Abstract

We demonstrate a fiber in-line Fabry-Perot interferometer cavity sensor for refractive index measurement. The interferometer cavity is formed by drilling a micro-hole at the cleaved fiber end facet, followed by fusion splicing. A micro-channel is inscribed by femtosecond laser micromachining to vertically cross the cavity to allow liquid to flow in. The refractive index sensitivity obtained is ~994 nm/RIU (refractive index unit). Such a device is simple in configuration, easy for fabrication and reliable in operation due to extremely low temperature cross sensitivity of ~4.8 × 10−6 RIU/°C.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Z. X. Gao, A. Adnet, Z. Zhang, F. G. Sun, and C. P. Grover, “Monitoring changes in the refractive index of gases by means of a fiber optic Fabry-Perot interferometer sensor,” Sensors Actuat. A-Phys. 118, 117–182 (2005).
  2. P. Domachuk, I. C. M. Littler, M. Cronin-Golomb, and B. J. Eggleton, “Compact resonant integrated microfluidic refractometer,” Appl. Phys. Lett. 88(9), 093513 (2006).
    [CrossRef]
  3. T. Wei, Y. Han, Y. Li, H. L. Tsai, and H. Xiao, “Temperature-insensitive miniaturized fiber inline Fabry-Perot interferometer for highly sensitive refractive index measurement,” Opt. Express 16(8), 5764–5769 (2008).
    [CrossRef] [PubMed]
  4. J. Villatoro, V. Finazzi, G. Coviello, and V. Pruneri, “Photonic-crystal-fiber-enabled micro-Fabry-Perot interferometer,” Opt. Lett. 34(16), 2441–2443 (2009).
    [CrossRef] [PubMed]
  5. J. Ma, J. Ju, L. Jin, W. Jin, and D. Wang, “Fiber-tip micro-cavity for temperature and transverse load sensing,” Opt. Express 19(13), 12418–12426 (2011).
    [CrossRef] [PubMed]
  6. M. S. Ferreira, L. Coelho, K. Schuster, J. Kobelke, J. L. Santos, and O. Frazão, “Fabry-Perot cavity based on a diaphragm-free hollow-core silica tube,” Opt. Lett. 36(20), 4029–4031 (2011).
    [CrossRef] [PubMed]
  7. Z. Ran, Y. J. Rao, J. Zhang, Z. Liu, and B. Xu, “A miniature fiber-optic refractive-index sensor based on laser-machined Fabry-Perot interfermmeter tip,” J. Lightwave Technol. 27(23), 5426–5429 (2009).
  8. H. Y. Choi, G. Mudhana, K. S. Park, U.-C. Paek, and B. H. Lee, “Cross-talk free and ultra-compact fiber optic sensor for simultaneous measurement of temperature and refractive index,” Opt. Express 18(1), 141–149 (2010).
    [CrossRef] [PubMed]
  9. K. Mileńko, D. J. Hu, P. P. Shum, T. Zhang, J. L. Lim, Y. Wang, T. R. Woliński, H. Wei, and W. Tong, “Photonic crystal fiber tip interferometer for refractive index sensing,” Opt. Lett. 37(8), 1373–1375 (2012).
    [CrossRef] [PubMed]
  10. Z. L. Ran, Y. J. Rao, W. J. Liu, X. Liao, and K. S. Chiang, “Laser-micromachined Fabry-Perot optical fiber tip sensor for high-resolution temperature-independent measurement of refractive index,” Opt. Express 16(3), 2252–2263 (2008).
    [CrossRef] [PubMed]
  11. K. M. Davis, K. Miura, N. Sugimoto, and K. Hirao, “Writing waveguides in glass with a femtosecond laser,” Opt. Lett. 21(21), 1729–1731 (1996).
    [CrossRef] [PubMed]
  12. W. J. Chen, S. M. Eaton, H. Zhang, and P. R. Herman, “Broadband directional couplers fabricated in bulk glass with high repetition rate femtosecond laser pulses,” Opt. Express 16(15), 11470–11480 (2008).
    [CrossRef] [PubMed]
  13. Y. Kondo, K. Nouchi, T. Mitsuyu, M. Watanabe, P. G. Kazansky, and K. Hirao, “Fabrication of long-period fiber gratings by focus irradiation of infrared femtosecond laser pulses,” Opt. Lett. 24(10), 646–648 (1999).
    [CrossRef] [PubMed]
  14. S. J. Mihailov, C. W. Smelser, P. Lu, R. B. Walker, D. Grobnic, H. Ding, G. Henderson, and J. Unruh, “Fiber Bragg gratings made with a phase mask and 800-nm femtosecond radiation,” Opt. Lett. 28(12), 995–997 (2003).
    [CrossRef] [PubMed]
  15. S. J. Liu, L. Jin, W. Jin, D. N. Wang, C. R. Liao, and Y. Wang, “Structural long period gratings made by drilling micro-holes in photonic crystal fibers with a femtosecond infrared laser,” Opt. Express 18(6), 5496–5503 (2010).
    [CrossRef] [PubMed]
  16. M. Park, S. Lee, W. Ha, D. K. Kim, W. Shin, I. B. Sohn, and K. Oh, “Ultracompact intrinsic micro air-cavity fiber Mach-Zehnder Interferometer,” IEEE Photon. Technol. Lett. 21(15), 1027–1029 (2009).
    [CrossRef]
  17. Y. Wang, M. W. Yang, D. N. Wang, S. J. Liu, and P. X. Lu, “Fiber in-line Mach-Zehnder interferometer fabricated by femtosecond laser micromachining for refractive index measurement with high sensitivity,” J. Opt. Soc. Am. B 27(3), 370–374 (2010).
    [CrossRef]
  18. J. Yang, L. Jiang, S. Wang, Q. Chen, B. Li, and H. Xiao, “Highly sensitive refractive index optical fiber sensors fabricated by a femtosecond laser,” IEEE Photonics J. 3(6), 1189–1197 (2011).
    [CrossRef]
  19. H. Y. Fu, K. M. Zhou, P. Saffari, C. B. Mou, L. Zhang, S. L. He, and I. Bennion, “Microchanneled chirped fiber Bragg grating formed by femtosecond laser aided chemical etching for refractive index and temperature measurements,” IEEE Photon. Technol. Lett. 20(19), 1609–1611 (2008).
    [CrossRef]
  20. X. Fang, C. R. Liao, and D. N. Wang, “Femtosecond laser fabricated fiber Bragg grating in microfiber for refractive index sensing,” Opt. Lett. 35(7), 1007–1009 (2010).
    [CrossRef] [PubMed]
  21. V. Bhatia and A. M. Vengsarkar, “Optical fiber long-period grating sensors,” Opt. Lett. 21(9), 692–694 (1996).
    [CrossRef] [PubMed]
  22. J. F. Ding, A. P. Zhang, L. Y. Shao, J. H. Yan, and S. L. He, “Fiber-taper seeded long-period grating pair as a highly sensitive refractive index sensor,” IEEE Photon. Technol. Lett. 17(6), 1247–1249 (2005).
    [CrossRef]
  23. R. Jha, J. Villatoro, G. Badenes, and V. Pruneri, “Refractometry based on a photonic crystal fiber interferometer,” Opt. Lett. 34(5), 617–619 (2009).
    [CrossRef] [PubMed]
  24. Z. B. Tian, S. S. H. Yam, and H. P. Loock, “Refractive index sensor based on an abrupt taper Michelson interferometer in a single-mode fiber,” Opt. Lett. 33(10), 1105–1107 (2008).
    [CrossRef] [PubMed]

2012

2011

2010

2009

2008

2006

P. Domachuk, I. C. M. Littler, M. Cronin-Golomb, and B. J. Eggleton, “Compact resonant integrated microfluidic refractometer,” Appl. Phys. Lett. 88(9), 093513 (2006).
[CrossRef]

2005

Z. X. Gao, A. Adnet, Z. Zhang, F. G. Sun, and C. P. Grover, “Monitoring changes in the refractive index of gases by means of a fiber optic Fabry-Perot interferometer sensor,” Sensors Actuat. A-Phys. 118, 117–182 (2005).

J. F. Ding, A. P. Zhang, L. Y. Shao, J. H. Yan, and S. L. He, “Fiber-taper seeded long-period grating pair as a highly sensitive refractive index sensor,” IEEE Photon. Technol. Lett. 17(6), 1247–1249 (2005).
[CrossRef]

2003

1999

1996

Adnet, A.

Z. X. Gao, A. Adnet, Z. Zhang, F. G. Sun, and C. P. Grover, “Monitoring changes in the refractive index of gases by means of a fiber optic Fabry-Perot interferometer sensor,” Sensors Actuat. A-Phys. 118, 117–182 (2005).

Badenes, G.

Bennion, I.

H. Y. Fu, K. M. Zhou, P. Saffari, C. B. Mou, L. Zhang, S. L. He, and I. Bennion, “Microchanneled chirped fiber Bragg grating formed by femtosecond laser aided chemical etching for refractive index and temperature measurements,” IEEE Photon. Technol. Lett. 20(19), 1609–1611 (2008).
[CrossRef]

Bhatia, V.

Chen, Q.

J. Yang, L. Jiang, S. Wang, Q. Chen, B. Li, and H. Xiao, “Highly sensitive refractive index optical fiber sensors fabricated by a femtosecond laser,” IEEE Photonics J. 3(6), 1189–1197 (2011).
[CrossRef]

Chen, W. J.

Chiang, K. S.

Choi, H. Y.

Coelho, L.

Coviello, G.

Cronin-Golomb, M.

P. Domachuk, I. C. M. Littler, M. Cronin-Golomb, and B. J. Eggleton, “Compact resonant integrated microfluidic refractometer,” Appl. Phys. Lett. 88(9), 093513 (2006).
[CrossRef]

Davis, K. M.

Ding, H.

Ding, J. F.

J. F. Ding, A. P. Zhang, L. Y. Shao, J. H. Yan, and S. L. He, “Fiber-taper seeded long-period grating pair as a highly sensitive refractive index sensor,” IEEE Photon. Technol. Lett. 17(6), 1247–1249 (2005).
[CrossRef]

Domachuk, P.

P. Domachuk, I. C. M. Littler, M. Cronin-Golomb, and B. J. Eggleton, “Compact resonant integrated microfluidic refractometer,” Appl. Phys. Lett. 88(9), 093513 (2006).
[CrossRef]

Eaton, S. M.

Eggleton, B. J.

P. Domachuk, I. C. M. Littler, M. Cronin-Golomb, and B. J. Eggleton, “Compact resonant integrated microfluidic refractometer,” Appl. Phys. Lett. 88(9), 093513 (2006).
[CrossRef]

Fang, X.

Ferreira, M. S.

Finazzi, V.

Frazão, O.

Fu, H. Y.

H. Y. Fu, K. M. Zhou, P. Saffari, C. B. Mou, L. Zhang, S. L. He, and I. Bennion, “Microchanneled chirped fiber Bragg grating formed by femtosecond laser aided chemical etching for refractive index and temperature measurements,” IEEE Photon. Technol. Lett. 20(19), 1609–1611 (2008).
[CrossRef]

Gao, Z. X.

Z. X. Gao, A. Adnet, Z. Zhang, F. G. Sun, and C. P. Grover, “Monitoring changes in the refractive index of gases by means of a fiber optic Fabry-Perot interferometer sensor,” Sensors Actuat. A-Phys. 118, 117–182 (2005).

Grobnic, D.

Grover, C. P.

Z. X. Gao, A. Adnet, Z. Zhang, F. G. Sun, and C. P. Grover, “Monitoring changes in the refractive index of gases by means of a fiber optic Fabry-Perot interferometer sensor,” Sensors Actuat. A-Phys. 118, 117–182 (2005).

Ha, W.

M. Park, S. Lee, W. Ha, D. K. Kim, W. Shin, I. B. Sohn, and K. Oh, “Ultracompact intrinsic micro air-cavity fiber Mach-Zehnder Interferometer,” IEEE Photon. Technol. Lett. 21(15), 1027–1029 (2009).
[CrossRef]

Han, Y.

He, S. L.

H. Y. Fu, K. M. Zhou, P. Saffari, C. B. Mou, L. Zhang, S. L. He, and I. Bennion, “Microchanneled chirped fiber Bragg grating formed by femtosecond laser aided chemical etching for refractive index and temperature measurements,” IEEE Photon. Technol. Lett. 20(19), 1609–1611 (2008).
[CrossRef]

J. F. Ding, A. P. Zhang, L. Y. Shao, J. H. Yan, and S. L. He, “Fiber-taper seeded long-period grating pair as a highly sensitive refractive index sensor,” IEEE Photon. Technol. Lett. 17(6), 1247–1249 (2005).
[CrossRef]

Henderson, G.

Herman, P. R.

Hirao, K.

Hu, D. J.

Jha, R.

Jiang, L.

J. Yang, L. Jiang, S. Wang, Q. Chen, B. Li, and H. Xiao, “Highly sensitive refractive index optical fiber sensors fabricated by a femtosecond laser,” IEEE Photonics J. 3(6), 1189–1197 (2011).
[CrossRef]

Jin, L.

Jin, W.

Ju, J.

Kazansky, P. G.

Kim, D. K.

M. Park, S. Lee, W. Ha, D. K. Kim, W. Shin, I. B. Sohn, and K. Oh, “Ultracompact intrinsic micro air-cavity fiber Mach-Zehnder Interferometer,” IEEE Photon. Technol. Lett. 21(15), 1027–1029 (2009).
[CrossRef]

Kobelke, J.

Kondo, Y.

Lee, B. H.

Lee, S.

M. Park, S. Lee, W. Ha, D. K. Kim, W. Shin, I. B. Sohn, and K. Oh, “Ultracompact intrinsic micro air-cavity fiber Mach-Zehnder Interferometer,” IEEE Photon. Technol. Lett. 21(15), 1027–1029 (2009).
[CrossRef]

Li, B.

J. Yang, L. Jiang, S. Wang, Q. Chen, B. Li, and H. Xiao, “Highly sensitive refractive index optical fiber sensors fabricated by a femtosecond laser,” IEEE Photonics J. 3(6), 1189–1197 (2011).
[CrossRef]

Li, Y.

Liao, C. R.

Liao, X.

Lim, J. L.

Littler, I. C. M.

P. Domachuk, I. C. M. Littler, M. Cronin-Golomb, and B. J. Eggleton, “Compact resonant integrated microfluidic refractometer,” Appl. Phys. Lett. 88(9), 093513 (2006).
[CrossRef]

Liu, S. J.

Liu, W. J.

Liu, Z.

Loock, H. P.

Lu, P.

Lu, P. X.

Ma, J.

Mihailov, S. J.

Milenko, K.

Mitsuyu, T.

Miura, K.

Mou, C. B.

H. Y. Fu, K. M. Zhou, P. Saffari, C. B. Mou, L. Zhang, S. L. He, and I. Bennion, “Microchanneled chirped fiber Bragg grating formed by femtosecond laser aided chemical etching for refractive index and temperature measurements,” IEEE Photon. Technol. Lett. 20(19), 1609–1611 (2008).
[CrossRef]

Mudhana, G.

Nouchi, K.

Oh, K.

M. Park, S. Lee, W. Ha, D. K. Kim, W. Shin, I. B. Sohn, and K. Oh, “Ultracompact intrinsic micro air-cavity fiber Mach-Zehnder Interferometer,” IEEE Photon. Technol. Lett. 21(15), 1027–1029 (2009).
[CrossRef]

Paek, U.-C.

Park, K. S.

Park, M.

M. Park, S. Lee, W. Ha, D. K. Kim, W. Shin, I. B. Sohn, and K. Oh, “Ultracompact intrinsic micro air-cavity fiber Mach-Zehnder Interferometer,” IEEE Photon. Technol. Lett. 21(15), 1027–1029 (2009).
[CrossRef]

Pruneri, V.

Ran, Z.

Ran, Z. L.

Rao, Y. J.

Saffari, P.

H. Y. Fu, K. M. Zhou, P. Saffari, C. B. Mou, L. Zhang, S. L. He, and I. Bennion, “Microchanneled chirped fiber Bragg grating formed by femtosecond laser aided chemical etching for refractive index and temperature measurements,” IEEE Photon. Technol. Lett. 20(19), 1609–1611 (2008).
[CrossRef]

Santos, J. L.

Schuster, K.

Shao, L. Y.

J. F. Ding, A. P. Zhang, L. Y. Shao, J. H. Yan, and S. L. He, “Fiber-taper seeded long-period grating pair as a highly sensitive refractive index sensor,” IEEE Photon. Technol. Lett. 17(6), 1247–1249 (2005).
[CrossRef]

Shin, W.

M. Park, S. Lee, W. Ha, D. K. Kim, W. Shin, I. B. Sohn, and K. Oh, “Ultracompact intrinsic micro air-cavity fiber Mach-Zehnder Interferometer,” IEEE Photon. Technol. Lett. 21(15), 1027–1029 (2009).
[CrossRef]

Shum, P. P.

Smelser, C. W.

Sohn, I. B.

M. Park, S. Lee, W. Ha, D. K. Kim, W. Shin, I. B. Sohn, and K. Oh, “Ultracompact intrinsic micro air-cavity fiber Mach-Zehnder Interferometer,” IEEE Photon. Technol. Lett. 21(15), 1027–1029 (2009).
[CrossRef]

Sugimoto, N.

Sun, F. G.

Z. X. Gao, A. Adnet, Z. Zhang, F. G. Sun, and C. P. Grover, “Monitoring changes in the refractive index of gases by means of a fiber optic Fabry-Perot interferometer sensor,” Sensors Actuat. A-Phys. 118, 117–182 (2005).

Tian, Z. B.

Tong, W.

Tsai, H. L.

Unruh, J.

Vengsarkar, A. M.

Villatoro, J.

Walker, R. B.

Wang, D.

Wang, D. N.

Wang, S.

J. Yang, L. Jiang, S. Wang, Q. Chen, B. Li, and H. Xiao, “Highly sensitive refractive index optical fiber sensors fabricated by a femtosecond laser,” IEEE Photonics J. 3(6), 1189–1197 (2011).
[CrossRef]

Wang, Y.

Watanabe, M.

Wei, H.

Wei, T.

Wolinski, T. R.

Xiao, H.

J. Yang, L. Jiang, S. Wang, Q. Chen, B. Li, and H. Xiao, “Highly sensitive refractive index optical fiber sensors fabricated by a femtosecond laser,” IEEE Photonics J. 3(6), 1189–1197 (2011).
[CrossRef]

T. Wei, Y. Han, Y. Li, H. L. Tsai, and H. Xiao, “Temperature-insensitive miniaturized fiber inline Fabry-Perot interferometer for highly sensitive refractive index measurement,” Opt. Express 16(8), 5764–5769 (2008).
[CrossRef] [PubMed]

Xu, B.

Yam, S. S. H.

Yan, J. H.

J. F. Ding, A. P. Zhang, L. Y. Shao, J. H. Yan, and S. L. He, “Fiber-taper seeded long-period grating pair as a highly sensitive refractive index sensor,” IEEE Photon. Technol. Lett. 17(6), 1247–1249 (2005).
[CrossRef]

Yang, J.

J. Yang, L. Jiang, S. Wang, Q. Chen, B. Li, and H. Xiao, “Highly sensitive refractive index optical fiber sensors fabricated by a femtosecond laser,” IEEE Photonics J. 3(6), 1189–1197 (2011).
[CrossRef]

Yang, M. W.

Zhang, A. P.

J. F. Ding, A. P. Zhang, L. Y. Shao, J. H. Yan, and S. L. He, “Fiber-taper seeded long-period grating pair as a highly sensitive refractive index sensor,” IEEE Photon. Technol. Lett. 17(6), 1247–1249 (2005).
[CrossRef]

Zhang, H.

Zhang, J.

Zhang, L.

H. Y. Fu, K. M. Zhou, P. Saffari, C. B. Mou, L. Zhang, S. L. He, and I. Bennion, “Microchanneled chirped fiber Bragg grating formed by femtosecond laser aided chemical etching for refractive index and temperature measurements,” IEEE Photon. Technol. Lett. 20(19), 1609–1611 (2008).
[CrossRef]

Zhang, T.

Zhang, Z.

Z. X. Gao, A. Adnet, Z. Zhang, F. G. Sun, and C. P. Grover, “Monitoring changes in the refractive index of gases by means of a fiber optic Fabry-Perot interferometer sensor,” Sensors Actuat. A-Phys. 118, 117–182 (2005).

Zhou, K. M.

H. Y. Fu, K. M. Zhou, P. Saffari, C. B. Mou, L. Zhang, S. L. He, and I. Bennion, “Microchanneled chirped fiber Bragg grating formed by femtosecond laser aided chemical etching for refractive index and temperature measurements,” IEEE Photon. Technol. Lett. 20(19), 1609–1611 (2008).
[CrossRef]

Appl. Phys. Lett.

P. Domachuk, I. C. M. Littler, M. Cronin-Golomb, and B. J. Eggleton, “Compact resonant integrated microfluidic refractometer,” Appl. Phys. Lett. 88(9), 093513 (2006).
[CrossRef]

IEEE Photon. Technol. Lett.

M. Park, S. Lee, W. Ha, D. K. Kim, W. Shin, I. B. Sohn, and K. Oh, “Ultracompact intrinsic micro air-cavity fiber Mach-Zehnder Interferometer,” IEEE Photon. Technol. Lett. 21(15), 1027–1029 (2009).
[CrossRef]

H. Y. Fu, K. M. Zhou, P. Saffari, C. B. Mou, L. Zhang, S. L. He, and I. Bennion, “Microchanneled chirped fiber Bragg grating formed by femtosecond laser aided chemical etching for refractive index and temperature measurements,” IEEE Photon. Technol. Lett. 20(19), 1609–1611 (2008).
[CrossRef]

J. F. Ding, A. P. Zhang, L. Y. Shao, J. H. Yan, and S. L. He, “Fiber-taper seeded long-period grating pair as a highly sensitive refractive index sensor,” IEEE Photon. Technol. Lett. 17(6), 1247–1249 (2005).
[CrossRef]

IEEE Photonics J.

J. Yang, L. Jiang, S. Wang, Q. Chen, B. Li, and H. Xiao, “Highly sensitive refractive index optical fiber sensors fabricated by a femtosecond laser,” IEEE Photonics J. 3(6), 1189–1197 (2011).
[CrossRef]

J. Lightwave Technol.

J. Opt. Soc. Am. B

Opt. Express

Opt. Lett.

M. S. Ferreira, L. Coelho, K. Schuster, J. Kobelke, J. L. Santos, and O. Frazão, “Fabry-Perot cavity based on a diaphragm-free hollow-core silica tube,” Opt. Lett. 36(20), 4029–4031 (2011).
[CrossRef] [PubMed]

J. Villatoro, V. Finazzi, G. Coviello, and V. Pruneri, “Photonic-crystal-fiber-enabled micro-Fabry-Perot interferometer,” Opt. Lett. 34(16), 2441–2443 (2009).
[CrossRef] [PubMed]

K. M. Davis, K. Miura, N. Sugimoto, and K. Hirao, “Writing waveguides in glass with a femtosecond laser,” Opt. Lett. 21(21), 1729–1731 (1996).
[CrossRef] [PubMed]

K. Mileńko, D. J. Hu, P. P. Shum, T. Zhang, J. L. Lim, Y. Wang, T. R. Woliński, H. Wei, and W. Tong, “Photonic crystal fiber tip interferometer for refractive index sensing,” Opt. Lett. 37(8), 1373–1375 (2012).
[CrossRef] [PubMed]

Y. Kondo, K. Nouchi, T. Mitsuyu, M. Watanabe, P. G. Kazansky, and K. Hirao, “Fabrication of long-period fiber gratings by focus irradiation of infrared femtosecond laser pulses,” Opt. Lett. 24(10), 646–648 (1999).
[CrossRef] [PubMed]

S. J. Mihailov, C. W. Smelser, P. Lu, R. B. Walker, D. Grobnic, H. Ding, G. Henderson, and J. Unruh, “Fiber Bragg gratings made with a phase mask and 800-nm femtosecond radiation,” Opt. Lett. 28(12), 995–997 (2003).
[CrossRef] [PubMed]

X. Fang, C. R. Liao, and D. N. Wang, “Femtosecond laser fabricated fiber Bragg grating in microfiber for refractive index sensing,” Opt. Lett. 35(7), 1007–1009 (2010).
[CrossRef] [PubMed]

V. Bhatia and A. M. Vengsarkar, “Optical fiber long-period grating sensors,” Opt. Lett. 21(9), 692–694 (1996).
[CrossRef] [PubMed]

R. Jha, J. Villatoro, G. Badenes, and V. Pruneri, “Refractometry based on a photonic crystal fiber interferometer,” Opt. Lett. 34(5), 617–619 (2009).
[CrossRef] [PubMed]

Z. B. Tian, S. S. H. Yam, and H. P. Loock, “Refractive index sensor based on an abrupt taper Michelson interferometer in a single-mode fiber,” Opt. Lett. 33(10), 1105–1107 (2008).
[CrossRef] [PubMed]

Sensors Actuat. A-Phys.

Z. X. Gao, A. Adnet, Z. Zhang, F. G. Sun, and C. P. Grover, “Monitoring changes in the refractive index of gases by means of a fiber optic Fabry-Perot interferometer sensor,” Sensors Actuat. A-Phys. 118, 117–182 (2005).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Experimental setup for RI measurement. The inset shows the schematic diagram of the fiber FPI.

Fig. 2
Fig. 2

Fiber in line FPI cavity fabrication process. (a) The fs laser creates a micro-hole of ~1 μm in diameter at the center of cleaved fiber end facet. (b) The fiber tip with the micro-hole spliced together with another cleaved SMF tip. (c) FP cavity formed. (d) To fabricate a micro-channels to vertically cross the micro-cavity. (e) Microscope image of the fiber in-line FPI cavity without the micro-channel. (f) Microscope image of the fiber in-line FPI cavity with the micro-channel.

Fig. 3
Fig. 3

(a) The reflection spectrum at RI = 1.315, 1.32 and 1.325, respectively (b) RI response of the sensor.

Fig. 4
Fig. 4

Temperature response of the sensor

Fig. 5
Fig. 5

(a) Microscope images of the FPI cavity with length of 30, 65 and 93 μm, respectively. (b) Reflection spectra of fiber in-line FPI with different cavity lengths. (c) Simulated fringe spacing as a function of cavity length at the wavelength of 1550 nm. The black line is the calculation result and the red square shows the experimentally obtained value.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

I= I 1 + I 2 +2 I 1 I 2 cos( 4πnL λ + φ 0 )
4πnL λ m + φ 0 =(2m+1)π
Λ= λ 2 2nL
d λ m dT = 4 2m+1 ( dn dT L+ dL dT n)

Metrics