
Fig. 7

Effect of dye concentration and of exposure time on final tip height for two different optical densities (0.4 and 0.8kW/cm2) and two different dye concentrations (0.09% and 0.18% HITC).

Fig. 8
Fig. 8

Images of microtips fabricated at the extremity of the optical fiber (a) and at the surface of a metallic-aperture VCSEL (b) and of an oxide-confined VCSEL (c) using the same normalized optical power density and the same exposure time (0.9kW/cm2, 120s)

Fig. 9
Fig. 9

Comparison of experimental tip shapes and computed contours of power densities in the polymer at the beginning of the reaction for the oxide confined VCSEL. In the experiments three different optical powers densities have been used (0.67, 0.8 and 2,3kW/cm2) with an exposure time of 120s.

Fig. 10
Fig. 10

Calculated power density distribution in the polymer at the beginning of the reaction for oxide confined VCSEL (left) and for metallic aperture VCSEL (right). For these last devices, we took into account two metal layers for the electrode: a thin 10nm Ti layer (index: 2.67-j 3.28) followed by a 200nm Au layer (index: 0.17-j 4.75) At center, radial-longitudinal maps of power density, aside the corresponding transverse profiles at given longitudinal sections. At top, experimental results for tips fabricated using the same photo-chemical conditions on the two different kinds of VCSELs (oxide and metal confined).

Fig. 11
Fig. 11

(a) LIV curves measured before (black curves) and after tip fabrication (blue curves with circles) (case of an oxide-confined VCSEL). (b) Variation of the laser threshold in presence of the microtip from a device to another: mean value is around 15% (c) Optical spectrum of the oxide-confined VCSEL before and after tip fabrication (d) Optical spectrum of the metal aperture VCSEL before and after tip fabrication. In both cases, the laser threshold is modified by the tip presence but the devices stay single mode.

Fig. 12
Fig. 12

Calculated threshold gain (top) and emission wavelength (bottom) relative variation (with respect to the untipped device) vs. tip height (left, for RoC = 1µm) and vs. RoC (right). For the latter plots, tip height is set to 15µm (continuous blue lines) and 15.13µm (dashed green lines), i.e. half period of periodic variation vs. height.

Fig. 13
Fig. 13

(a-b) Estimated spot diameters at 1/e2 and working distances (maximum intensity region) calculated by FDTD for increasing RoC. The maximum intensity region corresponds to a field intensity higher than 90% of the maximum focus intensity indicated by the dashed line. The designed tip shapes for the extreme values of RoC are inserted on both plots. (c) SEM images of the bare VCSEL and of two microtips self-written on mounted devices, with corresponding focus spot images. (d) Horizontal field profiles taken from focus spot images.

Metrics