Abstract

A fully electrically tunable microwave photonic filter is realized by the implementation of delay lines based on frequency-time conversion. The frequency response and free spectral range (FSR) of the filter can be engineered by a simple electrical tuning of the delay lines. The method has the capability of being integrated on a silicon photonic platform. In the experiment, a 2-tap tunable microwave photonic filter with a 3-dB bandwidth of 2.55 GHz, a FSR of 4.016 GHz, a FSR maximum tuning range from −354 MHz to 354 MHz and a full FSR translation range is achieved.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Yao, “Microwave photonics,” J. Lightwave Technol. 27(3), 314–335 (2009).
    [CrossRef]
  2. J. Capmany, B. Ortega, and D. Pastor, “A tutorial on microwave photonic filters,” J. Lightwave Technol. 24(1), 201–229 (2006).
    [CrossRef]
  3. A. Mokhtari and M. Akbari, “Two building blocks of microwave photonics filters in the presence of group delay ripple: a comparative survey,” J. Opt. Quantum Electron. 44(8-9), 403–414 (2012).
    [CrossRef]
  4. A. Meijerink, C. G. H. Roeloffzen, R. Meijerink, L. Zhuang, D. A. I. Marpaung, M. J. Bentum, M. Burla, J. Verpoorte, P. Jorna, and A. Hulzinga, “Novel ring resonator-based integrated photonic beamformer for broadband phased array receive antennas—Part I: Design and performance analysis,” J. Lightwave Technol. 28(1), 3–18 (2010).
    [CrossRef]
  5. M. H. Khan, H. Shen, Y. Xuan, L. Zhao, S. Xiao, D. E. Leaird, A. M. Weiner, and M. Qi, “Ultrabroad-bandwidth arbitrary radiofrequency waveform generation with a silicon photonic chip-based spectral shaper,” Nat. Photonics 4(2), 117–122 (2010).
    [CrossRef]
  6. H. Al-Raweshidy and S. Komaki, Radio over fiber technologies for mobile communications networks (Artech House Publishers, 2002).
  7. M. Sagues, R. García Olcina, A. Loayssa, S. Sales, and J. Capmany, “Multi-tap complex-coefficient incoherent microwave photonic filters based on optical single-sideband modulation and narrow band optical filtering,” Opt. Express 16(1), 295–303 (2008).
    [CrossRef] [PubMed]
  8. K. Y. Song, M. G. Herráez, and L. Thévenaz, “Observation of pulse delaying and advancement in optical fibers using stimulated Brillouin scattering,” Opt. Express 13(1), 82–88 (2005).
    [CrossRef] [PubMed]
  9. Y. Okawachi, M. S. Bigelow, J. E. Sharping, Z. Zhu, A. Schweinsberg, D. J. Gauthier, R. W. Boyd, and A. L. Gaeta, “Tunable all-optical delays via Brillouin slow light in an optical fiber,” Phys. Rev. Lett. 94(15), 153902 (2005).
    [CrossRef] [PubMed]
  10. T. Schneider, “Time delay limits of stimulated-Brillouin-scattering-based slow light systems,” Opt. Lett. 33(13), 1398–1400 (2008).
    [CrossRef] [PubMed]
  11. S. Chin, L. Thévenaz, J. Sancho, S. Sales, J. Capmany, P. Berger, J. Bourderionnet, and D. Dolfi, “Broadband true time delay for microwave signal processing, using slow light based on stimulated Brillouin scattering in optical fibers,” Opt. Express 18(21), 22599–22613 (2010).
    [CrossRef] [PubMed]
  12. K. Jamshidi, A. Wiatrek, C. Bersch, G. Onishchukov, G. Leuchs, C. Bunge, and T. Schneider, “Very large, tunable, positive and negative group delay for high-bandwidth signals,” in 36th European Conference and Exhibition on Optical Communication (ECOC), 2010, Th.9C.5.
  13. K. Jamshidi, S. Meister, B. A. Franke, O. Dyatlova, A. Al-saadi, U. Woggon, H. J. Eichler, and T. Schneider, “Compact electrically tunable delay generator on Silicon,” in CLEO: QELS-Fundamental Science, OSA Technical Digest (Optical Society of America, 2012), JW4A.5.

2012

A. Mokhtari and M. Akbari, “Two building blocks of microwave photonics filters in the presence of group delay ripple: a comparative survey,” J. Opt. Quantum Electron. 44(8-9), 403–414 (2012).
[CrossRef]

2010

2009

2008

2006

2005

K. Y. Song, M. G. Herráez, and L. Thévenaz, “Observation of pulse delaying and advancement in optical fibers using stimulated Brillouin scattering,” Opt. Express 13(1), 82–88 (2005).
[CrossRef] [PubMed]

Y. Okawachi, M. S. Bigelow, J. E. Sharping, Z. Zhu, A. Schweinsberg, D. J. Gauthier, R. W. Boyd, and A. L. Gaeta, “Tunable all-optical delays via Brillouin slow light in an optical fiber,” Phys. Rev. Lett. 94(15), 153902 (2005).
[CrossRef] [PubMed]

Akbari, M.

A. Mokhtari and M. Akbari, “Two building blocks of microwave photonics filters in the presence of group delay ripple: a comparative survey,” J. Opt. Quantum Electron. 44(8-9), 403–414 (2012).
[CrossRef]

Bentum, M. J.

Berger, P.

Bigelow, M. S.

Y. Okawachi, M. S. Bigelow, J. E. Sharping, Z. Zhu, A. Schweinsberg, D. J. Gauthier, R. W. Boyd, and A. L. Gaeta, “Tunable all-optical delays via Brillouin slow light in an optical fiber,” Phys. Rev. Lett. 94(15), 153902 (2005).
[CrossRef] [PubMed]

Bourderionnet, J.

Boyd, R. W.

Y. Okawachi, M. S. Bigelow, J. E. Sharping, Z. Zhu, A. Schweinsberg, D. J. Gauthier, R. W. Boyd, and A. L. Gaeta, “Tunable all-optical delays via Brillouin slow light in an optical fiber,” Phys. Rev. Lett. 94(15), 153902 (2005).
[CrossRef] [PubMed]

Burla, M.

Capmany, J.

Chin, S.

Dolfi, D.

Gaeta, A. L.

Y. Okawachi, M. S. Bigelow, J. E. Sharping, Z. Zhu, A. Schweinsberg, D. J. Gauthier, R. W. Boyd, and A. L. Gaeta, “Tunable all-optical delays via Brillouin slow light in an optical fiber,” Phys. Rev. Lett. 94(15), 153902 (2005).
[CrossRef] [PubMed]

García Olcina, R.

Gauthier, D. J.

Y. Okawachi, M. S. Bigelow, J. E. Sharping, Z. Zhu, A. Schweinsberg, D. J. Gauthier, R. W. Boyd, and A. L. Gaeta, “Tunable all-optical delays via Brillouin slow light in an optical fiber,” Phys. Rev. Lett. 94(15), 153902 (2005).
[CrossRef] [PubMed]

Herráez, M. G.

Hulzinga, A.

Jorna, P.

Khan, M. H.

M. H. Khan, H. Shen, Y. Xuan, L. Zhao, S. Xiao, D. E. Leaird, A. M. Weiner, and M. Qi, “Ultrabroad-bandwidth arbitrary radiofrequency waveform generation with a silicon photonic chip-based spectral shaper,” Nat. Photonics 4(2), 117–122 (2010).
[CrossRef]

Leaird, D. E.

M. H. Khan, H. Shen, Y. Xuan, L. Zhao, S. Xiao, D. E. Leaird, A. M. Weiner, and M. Qi, “Ultrabroad-bandwidth arbitrary radiofrequency waveform generation with a silicon photonic chip-based spectral shaper,” Nat. Photonics 4(2), 117–122 (2010).
[CrossRef]

Loayssa, A.

Marpaung, D. A. I.

Meijerink, A.

Meijerink, R.

Mokhtari, A.

A. Mokhtari and M. Akbari, “Two building blocks of microwave photonics filters in the presence of group delay ripple: a comparative survey,” J. Opt. Quantum Electron. 44(8-9), 403–414 (2012).
[CrossRef]

Okawachi, Y.

Y. Okawachi, M. S. Bigelow, J. E. Sharping, Z. Zhu, A. Schweinsberg, D. J. Gauthier, R. W. Boyd, and A. L. Gaeta, “Tunable all-optical delays via Brillouin slow light in an optical fiber,” Phys. Rev. Lett. 94(15), 153902 (2005).
[CrossRef] [PubMed]

Ortega, B.

Pastor, D.

Qi, M.

M. H. Khan, H. Shen, Y. Xuan, L. Zhao, S. Xiao, D. E. Leaird, A. M. Weiner, and M. Qi, “Ultrabroad-bandwidth arbitrary radiofrequency waveform generation with a silicon photonic chip-based spectral shaper,” Nat. Photonics 4(2), 117–122 (2010).
[CrossRef]

Roeloffzen, C. G. H.

Sagues, M.

Sales, S.

Sancho, J.

Schneider, T.

Schweinsberg, A.

Y. Okawachi, M. S. Bigelow, J. E. Sharping, Z. Zhu, A. Schweinsberg, D. J. Gauthier, R. W. Boyd, and A. L. Gaeta, “Tunable all-optical delays via Brillouin slow light in an optical fiber,” Phys. Rev. Lett. 94(15), 153902 (2005).
[CrossRef] [PubMed]

Sharping, J. E.

Y. Okawachi, M. S. Bigelow, J. E. Sharping, Z. Zhu, A. Schweinsberg, D. J. Gauthier, R. W. Boyd, and A. L. Gaeta, “Tunable all-optical delays via Brillouin slow light in an optical fiber,” Phys. Rev. Lett. 94(15), 153902 (2005).
[CrossRef] [PubMed]

Shen, H.

M. H. Khan, H. Shen, Y. Xuan, L. Zhao, S. Xiao, D. E. Leaird, A. M. Weiner, and M. Qi, “Ultrabroad-bandwidth arbitrary radiofrequency waveform generation with a silicon photonic chip-based spectral shaper,” Nat. Photonics 4(2), 117–122 (2010).
[CrossRef]

Song, K. Y.

Thévenaz, L.

Verpoorte, J.

Weiner, A. M.

M. H. Khan, H. Shen, Y. Xuan, L. Zhao, S. Xiao, D. E. Leaird, A. M. Weiner, and M. Qi, “Ultrabroad-bandwidth arbitrary radiofrequency waveform generation with a silicon photonic chip-based spectral shaper,” Nat. Photonics 4(2), 117–122 (2010).
[CrossRef]

Xiao, S.

M. H. Khan, H. Shen, Y. Xuan, L. Zhao, S. Xiao, D. E. Leaird, A. M. Weiner, and M. Qi, “Ultrabroad-bandwidth arbitrary radiofrequency waveform generation with a silicon photonic chip-based spectral shaper,” Nat. Photonics 4(2), 117–122 (2010).
[CrossRef]

Xuan, Y.

M. H. Khan, H. Shen, Y. Xuan, L. Zhao, S. Xiao, D. E. Leaird, A. M. Weiner, and M. Qi, “Ultrabroad-bandwidth arbitrary radiofrequency waveform generation with a silicon photonic chip-based spectral shaper,” Nat. Photonics 4(2), 117–122 (2010).
[CrossRef]

Yao, J.

Zhao, L.

M. H. Khan, H. Shen, Y. Xuan, L. Zhao, S. Xiao, D. E. Leaird, A. M. Weiner, and M. Qi, “Ultrabroad-bandwidth arbitrary radiofrequency waveform generation with a silicon photonic chip-based spectral shaper,” Nat. Photonics 4(2), 117–122 (2010).
[CrossRef]

Zhu, Z.

Y. Okawachi, M. S. Bigelow, J. E. Sharping, Z. Zhu, A. Schweinsberg, D. J. Gauthier, R. W. Boyd, and A. L. Gaeta, “Tunable all-optical delays via Brillouin slow light in an optical fiber,” Phys. Rev. Lett. 94(15), 153902 (2005).
[CrossRef] [PubMed]

Zhuang, L.

J. Lightwave Technol.

J. Opt. Quantum Electron.

A. Mokhtari and M. Akbari, “Two building blocks of microwave photonics filters in the presence of group delay ripple: a comparative survey,” J. Opt. Quantum Electron. 44(8-9), 403–414 (2012).
[CrossRef]

Nat. Photonics

M. H. Khan, H. Shen, Y. Xuan, L. Zhao, S. Xiao, D. E. Leaird, A. M. Weiner, and M. Qi, “Ultrabroad-bandwidth arbitrary radiofrequency waveform generation with a silicon photonic chip-based spectral shaper,” Nat. Photonics 4(2), 117–122 (2010).
[CrossRef]

Opt. Express

Opt. Lett.

Phys. Rev. Lett.

Y. Okawachi, M. S. Bigelow, J. E. Sharping, Z. Zhu, A. Schweinsberg, D. J. Gauthier, R. W. Boyd, and A. L. Gaeta, “Tunable all-optical delays via Brillouin slow light in an optical fiber,” Phys. Rev. Lett. 94(15), 153902 (2005).
[CrossRef] [PubMed]

Other

K. Jamshidi, A. Wiatrek, C. Bersch, G. Onishchukov, G. Leuchs, C. Bunge, and T. Schneider, “Very large, tunable, positive and negative group delay for high-bandwidth signals,” in 36th European Conference and Exhibition on Optical Communication (ECOC), 2010, Th.9C.5.

K. Jamshidi, S. Meister, B. A. Franke, O. Dyatlova, A. Al-saadi, U. Woggon, H. J. Eichler, and T. Schneider, “Compact electrically tunable delay generator on Silicon,” in CLEO: QELS-Fundamental Science, OSA Technical Digest (Optical Society of America, 2012), JW4A.5.

H. Al-Raweshidy and S. Komaki, Radio over fiber technologies for mobile communications networks (Artech House Publishers, 2002).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Microwave photonic filter scheme principles.

Fig. 2
Fig. 2

FTC based tunable photonic delay line and the corresponding characterization setup.

Fig. 3
Fig. 3

(a) Measured phase shift for different initial phases Φ 0 (Ω = 1 GHz.) (b) Measured delay for different ramp rates Ω (constant Φ 0 ) (full circles), the dashed line has a slope of 2η . Negative delays correspond to advancements.

Fig. 4
Fig. 4

Implemented 2-tap microwave photonic filter and the measurement setup.

Fig. 5
Fig. 5

Measured microwave photonic filter frequency response translation.

Fig. 6
Fig. 6

Simulated (dashed) and experimental (solid) results for FSR adjustment of MPF for the delay or advancement of (a) ± 8.89 ps ( ± 149 MHz) (b) ± 13.32 ps ( ± 227 MHz) (c) ± 16.52 ps ( ± 299 MHz) (d) ± 20.15 ps ( ± 354 MHz)

Tables (1)

Tables Icon

Table 1 Comparison of the figures of merit for some MPF implementations

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

Y(ω)={ 1 { X(ω) e jη ω 2 } e jΩt } e jη ω 2
y(t)x(t2Ωη) e jΩt
H (ω)= n=0 N1 a n e jn Φ 0 e 2jnπωT =H(ω Φ 0 /2πT)
H (ω)= n=0 N1 a n e 2jnπω(βT) =H(βω)

Metrics