Abstract

This work proposes an electrically tunable infrared light source based on a new compact structure, i.e., an AlGaInAs semiconductor multiple quantum well (MQW) integrated with a liquid crystal Fabry-Pérot filter. The AlGaInAs MQW is used as a luminance layer that emits broadband light. By sandwiching the AlGaInAs and LC material with two conducting mirrors, the active light source with an optical filter can be tuned with a wide wavelength range. The filter filled with nematic liquid crystal enables continuous tuning of emission along the extraordinary mode and provides a 58 nm tuning range with a bias of 14 V. The simulation results of wavelength and tunability are consistent with the experimental results. Cholesteric liquid crystal with a planar texture is also used to examine the properties of the tunable light source. Under an electric field, all the helical liquid crystal molecules tend to be aligned parallel to the field. The variation of the refractive index is normal to the substrate surface, and the polarization-independent tuning range is 41 nm. The wide tuning range and the polarization properties observed when NLC and CLC are respectively incorporated into the AlGaInAs based Fabry-Pérot cavity suggest that this integration scheme has potential for applying to optical communication system.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. E. C. Vail, M. S. Wu, G. S. Li, L. Eng, and C. J. Changhasnain, “GaAs micromachined widely tunable Fabry-Perot filters,” Electron. Lett. 31(3), 228–229 (1995).
    [CrossRef]
  2. J. Peerlings, A. Dehe, A. Vogt, M. Tilsch, C. Hebeler, F. Langenhan, P. Meissner, and H. L. Hartnagel, “Long resonator micromachined tunable GaAs-AlAs Fabry-Perot filter,” IEEE Photon. Technol. Lett. 9(9), 1235–1237 (1997).
    [CrossRef]
  3. A. Spisser, R. Ledantec, C. Seassal, J. L. Leclercq, T. Benyattou, D. Rondi, R. Blondeau, G. Guillot, and P. Viktorovitch, “Highly selective and widely tunable 1.55-mu m InP/air-gap micromachined Fabry-Perot filter for optical communications,” IEEE Photon. Technol. Lett. 10(9), 1259–1261 (1998).
    [CrossRef]
  4. J. S. Patel, M. A. Saifi, D. W. Berreman, C. L. Lin, N. Andreadakis, and S. D. Lee, “Electrically tunable optical filter for infrared wavelength using liquid-crystals in a Fabry-Perot Etalon,” Appl. Phys. Lett. 57(17), 1718–1720 (1990).
    [CrossRef]
  5. M. W. Maeda, J. S. Patel, C. L. Lin, J. Horrobin, and R. Spicer, “Electronically tunable liquid-crystal-Etalon filter for high-density wdm systems,” IEEE Photon. Technol. Lett. 2(11), 820–822 (1990).
    [CrossRef]
  6. G. Pucker, A. Mezzetti, M. Crivellari, P. Bellutti, A. Lui, N. Daldosso, and L. Pavesi, “Silicon-based near-infrared tunable filters filled with positive or negative dielectric anisotropic liquid crystals,” J. Appl. Phys. 95(2), 767–769 (2004).
    [CrossRef]
  7. Y. Huang, T. X. Wu, and S.-T. Wu, “Simulations of liquid-crystal Fabry–Perot etalons by an improved 4x4matrix method,” J. Appl. Phys. 93(5), 2490–2495 (2003).
  8. N. Neumann, M. Ebermann, and S. Kurth, “Tunable infrared detector with integrated micromachined Fabry-Perot filter,” J. Micro-Nanolith. MEMS 7, 021104 (2008).
  9. J. S. Patel and S. D. Lee, “Electrically tunable and polarization insensitive Fabry-Perot Etalon with a liquid-crystal film,” Appl. Phys. Lett. 58(22), 2491–2493 (1991).
    [CrossRef]
  10. J. S. Patel and M. W. Maeda, “Tunable polarization diversity liquid-crystal wavelength filter,” IEEE Photon. Technol. Lett. 3(8), 739–740 (1991).
    [CrossRef]
  11. J. H. Lee, H. R. Kim, and S. D. Lee, “Polarization-insensitive wavelength selection in an axially symmetric liquid-crystal Fabry-Perot filter,” Appl. Phys. Lett. 75(6), 859–861 (1999).
    [CrossRef]
  12. Y. Huang, C.-H. Wen, and S.-T. Wu, “Polarization-independent and submillisecond response phase modulators using a 90° twisted dual-frequency liquid crystal,” Appl. Phys. Lett. 89(2), 021103 (2006).
    [CrossRef]
  13. D. K. Yang, J. W. Doane, Z. Yaniv, and J. Glasser, “Cholesteric reflective display - Drive Scheme and Contrast,” Appl. Phys. Lett. 64(15), 1905–1907 (1994).
    [CrossRef]
  14. T. H. Lin and A. Y. G. Fuh, “Transflective spatial filter based on azo-dye-doped cholesteric liquid crystal films,” Appl. Phys. Lett. 87(1), 011106 (2005).
    [CrossRef]
  15. S. S. Choi, S. M. Morris, W. T. S. Huck, and H. J. Coles, “Electrically tuneable liquid crystal photonic bandgaps,” Adv. Mater. (Deerfield Beach Fla.) 21, 3915 (2009).
  16. D.-K. Yang and S.-T. Wu, Fundamentals of Liquid Crystal Devices (John Wiley, 2006).
  17. J. Oberhammer, F. Niklaus, and G. Stemme, “Selective wafer-level adhesive bonding with benzocyclobutene for fabrication of cavities,” Sens. Actuators A Phys. 105(3), 297–304 (2003).
    [CrossRef]
  18. S.-T. Wu, “Absorption measurements of liquid crystals in the ultraviolet, visible, and infrared,” J. Appl. Phys. 84(8), 4462–4465 (1998).
    [CrossRef]
  19. A. Yariv, Optical Electronics in Modern Communications, 5th ed. (Oxford University Press, 1997).

2009

S. S. Choi, S. M. Morris, W. T. S. Huck, and H. J. Coles, “Electrically tuneable liquid crystal photonic bandgaps,” Adv. Mater. (Deerfield Beach Fla.) 21, 3915 (2009).

2008

N. Neumann, M. Ebermann, and S. Kurth, “Tunable infrared detector with integrated micromachined Fabry-Perot filter,” J. Micro-Nanolith. MEMS 7, 021104 (2008).

2006

Y. Huang, C.-H. Wen, and S.-T. Wu, “Polarization-independent and submillisecond response phase modulators using a 90° twisted dual-frequency liquid crystal,” Appl. Phys. Lett. 89(2), 021103 (2006).
[CrossRef]

2005

T. H. Lin and A. Y. G. Fuh, “Transflective spatial filter based on azo-dye-doped cholesteric liquid crystal films,” Appl. Phys. Lett. 87(1), 011106 (2005).
[CrossRef]

2004

G. Pucker, A. Mezzetti, M. Crivellari, P. Bellutti, A. Lui, N. Daldosso, and L. Pavesi, “Silicon-based near-infrared tunable filters filled with positive or negative dielectric anisotropic liquid crystals,” J. Appl. Phys. 95(2), 767–769 (2004).
[CrossRef]

2003

Y. Huang, T. X. Wu, and S.-T. Wu, “Simulations of liquid-crystal Fabry–Perot etalons by an improved 4x4matrix method,” J. Appl. Phys. 93(5), 2490–2495 (2003).

J. Oberhammer, F. Niklaus, and G. Stemme, “Selective wafer-level adhesive bonding with benzocyclobutene for fabrication of cavities,” Sens. Actuators A Phys. 105(3), 297–304 (2003).
[CrossRef]

1999

J. H. Lee, H. R. Kim, and S. D. Lee, “Polarization-insensitive wavelength selection in an axially symmetric liquid-crystal Fabry-Perot filter,” Appl. Phys. Lett. 75(6), 859–861 (1999).
[CrossRef]

1998

S.-T. Wu, “Absorption measurements of liquid crystals in the ultraviolet, visible, and infrared,” J. Appl. Phys. 84(8), 4462–4465 (1998).
[CrossRef]

A. Spisser, R. Ledantec, C. Seassal, J. L. Leclercq, T. Benyattou, D. Rondi, R. Blondeau, G. Guillot, and P. Viktorovitch, “Highly selective and widely tunable 1.55-mu m InP/air-gap micromachined Fabry-Perot filter for optical communications,” IEEE Photon. Technol. Lett. 10(9), 1259–1261 (1998).
[CrossRef]

1997

J. Peerlings, A. Dehe, A. Vogt, M. Tilsch, C. Hebeler, F. Langenhan, P. Meissner, and H. L. Hartnagel, “Long resonator micromachined tunable GaAs-AlAs Fabry-Perot filter,” IEEE Photon. Technol. Lett. 9(9), 1235–1237 (1997).
[CrossRef]

1995

E. C. Vail, M. S. Wu, G. S. Li, L. Eng, and C. J. Changhasnain, “GaAs micromachined widely tunable Fabry-Perot filters,” Electron. Lett. 31(3), 228–229 (1995).
[CrossRef]

1994

D. K. Yang, J. W. Doane, Z. Yaniv, and J. Glasser, “Cholesteric reflective display - Drive Scheme and Contrast,” Appl. Phys. Lett. 64(15), 1905–1907 (1994).
[CrossRef]

1991

J. S. Patel and S. D. Lee, “Electrically tunable and polarization insensitive Fabry-Perot Etalon with a liquid-crystal film,” Appl. Phys. Lett. 58(22), 2491–2493 (1991).
[CrossRef]

J. S. Patel and M. W. Maeda, “Tunable polarization diversity liquid-crystal wavelength filter,” IEEE Photon. Technol. Lett. 3(8), 739–740 (1991).
[CrossRef]

1990

J. S. Patel, M. A. Saifi, D. W. Berreman, C. L. Lin, N. Andreadakis, and S. D. Lee, “Electrically tunable optical filter for infrared wavelength using liquid-crystals in a Fabry-Perot Etalon,” Appl. Phys. Lett. 57(17), 1718–1720 (1990).
[CrossRef]

M. W. Maeda, J. S. Patel, C. L. Lin, J. Horrobin, and R. Spicer, “Electronically tunable liquid-crystal-Etalon filter for high-density wdm systems,” IEEE Photon. Technol. Lett. 2(11), 820–822 (1990).
[CrossRef]

Andreadakis, N.

J. S. Patel, M. A. Saifi, D. W. Berreman, C. L. Lin, N. Andreadakis, and S. D. Lee, “Electrically tunable optical filter for infrared wavelength using liquid-crystals in a Fabry-Perot Etalon,” Appl. Phys. Lett. 57(17), 1718–1720 (1990).
[CrossRef]

Bellutti, P.

G. Pucker, A. Mezzetti, M. Crivellari, P. Bellutti, A. Lui, N. Daldosso, and L. Pavesi, “Silicon-based near-infrared tunable filters filled with positive or negative dielectric anisotropic liquid crystals,” J. Appl. Phys. 95(2), 767–769 (2004).
[CrossRef]

Benyattou, T.

A. Spisser, R. Ledantec, C. Seassal, J. L. Leclercq, T. Benyattou, D. Rondi, R. Blondeau, G. Guillot, and P. Viktorovitch, “Highly selective and widely tunable 1.55-mu m InP/air-gap micromachined Fabry-Perot filter for optical communications,” IEEE Photon. Technol. Lett. 10(9), 1259–1261 (1998).
[CrossRef]

Berreman, D. W.

J. S. Patel, M. A. Saifi, D. W. Berreman, C. L. Lin, N. Andreadakis, and S. D. Lee, “Electrically tunable optical filter for infrared wavelength using liquid-crystals in a Fabry-Perot Etalon,” Appl. Phys. Lett. 57(17), 1718–1720 (1990).
[CrossRef]

Blondeau, R.

A. Spisser, R. Ledantec, C. Seassal, J. L. Leclercq, T. Benyattou, D. Rondi, R. Blondeau, G. Guillot, and P. Viktorovitch, “Highly selective and widely tunable 1.55-mu m InP/air-gap micromachined Fabry-Perot filter for optical communications,” IEEE Photon. Technol. Lett. 10(9), 1259–1261 (1998).
[CrossRef]

Changhasnain, C. J.

E. C. Vail, M. S. Wu, G. S. Li, L. Eng, and C. J. Changhasnain, “GaAs micromachined widely tunable Fabry-Perot filters,” Electron. Lett. 31(3), 228–229 (1995).
[CrossRef]

Choi, S. S.

S. S. Choi, S. M. Morris, W. T. S. Huck, and H. J. Coles, “Electrically tuneable liquid crystal photonic bandgaps,” Adv. Mater. (Deerfield Beach Fla.) 21, 3915 (2009).

Coles, H. J.

S. S. Choi, S. M. Morris, W. T. S. Huck, and H. J. Coles, “Electrically tuneable liquid crystal photonic bandgaps,” Adv. Mater. (Deerfield Beach Fla.) 21, 3915 (2009).

Crivellari, M.

G. Pucker, A. Mezzetti, M. Crivellari, P. Bellutti, A. Lui, N. Daldosso, and L. Pavesi, “Silicon-based near-infrared tunable filters filled with positive or negative dielectric anisotropic liquid crystals,” J. Appl. Phys. 95(2), 767–769 (2004).
[CrossRef]

Daldosso, N.

G. Pucker, A. Mezzetti, M. Crivellari, P. Bellutti, A. Lui, N. Daldosso, and L. Pavesi, “Silicon-based near-infrared tunable filters filled with positive or negative dielectric anisotropic liquid crystals,” J. Appl. Phys. 95(2), 767–769 (2004).
[CrossRef]

Dehe, A.

J. Peerlings, A. Dehe, A. Vogt, M. Tilsch, C. Hebeler, F. Langenhan, P. Meissner, and H. L. Hartnagel, “Long resonator micromachined tunable GaAs-AlAs Fabry-Perot filter,” IEEE Photon. Technol. Lett. 9(9), 1235–1237 (1997).
[CrossRef]

Doane, J. W.

D. K. Yang, J. W. Doane, Z. Yaniv, and J. Glasser, “Cholesteric reflective display - Drive Scheme and Contrast,” Appl. Phys. Lett. 64(15), 1905–1907 (1994).
[CrossRef]

Ebermann, M.

N. Neumann, M. Ebermann, and S. Kurth, “Tunable infrared detector with integrated micromachined Fabry-Perot filter,” J. Micro-Nanolith. MEMS 7, 021104 (2008).

Eng, L.

E. C. Vail, M. S. Wu, G. S. Li, L. Eng, and C. J. Changhasnain, “GaAs micromachined widely tunable Fabry-Perot filters,” Electron. Lett. 31(3), 228–229 (1995).
[CrossRef]

Fuh, A. Y. G.

T. H. Lin and A. Y. G. Fuh, “Transflective spatial filter based on azo-dye-doped cholesteric liquid crystal films,” Appl. Phys. Lett. 87(1), 011106 (2005).
[CrossRef]

Glasser, J.

D. K. Yang, J. W. Doane, Z. Yaniv, and J. Glasser, “Cholesteric reflective display - Drive Scheme and Contrast,” Appl. Phys. Lett. 64(15), 1905–1907 (1994).
[CrossRef]

Guillot, G.

A. Spisser, R. Ledantec, C. Seassal, J. L. Leclercq, T. Benyattou, D. Rondi, R. Blondeau, G. Guillot, and P. Viktorovitch, “Highly selective and widely tunable 1.55-mu m InP/air-gap micromachined Fabry-Perot filter for optical communications,” IEEE Photon. Technol. Lett. 10(9), 1259–1261 (1998).
[CrossRef]

Hartnagel, H. L.

J. Peerlings, A. Dehe, A. Vogt, M. Tilsch, C. Hebeler, F. Langenhan, P. Meissner, and H. L. Hartnagel, “Long resonator micromachined tunable GaAs-AlAs Fabry-Perot filter,” IEEE Photon. Technol. Lett. 9(9), 1235–1237 (1997).
[CrossRef]

Hebeler, C.

J. Peerlings, A. Dehe, A. Vogt, M. Tilsch, C. Hebeler, F. Langenhan, P. Meissner, and H. L. Hartnagel, “Long resonator micromachined tunable GaAs-AlAs Fabry-Perot filter,” IEEE Photon. Technol. Lett. 9(9), 1235–1237 (1997).
[CrossRef]

Horrobin, J.

M. W. Maeda, J. S. Patel, C. L. Lin, J. Horrobin, and R. Spicer, “Electronically tunable liquid-crystal-Etalon filter for high-density wdm systems,” IEEE Photon. Technol. Lett. 2(11), 820–822 (1990).
[CrossRef]

Huang, Y.

Y. Huang, C.-H. Wen, and S.-T. Wu, “Polarization-independent and submillisecond response phase modulators using a 90° twisted dual-frequency liquid crystal,” Appl. Phys. Lett. 89(2), 021103 (2006).
[CrossRef]

Y. Huang, T. X. Wu, and S.-T. Wu, “Simulations of liquid-crystal Fabry–Perot etalons by an improved 4x4matrix method,” J. Appl. Phys. 93(5), 2490–2495 (2003).

Huck, W. T. S.

S. S. Choi, S. M. Morris, W. T. S. Huck, and H. J. Coles, “Electrically tuneable liquid crystal photonic bandgaps,” Adv. Mater. (Deerfield Beach Fla.) 21, 3915 (2009).

Kim, H. R.

J. H. Lee, H. R. Kim, and S. D. Lee, “Polarization-insensitive wavelength selection in an axially symmetric liquid-crystal Fabry-Perot filter,” Appl. Phys. Lett. 75(6), 859–861 (1999).
[CrossRef]

Kurth, S.

N. Neumann, M. Ebermann, and S. Kurth, “Tunable infrared detector with integrated micromachined Fabry-Perot filter,” J. Micro-Nanolith. MEMS 7, 021104 (2008).

Langenhan, F.

J. Peerlings, A. Dehe, A. Vogt, M. Tilsch, C. Hebeler, F. Langenhan, P. Meissner, and H. L. Hartnagel, “Long resonator micromachined tunable GaAs-AlAs Fabry-Perot filter,” IEEE Photon. Technol. Lett. 9(9), 1235–1237 (1997).
[CrossRef]

Leclercq, J. L.

A. Spisser, R. Ledantec, C. Seassal, J. L. Leclercq, T. Benyattou, D. Rondi, R. Blondeau, G. Guillot, and P. Viktorovitch, “Highly selective and widely tunable 1.55-mu m InP/air-gap micromachined Fabry-Perot filter for optical communications,” IEEE Photon. Technol. Lett. 10(9), 1259–1261 (1998).
[CrossRef]

Ledantec, R.

A. Spisser, R. Ledantec, C. Seassal, J. L. Leclercq, T. Benyattou, D. Rondi, R. Blondeau, G. Guillot, and P. Viktorovitch, “Highly selective and widely tunable 1.55-mu m InP/air-gap micromachined Fabry-Perot filter for optical communications,” IEEE Photon. Technol. Lett. 10(9), 1259–1261 (1998).
[CrossRef]

Lee, J. H.

J. H. Lee, H. R. Kim, and S. D. Lee, “Polarization-insensitive wavelength selection in an axially symmetric liquid-crystal Fabry-Perot filter,” Appl. Phys. Lett. 75(6), 859–861 (1999).
[CrossRef]

Lee, S. D.

J. H. Lee, H. R. Kim, and S. D. Lee, “Polarization-insensitive wavelength selection in an axially symmetric liquid-crystal Fabry-Perot filter,” Appl. Phys. Lett. 75(6), 859–861 (1999).
[CrossRef]

J. S. Patel and S. D. Lee, “Electrically tunable and polarization insensitive Fabry-Perot Etalon with a liquid-crystal film,” Appl. Phys. Lett. 58(22), 2491–2493 (1991).
[CrossRef]

J. S. Patel, M. A. Saifi, D. W. Berreman, C. L. Lin, N. Andreadakis, and S. D. Lee, “Electrically tunable optical filter for infrared wavelength using liquid-crystals in a Fabry-Perot Etalon,” Appl. Phys. Lett. 57(17), 1718–1720 (1990).
[CrossRef]

Li, G. S.

E. C. Vail, M. S. Wu, G. S. Li, L. Eng, and C. J. Changhasnain, “GaAs micromachined widely tunable Fabry-Perot filters,” Electron. Lett. 31(3), 228–229 (1995).
[CrossRef]

Lin, C. L.

J. S. Patel, M. A. Saifi, D. W. Berreman, C. L. Lin, N. Andreadakis, and S. D. Lee, “Electrically tunable optical filter for infrared wavelength using liquid-crystals in a Fabry-Perot Etalon,” Appl. Phys. Lett. 57(17), 1718–1720 (1990).
[CrossRef]

M. W. Maeda, J. S. Patel, C. L. Lin, J. Horrobin, and R. Spicer, “Electronically tunable liquid-crystal-Etalon filter for high-density wdm systems,” IEEE Photon. Technol. Lett. 2(11), 820–822 (1990).
[CrossRef]

Lin, T. H.

T. H. Lin and A. Y. G. Fuh, “Transflective spatial filter based on azo-dye-doped cholesteric liquid crystal films,” Appl. Phys. Lett. 87(1), 011106 (2005).
[CrossRef]

Lui, A.

G. Pucker, A. Mezzetti, M. Crivellari, P. Bellutti, A. Lui, N. Daldosso, and L. Pavesi, “Silicon-based near-infrared tunable filters filled with positive or negative dielectric anisotropic liquid crystals,” J. Appl. Phys. 95(2), 767–769 (2004).
[CrossRef]

Maeda, M. W.

J. S. Patel and M. W. Maeda, “Tunable polarization diversity liquid-crystal wavelength filter,” IEEE Photon. Technol. Lett. 3(8), 739–740 (1991).
[CrossRef]

M. W. Maeda, J. S. Patel, C. L. Lin, J. Horrobin, and R. Spicer, “Electronically tunable liquid-crystal-Etalon filter for high-density wdm systems,” IEEE Photon. Technol. Lett. 2(11), 820–822 (1990).
[CrossRef]

Meissner, P.

J. Peerlings, A. Dehe, A. Vogt, M. Tilsch, C. Hebeler, F. Langenhan, P. Meissner, and H. L. Hartnagel, “Long resonator micromachined tunable GaAs-AlAs Fabry-Perot filter,” IEEE Photon. Technol. Lett. 9(9), 1235–1237 (1997).
[CrossRef]

Mezzetti, A.

G. Pucker, A. Mezzetti, M. Crivellari, P. Bellutti, A. Lui, N. Daldosso, and L. Pavesi, “Silicon-based near-infrared tunable filters filled with positive or negative dielectric anisotropic liquid crystals,” J. Appl. Phys. 95(2), 767–769 (2004).
[CrossRef]

Morris, S. M.

S. S. Choi, S. M. Morris, W. T. S. Huck, and H. J. Coles, “Electrically tuneable liquid crystal photonic bandgaps,” Adv. Mater. (Deerfield Beach Fla.) 21, 3915 (2009).

Neumann, N.

N. Neumann, M. Ebermann, and S. Kurth, “Tunable infrared detector with integrated micromachined Fabry-Perot filter,” J. Micro-Nanolith. MEMS 7, 021104 (2008).

Niklaus, F.

J. Oberhammer, F. Niklaus, and G. Stemme, “Selective wafer-level adhesive bonding with benzocyclobutene for fabrication of cavities,” Sens. Actuators A Phys. 105(3), 297–304 (2003).
[CrossRef]

Oberhammer, J.

J. Oberhammer, F. Niklaus, and G. Stemme, “Selective wafer-level adhesive bonding with benzocyclobutene for fabrication of cavities,” Sens. Actuators A Phys. 105(3), 297–304 (2003).
[CrossRef]

Patel, J. S.

J. S. Patel and S. D. Lee, “Electrically tunable and polarization insensitive Fabry-Perot Etalon with a liquid-crystal film,” Appl. Phys. Lett. 58(22), 2491–2493 (1991).
[CrossRef]

J. S. Patel and M. W. Maeda, “Tunable polarization diversity liquid-crystal wavelength filter,” IEEE Photon. Technol. Lett. 3(8), 739–740 (1991).
[CrossRef]

M. W. Maeda, J. S. Patel, C. L. Lin, J. Horrobin, and R. Spicer, “Electronically tunable liquid-crystal-Etalon filter for high-density wdm systems,” IEEE Photon. Technol. Lett. 2(11), 820–822 (1990).
[CrossRef]

J. S. Patel, M. A. Saifi, D. W. Berreman, C. L. Lin, N. Andreadakis, and S. D. Lee, “Electrically tunable optical filter for infrared wavelength using liquid-crystals in a Fabry-Perot Etalon,” Appl. Phys. Lett. 57(17), 1718–1720 (1990).
[CrossRef]

Pavesi, L.

G. Pucker, A. Mezzetti, M. Crivellari, P. Bellutti, A. Lui, N. Daldosso, and L. Pavesi, “Silicon-based near-infrared tunable filters filled with positive or negative dielectric anisotropic liquid crystals,” J. Appl. Phys. 95(2), 767–769 (2004).
[CrossRef]

Peerlings, J.

J. Peerlings, A. Dehe, A. Vogt, M. Tilsch, C. Hebeler, F. Langenhan, P. Meissner, and H. L. Hartnagel, “Long resonator micromachined tunable GaAs-AlAs Fabry-Perot filter,” IEEE Photon. Technol. Lett. 9(9), 1235–1237 (1997).
[CrossRef]

Pucker, G.

G. Pucker, A. Mezzetti, M. Crivellari, P. Bellutti, A. Lui, N. Daldosso, and L. Pavesi, “Silicon-based near-infrared tunable filters filled with positive or negative dielectric anisotropic liquid crystals,” J. Appl. Phys. 95(2), 767–769 (2004).
[CrossRef]

Rondi, D.

A. Spisser, R. Ledantec, C. Seassal, J. L. Leclercq, T. Benyattou, D. Rondi, R. Blondeau, G. Guillot, and P. Viktorovitch, “Highly selective and widely tunable 1.55-mu m InP/air-gap micromachined Fabry-Perot filter for optical communications,” IEEE Photon. Technol. Lett. 10(9), 1259–1261 (1998).
[CrossRef]

Saifi, M. A.

J. S. Patel, M. A. Saifi, D. W. Berreman, C. L. Lin, N. Andreadakis, and S. D. Lee, “Electrically tunable optical filter for infrared wavelength using liquid-crystals in a Fabry-Perot Etalon,” Appl. Phys. Lett. 57(17), 1718–1720 (1990).
[CrossRef]

Seassal, C.

A. Spisser, R. Ledantec, C. Seassal, J. L. Leclercq, T. Benyattou, D. Rondi, R. Blondeau, G. Guillot, and P. Viktorovitch, “Highly selective and widely tunable 1.55-mu m InP/air-gap micromachined Fabry-Perot filter for optical communications,” IEEE Photon. Technol. Lett. 10(9), 1259–1261 (1998).
[CrossRef]

Spicer, R.

M. W. Maeda, J. S. Patel, C. L. Lin, J. Horrobin, and R. Spicer, “Electronically tunable liquid-crystal-Etalon filter for high-density wdm systems,” IEEE Photon. Technol. Lett. 2(11), 820–822 (1990).
[CrossRef]

Spisser, A.

A. Spisser, R. Ledantec, C. Seassal, J. L. Leclercq, T. Benyattou, D. Rondi, R. Blondeau, G. Guillot, and P. Viktorovitch, “Highly selective and widely tunable 1.55-mu m InP/air-gap micromachined Fabry-Perot filter for optical communications,” IEEE Photon. Technol. Lett. 10(9), 1259–1261 (1998).
[CrossRef]

Stemme, G.

J. Oberhammer, F. Niklaus, and G. Stemme, “Selective wafer-level adhesive bonding with benzocyclobutene for fabrication of cavities,” Sens. Actuators A Phys. 105(3), 297–304 (2003).
[CrossRef]

Tilsch, M.

J. Peerlings, A. Dehe, A. Vogt, M. Tilsch, C. Hebeler, F. Langenhan, P. Meissner, and H. L. Hartnagel, “Long resonator micromachined tunable GaAs-AlAs Fabry-Perot filter,” IEEE Photon. Technol. Lett. 9(9), 1235–1237 (1997).
[CrossRef]

Vail, E. C.

E. C. Vail, M. S. Wu, G. S. Li, L. Eng, and C. J. Changhasnain, “GaAs micromachined widely tunable Fabry-Perot filters,” Electron. Lett. 31(3), 228–229 (1995).
[CrossRef]

Viktorovitch, P.

A. Spisser, R. Ledantec, C. Seassal, J. L. Leclercq, T. Benyattou, D. Rondi, R. Blondeau, G. Guillot, and P. Viktorovitch, “Highly selective and widely tunable 1.55-mu m InP/air-gap micromachined Fabry-Perot filter for optical communications,” IEEE Photon. Technol. Lett. 10(9), 1259–1261 (1998).
[CrossRef]

Vogt, A.

J. Peerlings, A. Dehe, A. Vogt, M. Tilsch, C. Hebeler, F. Langenhan, P. Meissner, and H. L. Hartnagel, “Long resonator micromachined tunable GaAs-AlAs Fabry-Perot filter,” IEEE Photon. Technol. Lett. 9(9), 1235–1237 (1997).
[CrossRef]

Wen, C.-H.

Y. Huang, C.-H. Wen, and S.-T. Wu, “Polarization-independent and submillisecond response phase modulators using a 90° twisted dual-frequency liquid crystal,” Appl. Phys. Lett. 89(2), 021103 (2006).
[CrossRef]

Wu, M. S.

E. C. Vail, M. S. Wu, G. S. Li, L. Eng, and C. J. Changhasnain, “GaAs micromachined widely tunable Fabry-Perot filters,” Electron. Lett. 31(3), 228–229 (1995).
[CrossRef]

Wu, S.-T.

Y. Huang, C.-H. Wen, and S.-T. Wu, “Polarization-independent and submillisecond response phase modulators using a 90° twisted dual-frequency liquid crystal,” Appl. Phys. Lett. 89(2), 021103 (2006).
[CrossRef]

Y. Huang, T. X. Wu, and S.-T. Wu, “Simulations of liquid-crystal Fabry–Perot etalons by an improved 4x4matrix method,” J. Appl. Phys. 93(5), 2490–2495 (2003).

S.-T. Wu, “Absorption measurements of liquid crystals in the ultraviolet, visible, and infrared,” J. Appl. Phys. 84(8), 4462–4465 (1998).
[CrossRef]

Wu, T. X.

Y. Huang, T. X. Wu, and S.-T. Wu, “Simulations of liquid-crystal Fabry–Perot etalons by an improved 4x4matrix method,” J. Appl. Phys. 93(5), 2490–2495 (2003).

Yang, D. K.

D. K. Yang, J. W. Doane, Z. Yaniv, and J. Glasser, “Cholesteric reflective display - Drive Scheme and Contrast,” Appl. Phys. Lett. 64(15), 1905–1907 (1994).
[CrossRef]

Yaniv, Z.

D. K. Yang, J. W. Doane, Z. Yaniv, and J. Glasser, “Cholesteric reflective display - Drive Scheme and Contrast,” Appl. Phys. Lett. 64(15), 1905–1907 (1994).
[CrossRef]

Adv. Mater. (Deerfield Beach Fla.)

S. S. Choi, S. M. Morris, W. T. S. Huck, and H. J. Coles, “Electrically tuneable liquid crystal photonic bandgaps,” Adv. Mater. (Deerfield Beach Fla.) 21, 3915 (2009).

Appl. Phys. Lett.

J. H. Lee, H. R. Kim, and S. D. Lee, “Polarization-insensitive wavelength selection in an axially symmetric liquid-crystal Fabry-Perot filter,” Appl. Phys. Lett. 75(6), 859–861 (1999).
[CrossRef]

Y. Huang, C.-H. Wen, and S.-T. Wu, “Polarization-independent and submillisecond response phase modulators using a 90° twisted dual-frequency liquid crystal,” Appl. Phys. Lett. 89(2), 021103 (2006).
[CrossRef]

D. K. Yang, J. W. Doane, Z. Yaniv, and J. Glasser, “Cholesteric reflective display - Drive Scheme and Contrast,” Appl. Phys. Lett. 64(15), 1905–1907 (1994).
[CrossRef]

T. H. Lin and A. Y. G. Fuh, “Transflective spatial filter based on azo-dye-doped cholesteric liquid crystal films,” Appl. Phys. Lett. 87(1), 011106 (2005).
[CrossRef]

J. S. Patel, M. A. Saifi, D. W. Berreman, C. L. Lin, N. Andreadakis, and S. D. Lee, “Electrically tunable optical filter for infrared wavelength using liquid-crystals in a Fabry-Perot Etalon,” Appl. Phys. Lett. 57(17), 1718–1720 (1990).
[CrossRef]

J. S. Patel and S. D. Lee, “Electrically tunable and polarization insensitive Fabry-Perot Etalon with a liquid-crystal film,” Appl. Phys. Lett. 58(22), 2491–2493 (1991).
[CrossRef]

Electron. Lett.

E. C. Vail, M. S. Wu, G. S. Li, L. Eng, and C. J. Changhasnain, “GaAs micromachined widely tunable Fabry-Perot filters,” Electron. Lett. 31(3), 228–229 (1995).
[CrossRef]

IEEE Photon. Technol. Lett.

J. Peerlings, A. Dehe, A. Vogt, M. Tilsch, C. Hebeler, F. Langenhan, P. Meissner, and H. L. Hartnagel, “Long resonator micromachined tunable GaAs-AlAs Fabry-Perot filter,” IEEE Photon. Technol. Lett. 9(9), 1235–1237 (1997).
[CrossRef]

A. Spisser, R. Ledantec, C. Seassal, J. L. Leclercq, T. Benyattou, D. Rondi, R. Blondeau, G. Guillot, and P. Viktorovitch, “Highly selective and widely tunable 1.55-mu m InP/air-gap micromachined Fabry-Perot filter for optical communications,” IEEE Photon. Technol. Lett. 10(9), 1259–1261 (1998).
[CrossRef]

J. S. Patel and M. W. Maeda, “Tunable polarization diversity liquid-crystal wavelength filter,” IEEE Photon. Technol. Lett. 3(8), 739–740 (1991).
[CrossRef]

M. W. Maeda, J. S. Patel, C. L. Lin, J. Horrobin, and R. Spicer, “Electronically tunable liquid-crystal-Etalon filter for high-density wdm systems,” IEEE Photon. Technol. Lett. 2(11), 820–822 (1990).
[CrossRef]

J. Appl. Phys.

G. Pucker, A. Mezzetti, M. Crivellari, P. Bellutti, A. Lui, N. Daldosso, and L. Pavesi, “Silicon-based near-infrared tunable filters filled with positive or negative dielectric anisotropic liquid crystals,” J. Appl. Phys. 95(2), 767–769 (2004).
[CrossRef]

Y. Huang, T. X. Wu, and S.-T. Wu, “Simulations of liquid-crystal Fabry–Perot etalons by an improved 4x4matrix method,” J. Appl. Phys. 93(5), 2490–2495 (2003).

S.-T. Wu, “Absorption measurements of liquid crystals in the ultraviolet, visible, and infrared,” J. Appl. Phys. 84(8), 4462–4465 (1998).
[CrossRef]

J. Micro-Nanolith. MEMS

N. Neumann, M. Ebermann, and S. Kurth, “Tunable infrared detector with integrated micromachined Fabry-Perot filter,” J. Micro-Nanolith. MEMS 7, 021104 (2008).

Sens. Actuators A Phys.

J. Oberhammer, F. Niklaus, and G. Stemme, “Selective wafer-level adhesive bonding with benzocyclobutene for fabrication of cavities,” Sens. Actuators A Phys. 105(3), 297–304 (2003).
[CrossRef]

Other

A. Yariv, Optical Electronics in Modern Communications, 5th ed. (Oxford University Press, 1997).

D.-K. Yang and S.-T. Wu, Fundamentals of Liquid Crystal Devices (John Wiley, 2006).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

(a) Schematic cross section of wavelength-tunable infrared light source. (b) schematic diagram of equipment setup for measuring photoluminescence.

Fig. 2
Fig. 2

Voltage-dependent transmittance of NLC-based tunable light source in (a) ordinary mode and (b) extraordinary mode; (c) tuning curve in extraordinary mode.

Fig. 3
Fig. 3

(a) Theoretical (red line) and experimental (black line) emission spectra for a device with an applied voltage of 14 V. (b) Theoretical (solid black circle) and experimental (open square) wavelengths of emission peaks as a function of applied voltage.

Fig. 4
Fig. 4

(a) Voltage-dependent transmittance of CLC-based tunable light source. (b) Wavelength of emission peaks as a function of applied voltage.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

λ o =2( L A n A +L n o )
λ e =2( L A n A +L n e )

Metrics