Abstract

This paper proposes a novel none pilot-assisted orthogonal frequency division multiplexing (OFDM) technology based on multi-differential amplitude phase shift keying (mDAPSK) for optical OFDM system. It doesn’t require any bandwidth-consuming pilot tones or training sequence for channel estimation due to the differential detection during demodulation. In the experiment, a 41.31 Gb/s 64DAPSK-OFDM signal without pilot tones is successfully transmitted over 160-km single mode fiber (SMF). The performance comparison between multi-quadrature amplitude modulation (mQAM) and mDAPSK is also given in the experiment, and the results indicate a prospect of this technology in optical OFDM system.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. Shieh, “OFDM for flexible high-speed optical networks,” J. Lightwave Technol. 29(10), 1560–1577 (2011).
    [CrossRef]
  2. N. Cvijetic, M. Cvijetic, M.-F. Huang, E. Ip, Y.-K. Huang, and T. Wang, “Terabit optical access networks based on WDM-OFDMA-PON,” J. Lightwave Technol. 30(4), 493–503 (2012).
    [CrossRef]
  3. J. L. Wei, C. Sánchez, R. P. Giddings, E. Hugues-Salas, and J. M. Tang, “Significant improvements in optical power budgets of real-time optical OFDM PON systems,” Opt. Express 18(20), 20732–20745 (2010).
    [CrossRef] [PubMed]
  4. D. Qian, M.-F. Huang, E. Ip, Y.-K. Huang, Y. Shao, J. Hu, and T. Wang, “High capacity/spectral efficiency 101.7-Tb/s WDM transmission using PDM-128QAM-OFDM over 165-km SSMF within C- and L-bands,” J. Lightwave Technol. 30(10), 1540–1548 (2012).
    [CrossRef]
  5. N. Kaneda, Q. Yang, X. Liu, W. Shieh, and Y.-K. Chen, “Realizing real-time implementation of coherent optical OFDM receiver with FPGAs,” in Proc. ECOC’2009, paper.5.4.4 (2009).
  6. A. J. Lowery and L. B. Du, “Optical orthogonal division multiplexing for long haul optical communications: A review of the first five years,” Opt. Fiber Technol. 17(5), 421–438 (2011).
    [CrossRef]
  7. J. Zhao and A. Ellis, “Transmission of 4-ASK optical fast OFDM with chromatic dispersion compensation,” IEEE Photon. Technol. Lett. 24(1), 34–36 (2012).
    [CrossRef]
  8. X. Liu, F. Buchali, and R. W. Tkach, “Improving the nonlinear tolerance of polarization-division-multiplexed CO-OFDM in long-haul fiber transmission,” J. Lightwave Technol. 27(16), 3632–3640 (2009).
    [CrossRef]
  9. Q. Zhuge, M. Morsy-Osman, and D. V. Plant, “Analysis of dispersion-enhanced phase noise in CO-OFDM systems with RF-pilot phase compensation,” Opt. Express 19(24), 24030–24036 (2011).
    [CrossRef] [PubMed]
  10. S. L. Jansen, I. Morita, N. Takeda, and H. Tanaka, “Pre-emphasis and RF-pilot tone phase noise compensation for coherent OFDM transmission systems,” in Proc. CLEO 2007, paper. MA1.2 (2007).
  11. A. Sano, E. Yamada, H. Masuda, E. Yamazaki, T. Kobayashi, E. Yoshida, Y. Miyamoto, R. Kudo, K. Ishihara, and Y. Takatori, “No-Guard-Interval coherent optical OFDM for 100-Gb/s long-haul WDM transmission,” J. Lightwave Technol. 27(16), 3705–3713 (2009).
    [CrossRef]
  12. N. Toender and H. Rohling, “DAPSK schemes for low-complexity OFDM systems,” IEEE 16th International Symposium on Personal, Indoor and Mobile Radio Communications, 735–739 (2006).
  13. C.-C.Fang, Y.-J. Lin, S.-W. Wei, and J.-F. Chang, “Performance analyses of DAPSK in a very high mobility environment,” in Proc.WIRLES 2005, 570–575 (2005).
  14. T. May, H. Rohling, and V. Engels, “Performance analysis of Viterbi decoding for 64-DAPSK and 64-QAM modulated OFDM signals,” IEEE Trans. Commun. 46(2), 182–190 (1998).
    [CrossRef]

2012 (3)

2011 (3)

2010 (1)

2009 (2)

1998 (1)

T. May, H. Rohling, and V. Engels, “Performance analysis of Viterbi decoding for 64-DAPSK and 64-QAM modulated OFDM signals,” IEEE Trans. Commun. 46(2), 182–190 (1998).
[CrossRef]

Buchali, F.

Cvijetic, M.

Cvijetic, N.

Du, L. B.

A. J. Lowery and L. B. Du, “Optical orthogonal division multiplexing for long haul optical communications: A review of the first five years,” Opt. Fiber Technol. 17(5), 421–438 (2011).
[CrossRef]

Ellis, A.

J. Zhao and A. Ellis, “Transmission of 4-ASK optical fast OFDM with chromatic dispersion compensation,” IEEE Photon. Technol. Lett. 24(1), 34–36 (2012).
[CrossRef]

Engels, V.

T. May, H. Rohling, and V. Engels, “Performance analysis of Viterbi decoding for 64-DAPSK and 64-QAM modulated OFDM signals,” IEEE Trans. Commun. 46(2), 182–190 (1998).
[CrossRef]

Giddings, R. P.

Hu, J.

Huang, M.-F.

Huang, Y.-K.

Hugues-Salas, E.

Ip, E.

Ishihara, K.

Kobayashi, T.

Kudo, R.

Liu, X.

Lowery, A. J.

A. J. Lowery and L. B. Du, “Optical orthogonal division multiplexing for long haul optical communications: A review of the first five years,” Opt. Fiber Technol. 17(5), 421–438 (2011).
[CrossRef]

Masuda, H.

May, T.

T. May, H. Rohling, and V. Engels, “Performance analysis of Viterbi decoding for 64-DAPSK and 64-QAM modulated OFDM signals,” IEEE Trans. Commun. 46(2), 182–190 (1998).
[CrossRef]

Miyamoto, Y.

Morsy-Osman, M.

Plant, D. V.

Qian, D.

Rohling, H.

T. May, H. Rohling, and V. Engels, “Performance analysis of Viterbi decoding for 64-DAPSK and 64-QAM modulated OFDM signals,” IEEE Trans. Commun. 46(2), 182–190 (1998).
[CrossRef]

Sánchez, C.

Sano, A.

Shao, Y.

Shieh, W.

Takatori, Y.

Tang, J. M.

Tkach, R. W.

Wang, T.

Wei, J. L.

Yamada, E.

Yamazaki, E.

Yoshida, E.

Zhao, J.

J. Zhao and A. Ellis, “Transmission of 4-ASK optical fast OFDM with chromatic dispersion compensation,” IEEE Photon. Technol. Lett. 24(1), 34–36 (2012).
[CrossRef]

Zhuge, Q.

IEEE Photon. Technol. Lett. (1)

J. Zhao and A. Ellis, “Transmission of 4-ASK optical fast OFDM with chromatic dispersion compensation,” IEEE Photon. Technol. Lett. 24(1), 34–36 (2012).
[CrossRef]

IEEE Trans. Commun. (1)

T. May, H. Rohling, and V. Engels, “Performance analysis of Viterbi decoding for 64-DAPSK and 64-QAM modulated OFDM signals,” IEEE Trans. Commun. 46(2), 182–190 (1998).
[CrossRef]

J. Lightwave Technol. (5)

Opt. Express (2)

Opt. Fiber Technol. (1)

A. J. Lowery and L. B. Du, “Optical orthogonal division multiplexing for long haul optical communications: A review of the first five years,” Opt. Fiber Technol. 17(5), 421–438 (2011).
[CrossRef]

Other (4)

N. Toender and H. Rohling, “DAPSK schemes for low-complexity OFDM systems,” IEEE 16th International Symposium on Personal, Indoor and Mobile Radio Communications, 735–739 (2006).

C.-C.Fang, Y.-J. Lin, S.-W. Wei, and J.-F. Chang, “Performance analyses of DAPSK in a very high mobility environment,” in Proc.WIRLES 2005, 570–575 (2005).

S. L. Jansen, I. Morita, N. Takeda, and H. Tanaka, “Pre-emphasis and RF-pilot tone phase noise compensation for coherent OFDM transmission systems,” in Proc. CLEO 2007, paper. MA1.2 (2007).

N. Kaneda, Q. Yang, X. Liu, W. Shieh, and Y.-K. Chen, “Realizing real-time implementation of coherent optical OFDM receiver with FPGAs,” in Proc. ECOC’2009, paper.5.4.4 (2009).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

The principle of optical mDAPSK-OFDM system (IFFT: inverse fast Fourier transform; CP: cyclic prefix; Coh. Rx: coherent receiver).

Fig. 2
Fig. 2

The status transition diagrams of amplitude differential mapping: (a) two amplitude levels; (b) four amplitude levels.

Fig. 3
Fig. 3

The structures of QAM-OFDM and DAPSK-OFDM frames.

Fig. 4
Fig. 4

The experimental setup (AWG: arbitrary waveform generator; TDS: real-time digital scope).

Fig. 5
Fig. 5

Measured BER curves and constellation of 64DAPSK-OFDM signal before and after transmission (resolution: 0.1nm).

Fig. 6
Fig. 6

The measured BER curves for different mDAPSK-OFDM and mQAM-OFDM signals after 160km transmission: (a) 16QAM-OFDM v.s. 16DAPSK-OFDM; (b) 32QAM-OFDM v.s. 32DAPSK-OFDM; (c) 64QAM-OFDM v.s. 64DAPSK-OFDM (w/: with; w/o: without, resolution: 0.1nm).

Fig. 7
Fig. 7

The constellation of 64DAPSK-OFDM and 64QAM-OFDM signal after transmission.

Fig. 8
Fig. 8

The measured BER after transmission vs. launced optical power for 64QAM-OFDM and 64DAPSK signals (at OSNR of 25dB, resolution: 0.1nm).

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

s(t)= k=1 N X i,k e j2πkt/ T s ,t=m T s /N
X i,k = α ik e j θ ik
{ α ik = γ k α i(k1) , γ k ( A ±( 2 M a 1) , A ±( 2 M a 2) ,...,A 0 ) θ ik = θ i(k1) +Δ θ k , Δ θ k =(2l+1)π/ 2 M p ,l=0,1,..., 2 M p 1
R i,k = H i,k S i,k + N i,k
D i,k = R i,k R i1,k =α ' i,k e jθ ' i,k

Metrics