Abstract

Due to plasmonic excitations, metallic meander structures exhibit an extraordinarily high transmission within a well-defined pass band. Within this frequency range, they behave like almost ideal linear polarizers, can induce large phase retardation between s- and p-polarized light and show a high polarization conversion efficiency. Due to these properties, meander structures can interact very effectively with polarized light. In this report, we suggest a novel polarization scrambler design using spatially distributed metallic meander structures with random angular orientations. The whole device has an optical response averaged over all pixel orientations within the incident beam diameter. We characterize the depolarizing properties of the suggested polarization scrambler with the Mueller matrix and investigate both single layer and stacked meander structures at different frequencies. The presented polarization scrambler can be flexibly designed to work at any wavelength in the visible range with a bandwidth of up to 100 THz. With our preliminary design, we achieve depolarization rates larger than 50% for arbitrarily polarized monochromatic and narrow-band light. Circularly polarized light could be depolarized by up to 95% at 600 THz.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. “GES DISC DAAC Data Guide: Coastal Zone Color Scanner (CZCS) Instrument Guide,” http://disc.sci.gsfc.nasa.gov/oceans/documentation/scientific-documentation/CZCS_Sensor.gd.shtml .
  2. S. C. McClain, R. A. Chipman, and L. W. Hillman, “Aberrations of a horizontal-vertical depolarizer,” Appl. Opt. 31(13), 2326–2331 (1992).
    [CrossRef] [PubMed]
  3. MERIS Product Handbook, Issue 3.0 (European Space Agency, 2011).
  4. M. Aguirre, B. Berruti, J.-L. Bezy, M. Drinkwater, F. Heliere, U. Klein, C. Mavrocordatos, P. Silvestrin, B. Greco, and J. Benveniste, “Sentinel-3: The ocean and medium-resolution land mission for GMES operational services,” ESA Bull. 131, 24–29 (2007).
  5. M. R. Dobber, R. J. Dirksen, P. F. Levelt, G. H. J. van den Oord, R. H. M. Voors, Q. Kleipool, G. Jaross, M. Kowalewski, E. Hilsenrath, G. W. Leppelmeier, W. Johan de Vries, Dierssen, and N. C. Rozemeijer, “Ozone monitoring instrument calibration,” IEEE Trans. Geosci. Rem. Sens. 44(5), 1209–1238 (2006).
    [CrossRef]
  6. P. F. Levelt, G. H. J. van den Oord, M. R. Dobber, A. Malkki, Huib Visser, P. Johan de Vries, J. O. V. Stammes, Lundell, and H. Saari, “The ozone monitoring instrument,” IEEE Trans. Geosci. Rem. Sens. 44(5), 1093–1101 (2006).
    [CrossRef]
  7. J. Valentine, S. Zhang, T. Zentgraf, E. Ulin-Avila, D. A. Genov, G. Bartal, and X. Zhang, “Three-dimensional optical metamaterial with a negative refractive index,” Nature 455(7211), 376–379 (2008).
    [CrossRef] [PubMed]
  8. R. Gordon, A. G. Brolo, A. McKinnon, A. Rajora, B. Leathem, and K. L. Kavanagh, “Strong polarization in the optical transmission through elliptical nanohole arrays,” Phys. Rev. Lett. 92(3), 037401 (2004).
    [CrossRef] [PubMed]
  9. J. Sung, M. Sukharev, E. M. Hicks, R. P. VanDuyne, T. Seideman, and K. G. Spears, “Nanoparticle spectroscopy: birefringence in two-dimensional arrays of L-shaped silver nanoparticles,” J. Phys. Chem. C 112(9), 3252–3260 (2008).
    [CrossRef]
  10. L. Feng, Z. Liu, V. Lomakin, and Y. Fainman, “Form birefringence metal and its plasmonic anisotropy,” Appl. Phys. Lett. 96(4), 041112 (2010).
    [CrossRef]
  11. S.-Y. Hsu, K.-L. Lee, E.-H. Lin, M.-C. Lee, and P.-K. Wei, “Giant birefringence induced by plasmonic nanoslit arrays,” Appl. Phys. Lett. 95(1), 013105 (2009).
    [CrossRef]
  12. E. Ӧğüt and K. Şendur, “Circularly and elliptically polarized near-field radiation from nanoscale subwavelength apertures,” Appl. Phys. Lett. 96(14), 141104 (2010).
    [CrossRef]
  13. A. Roberts and L. Lin, “Plasmonic quarter-wave plate,” Opt. Lett. 37(11), 1820–1822 (2012).
    [CrossRef] [PubMed]
  14. T. Li, H. Liu, S.-M. Wang, X.-G. Yin, F.-M. Wang, S.-N. Zhu, and X. Zhang, “Manipulating optical rotation in extraordinary transmission by hybrid plasmonic excitations,” Appl. Phys. Lett. 93(2), 021110 (2008).
    [CrossRef]
  15. L. Feng, A. Mizrahi, S. Zamek, Z. Liu, V. Lomakin, and Y. Fainman, “Metamaterials for enhanced polarization conversion in plasmonic excitation,” ACS Nano 5(6), 5100–5106 (2011).
    [CrossRef] [PubMed]
  16. E. Altewischer, C. Genet, M. P. van Exter, J. P. Woerdman, P. F. A. Alkemade, A. van Zuuk, and E. W. J. M. van der Drift, “Polarization tomography of metallic nanohole arrays,” Opt. Lett. 30(1), 90–92 (2005).
    [CrossRef] [PubMed]
  17. M. Shcherbakov, M. Dobynde, T. Dolgova, D.-P. Tsai, and A. Fedyanin, “Full Poincaré sphere coverage with plasmonic nanoslit metamaterials at Fano resonance,” Phys. Rev. B 82(19), 193402 (2010).
    [CrossRef]
  18. L. M. Gaspar Venancio, S. Hannemann, G. Lubkowski, M. Suhrke, H. Schweizer, L. Fu, H. Giessen, P. Schau, K. Frenner, and W. Osten, “Metamaterials for optical and photonic applications for space: preliminary results,” Proc. SPIE 8146, 81460E, 81460E-13 (2011).
    [CrossRef]
  19. M. R. Shcherbakov, P. P. Vabishchevich, V. V. Komarova, T. V. Dolgova, V. Panov, V. V. Moshchalkov, and A. A. Fedyanin, “Ultrafast polarization shaping with Fano plasmonic crystals,” Phys. Rev. Lett. 108(25), 253903 (2012).
    [CrossRef]
  20. P. Johnson and R. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
    [CrossRef]
  21. L. Fu, H. Schweizer, T. Weiss, and H. Giessen, “Optical properties of metallic meanders,” J. Opt. Soc. Am. B 26(12), B111–B119 (2009).
    [CrossRef]
  22. M. Totzeck, “Numerical simulation of high-NA quantitative polarization microscopy and corresponding near-fields,” Optik (Stuttg.) 112(9), 399–406 (2001).
    [CrossRef]
  23. L. Li, “Use of Fourier series in the analysis of discontinuous periodic structures,” J. Opt. Soc. Am. A 13(9), 1870–1876 (1996).
    [CrossRef]
  24. T. Weiss, N. A. Gippius, S. G. Tikhodeev, G. Granet, and H. Giessen, “Efficient calculation of the optical properties of stacked metamaterials with a Fourier modal method,” J. Opt. A, Pure Appl. Opt. 11(11), 114019 (2009).
    [CrossRef]
  25. G. Granet, “Reformulation of the lamellar grating problem through the concept of adaptive spatial resolution,” J. Opt. Soc. Am. A 16(10), 2510–2516 (1999).
    [CrossRef]
  26. P. Schau, K. Frenner, L. Fu, H. Schweizer, and W. Osten, “Coupling between surface plasmons and Fabry-Pérot modes in metallic double meander structures,” Proc. SPIE 7711, 77111F, 77111F-10 (2010).
    [CrossRef]
  27. R. Ritchie, “Plasma losses by fast electrons in thin films,” Phys. Rev. 106(5), 874–881 (1957).
    [CrossRef]
  28. H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer, 1988).
  29. P. Schau, K. Frenner, L. Fu, H. Schweizer, H. Giessen, and W. Osten, “Design of high-transmission metallic meander stacks with different grating periodicities for subwavelength-imaging applications,” Opt. Express 19(4), 3627–3636 (2011).
    [CrossRef] [PubMed]
  30. P. Schau, K. Frenner, L. Fu, W. Osten, H. Schweizer, and H. Giessen, “Sub-wavelength imaging using stacks of metallic meander structures with different periodicities,” Proc. SPIE 8093, 80931K, 80931K-8 (2011).
    [CrossRef]
  31. D. H. Goldstein, Polarized Light, Third Edition, Revised (CRC Press Inc., Taylor & Francis Group, 2010).
  32. Bryan-Brown1990G. P. Bryan-Brown, J. R. Sambles, and M. C. Hutley, “Polarisation conversion through the excitation of surface plasmons on a metallic grating,” J. Mod. Opt. 37, 1227–1232 (1990).
  33. P. S. Hauge, R. H. Muller, and C. G. Smith, “Conventions and formulas for using the Mueller-Stokes calculus in ellipsometry,” Surf. Sci. 96(1-3), 81–107 (1980).
    [CrossRef]
  34. A. Röseler, Infrared Spectroscopic Ellipsometry (Akademie-Verlag, 1990).
  35. M. Honma and T. Nose, “Liquid-crystal depolarizer consisting of randomly aligned hybrid orientation domains,” Appl. Opt. 43(24), 4667–4671 (2004).
    [CrossRef] [PubMed]
  36. A. Drezet, C. Genet, and T. W. Ebbesen, “Miniature plasmonic wave plates,” Phys. Rev. Lett. 101(4), 043902 (2008).
    [CrossRef] [PubMed]
  37. B. Gompf, J. Braun, T. Weiss, H. Giessen, M. Dressel, and U. Hübner, “Periodic nanostructures: spatial dispersion mimics chirality,” Phys. Rev. Lett. 106(18), 185501 (2011).
    [CrossRef] [PubMed]
  38. L. Fu, P. Schau, K. Frenner, W. Osten, T. Weiss, H. Schweizer, and H. Giessen, “Mode coupling and interaction in a plasmonic microcavity with resonant mirrors,” Phys. Rev. B 84(23), 235402 (2011).
    [CrossRef]

2012 (2)

M. R. Shcherbakov, P. P. Vabishchevich, V. V. Komarova, T. V. Dolgova, V. Panov, V. V. Moshchalkov, and A. A. Fedyanin, “Ultrafast polarization shaping with Fano plasmonic crystals,” Phys. Rev. Lett. 108(25), 253903 (2012).
[CrossRef]

A. Roberts and L. Lin, “Plasmonic quarter-wave plate,” Opt. Lett. 37(11), 1820–1822 (2012).
[CrossRef] [PubMed]

2011 (6)

P. Schau, K. Frenner, L. Fu, H. Schweizer, H. Giessen, and W. Osten, “Design of high-transmission metallic meander stacks with different grating periodicities for subwavelength-imaging applications,” Opt. Express 19(4), 3627–3636 (2011).
[CrossRef] [PubMed]

P. Schau, K. Frenner, L. Fu, W. Osten, H. Schweizer, and H. Giessen, “Sub-wavelength imaging using stacks of metallic meander structures with different periodicities,” Proc. SPIE 8093, 80931K, 80931K-8 (2011).
[CrossRef]

B. Gompf, J. Braun, T. Weiss, H. Giessen, M. Dressel, and U. Hübner, “Periodic nanostructures: spatial dispersion mimics chirality,” Phys. Rev. Lett. 106(18), 185501 (2011).
[CrossRef] [PubMed]

L. Fu, P. Schau, K. Frenner, W. Osten, T. Weiss, H. Schweizer, and H. Giessen, “Mode coupling and interaction in a plasmonic microcavity with resonant mirrors,” Phys. Rev. B 84(23), 235402 (2011).
[CrossRef]

L. M. Gaspar Venancio, S. Hannemann, G. Lubkowski, M. Suhrke, H. Schweizer, L. Fu, H. Giessen, P. Schau, K. Frenner, and W. Osten, “Metamaterials for optical and photonic applications for space: preliminary results,” Proc. SPIE 8146, 81460E, 81460E-13 (2011).
[CrossRef]

L. Feng, A. Mizrahi, S. Zamek, Z. Liu, V. Lomakin, and Y. Fainman, “Metamaterials for enhanced polarization conversion in plasmonic excitation,” ACS Nano 5(6), 5100–5106 (2011).
[CrossRef] [PubMed]

2010 (4)

L. Feng, Z. Liu, V. Lomakin, and Y. Fainman, “Form birefringence metal and its plasmonic anisotropy,” Appl. Phys. Lett. 96(4), 041112 (2010).
[CrossRef]

E. Ӧğüt and K. Şendur, “Circularly and elliptically polarized near-field radiation from nanoscale subwavelength apertures,” Appl. Phys. Lett. 96(14), 141104 (2010).
[CrossRef]

M. Shcherbakov, M. Dobynde, T. Dolgova, D.-P. Tsai, and A. Fedyanin, “Full Poincaré sphere coverage with plasmonic nanoslit metamaterials at Fano resonance,” Phys. Rev. B 82(19), 193402 (2010).
[CrossRef]

P. Schau, K. Frenner, L. Fu, H. Schweizer, and W. Osten, “Coupling between surface plasmons and Fabry-Pérot modes in metallic double meander structures,” Proc. SPIE 7711, 77111F, 77111F-10 (2010).
[CrossRef]

2009 (3)

L. Fu, H. Schweizer, T. Weiss, and H. Giessen, “Optical properties of metallic meanders,” J. Opt. Soc. Am. B 26(12), B111–B119 (2009).
[CrossRef]

S.-Y. Hsu, K.-L. Lee, E.-H. Lin, M.-C. Lee, and P.-K. Wei, “Giant birefringence induced by plasmonic nanoslit arrays,” Appl. Phys. Lett. 95(1), 013105 (2009).
[CrossRef]

T. Weiss, N. A. Gippius, S. G. Tikhodeev, G. Granet, and H. Giessen, “Efficient calculation of the optical properties of stacked metamaterials with a Fourier modal method,” J. Opt. A, Pure Appl. Opt. 11(11), 114019 (2009).
[CrossRef]

2008 (4)

T. Li, H. Liu, S.-M. Wang, X.-G. Yin, F.-M. Wang, S.-N. Zhu, and X. Zhang, “Manipulating optical rotation in extraordinary transmission by hybrid plasmonic excitations,” Appl. Phys. Lett. 93(2), 021110 (2008).
[CrossRef]

J. Sung, M. Sukharev, E. M. Hicks, R. P. VanDuyne, T. Seideman, and K. G. Spears, “Nanoparticle spectroscopy: birefringence in two-dimensional arrays of L-shaped silver nanoparticles,” J. Phys. Chem. C 112(9), 3252–3260 (2008).
[CrossRef]

J. Valentine, S. Zhang, T. Zentgraf, E. Ulin-Avila, D. A. Genov, G. Bartal, and X. Zhang, “Three-dimensional optical metamaterial with a negative refractive index,” Nature 455(7211), 376–379 (2008).
[CrossRef] [PubMed]

A. Drezet, C. Genet, and T. W. Ebbesen, “Miniature plasmonic wave plates,” Phys. Rev. Lett. 101(4), 043902 (2008).
[CrossRef] [PubMed]

2007 (1)

M. Aguirre, B. Berruti, J.-L. Bezy, M. Drinkwater, F. Heliere, U. Klein, C. Mavrocordatos, P. Silvestrin, B. Greco, and J. Benveniste, “Sentinel-3: The ocean and medium-resolution land mission for GMES operational services,” ESA Bull. 131, 24–29 (2007).

2006 (2)

M. R. Dobber, R. J. Dirksen, P. F. Levelt, G. H. J. van den Oord, R. H. M. Voors, Q. Kleipool, G. Jaross, M. Kowalewski, E. Hilsenrath, G. W. Leppelmeier, W. Johan de Vries, Dierssen, and N. C. Rozemeijer, “Ozone monitoring instrument calibration,” IEEE Trans. Geosci. Rem. Sens. 44(5), 1209–1238 (2006).
[CrossRef]

P. F. Levelt, G. H. J. van den Oord, M. R. Dobber, A. Malkki, Huib Visser, P. Johan de Vries, J. O. V. Stammes, Lundell, and H. Saari, “The ozone monitoring instrument,” IEEE Trans. Geosci. Rem. Sens. 44(5), 1093–1101 (2006).
[CrossRef]

2005 (1)

2004 (2)

M. Honma and T. Nose, “Liquid-crystal depolarizer consisting of randomly aligned hybrid orientation domains,” Appl. Opt. 43(24), 4667–4671 (2004).
[CrossRef] [PubMed]

R. Gordon, A. G. Brolo, A. McKinnon, A. Rajora, B. Leathem, and K. L. Kavanagh, “Strong polarization in the optical transmission through elliptical nanohole arrays,” Phys. Rev. Lett. 92(3), 037401 (2004).
[CrossRef] [PubMed]

2001 (1)

M. Totzeck, “Numerical simulation of high-NA quantitative polarization microscopy and corresponding near-fields,” Optik (Stuttg.) 112(9), 399–406 (2001).
[CrossRef]

1999 (1)

1996 (1)

1992 (1)

1990 (1)

Bryan-Brown1990G. P. Bryan-Brown, J. R. Sambles, and M. C. Hutley, “Polarisation conversion through the excitation of surface plasmons on a metallic grating,” J. Mod. Opt. 37, 1227–1232 (1990).

1980 (1)

P. S. Hauge, R. H. Muller, and C. G. Smith, “Conventions and formulas for using the Mueller-Stokes calculus in ellipsometry,” Surf. Sci. 96(1-3), 81–107 (1980).
[CrossRef]

1972 (1)

P. Johnson and R. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[CrossRef]

1957 (1)

R. Ritchie, “Plasma losses by fast electrons in thin films,” Phys. Rev. 106(5), 874–881 (1957).
[CrossRef]

?güt, E.

E. Ӧğüt and K. Şendur, “Circularly and elliptically polarized near-field radiation from nanoscale subwavelength apertures,” Appl. Phys. Lett. 96(14), 141104 (2010).
[CrossRef]

Aguirre, M.

M. Aguirre, B. Berruti, J.-L. Bezy, M. Drinkwater, F. Heliere, U. Klein, C. Mavrocordatos, P. Silvestrin, B. Greco, and J. Benveniste, “Sentinel-3: The ocean and medium-resolution land mission for GMES operational services,” ESA Bull. 131, 24–29 (2007).

Alkemade, P. F. A.

Altewischer, E.

Bartal, G.

J. Valentine, S. Zhang, T. Zentgraf, E. Ulin-Avila, D. A. Genov, G. Bartal, and X. Zhang, “Three-dimensional optical metamaterial with a negative refractive index,” Nature 455(7211), 376–379 (2008).
[CrossRef] [PubMed]

Benveniste, J.

M. Aguirre, B. Berruti, J.-L. Bezy, M. Drinkwater, F. Heliere, U. Klein, C. Mavrocordatos, P. Silvestrin, B. Greco, and J. Benveniste, “Sentinel-3: The ocean and medium-resolution land mission for GMES operational services,” ESA Bull. 131, 24–29 (2007).

Berruti, B.

M. Aguirre, B. Berruti, J.-L. Bezy, M. Drinkwater, F. Heliere, U. Klein, C. Mavrocordatos, P. Silvestrin, B. Greco, and J. Benveniste, “Sentinel-3: The ocean and medium-resolution land mission for GMES operational services,” ESA Bull. 131, 24–29 (2007).

Bezy, J.-L.

M. Aguirre, B. Berruti, J.-L. Bezy, M. Drinkwater, F. Heliere, U. Klein, C. Mavrocordatos, P. Silvestrin, B. Greco, and J. Benveniste, “Sentinel-3: The ocean and medium-resolution land mission for GMES operational services,” ESA Bull. 131, 24–29 (2007).

Braun, J.

B. Gompf, J. Braun, T. Weiss, H. Giessen, M. Dressel, and U. Hübner, “Periodic nanostructures: spatial dispersion mimics chirality,” Phys. Rev. Lett. 106(18), 185501 (2011).
[CrossRef] [PubMed]

Brolo, A. G.

R. Gordon, A. G. Brolo, A. McKinnon, A. Rajora, B. Leathem, and K. L. Kavanagh, “Strong polarization in the optical transmission through elliptical nanohole arrays,” Phys. Rev. Lett. 92(3), 037401 (2004).
[CrossRef] [PubMed]

Bryan-Brown, G. P.

Bryan-Brown1990G. P. Bryan-Brown, J. R. Sambles, and M. C. Hutley, “Polarisation conversion through the excitation of surface plasmons on a metallic grating,” J. Mod. Opt. 37, 1227–1232 (1990).

Chipman, R. A.

Christy, R.

P. Johnson and R. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[CrossRef]

Dierssen,

M. R. Dobber, R. J. Dirksen, P. F. Levelt, G. H. J. van den Oord, R. H. M. Voors, Q. Kleipool, G. Jaross, M. Kowalewski, E. Hilsenrath, G. W. Leppelmeier, W. Johan de Vries, Dierssen, and N. C. Rozemeijer, “Ozone monitoring instrument calibration,” IEEE Trans. Geosci. Rem. Sens. 44(5), 1209–1238 (2006).
[CrossRef]

Dirksen, R. J.

M. R. Dobber, R. J. Dirksen, P. F. Levelt, G. H. J. van den Oord, R. H. M. Voors, Q. Kleipool, G. Jaross, M. Kowalewski, E. Hilsenrath, G. W. Leppelmeier, W. Johan de Vries, Dierssen, and N. C. Rozemeijer, “Ozone monitoring instrument calibration,” IEEE Trans. Geosci. Rem. Sens. 44(5), 1209–1238 (2006).
[CrossRef]

Dobber, M. R.

M. R. Dobber, R. J. Dirksen, P. F. Levelt, G. H. J. van den Oord, R. H. M. Voors, Q. Kleipool, G. Jaross, M. Kowalewski, E. Hilsenrath, G. W. Leppelmeier, W. Johan de Vries, Dierssen, and N. C. Rozemeijer, “Ozone monitoring instrument calibration,” IEEE Trans. Geosci. Rem. Sens. 44(5), 1209–1238 (2006).
[CrossRef]

P. F. Levelt, G. H. J. van den Oord, M. R. Dobber, A. Malkki, Huib Visser, P. Johan de Vries, J. O. V. Stammes, Lundell, and H. Saari, “The ozone monitoring instrument,” IEEE Trans. Geosci. Rem. Sens. 44(5), 1093–1101 (2006).
[CrossRef]

Dobynde, M.

M. Shcherbakov, M. Dobynde, T. Dolgova, D.-P. Tsai, and A. Fedyanin, “Full Poincaré sphere coverage with plasmonic nanoslit metamaterials at Fano resonance,” Phys. Rev. B 82(19), 193402 (2010).
[CrossRef]

Dolgova, T.

M. Shcherbakov, M. Dobynde, T. Dolgova, D.-P. Tsai, and A. Fedyanin, “Full Poincaré sphere coverage with plasmonic nanoslit metamaterials at Fano resonance,” Phys. Rev. B 82(19), 193402 (2010).
[CrossRef]

Dolgova, T. V.

M. R. Shcherbakov, P. P. Vabishchevich, V. V. Komarova, T. V. Dolgova, V. Panov, V. V. Moshchalkov, and A. A. Fedyanin, “Ultrafast polarization shaping with Fano plasmonic crystals,” Phys. Rev. Lett. 108(25), 253903 (2012).
[CrossRef]

Dressel, M.

B. Gompf, J. Braun, T. Weiss, H. Giessen, M. Dressel, and U. Hübner, “Periodic nanostructures: spatial dispersion mimics chirality,” Phys. Rev. Lett. 106(18), 185501 (2011).
[CrossRef] [PubMed]

Drezet, A.

A. Drezet, C. Genet, and T. W. Ebbesen, “Miniature plasmonic wave plates,” Phys. Rev. Lett. 101(4), 043902 (2008).
[CrossRef] [PubMed]

Drinkwater, M.

M. Aguirre, B. Berruti, J.-L. Bezy, M. Drinkwater, F. Heliere, U. Klein, C. Mavrocordatos, P. Silvestrin, B. Greco, and J. Benveniste, “Sentinel-3: The ocean and medium-resolution land mission for GMES operational services,” ESA Bull. 131, 24–29 (2007).

Ebbesen, T. W.

A. Drezet, C. Genet, and T. W. Ebbesen, “Miniature plasmonic wave plates,” Phys. Rev. Lett. 101(4), 043902 (2008).
[CrossRef] [PubMed]

Fainman, Y.

L. Feng, A. Mizrahi, S. Zamek, Z. Liu, V. Lomakin, and Y. Fainman, “Metamaterials for enhanced polarization conversion in plasmonic excitation,” ACS Nano 5(6), 5100–5106 (2011).
[CrossRef] [PubMed]

L. Feng, Z. Liu, V. Lomakin, and Y. Fainman, “Form birefringence metal and its plasmonic anisotropy,” Appl. Phys. Lett. 96(4), 041112 (2010).
[CrossRef]

Fedyanin, A.

M. Shcherbakov, M. Dobynde, T. Dolgova, D.-P. Tsai, and A. Fedyanin, “Full Poincaré sphere coverage with plasmonic nanoslit metamaterials at Fano resonance,” Phys. Rev. B 82(19), 193402 (2010).
[CrossRef]

Fedyanin, A. A.

M. R. Shcherbakov, P. P. Vabishchevich, V. V. Komarova, T. V. Dolgova, V. Panov, V. V. Moshchalkov, and A. A. Fedyanin, “Ultrafast polarization shaping with Fano plasmonic crystals,” Phys. Rev. Lett. 108(25), 253903 (2012).
[CrossRef]

Feng, L.

L. Feng, A. Mizrahi, S. Zamek, Z. Liu, V. Lomakin, and Y. Fainman, “Metamaterials for enhanced polarization conversion in plasmonic excitation,” ACS Nano 5(6), 5100–5106 (2011).
[CrossRef] [PubMed]

L. Feng, Z. Liu, V. Lomakin, and Y. Fainman, “Form birefringence metal and its plasmonic anisotropy,” Appl. Phys. Lett. 96(4), 041112 (2010).
[CrossRef]

Frenner, K.

L. Fu, P. Schau, K. Frenner, W. Osten, T. Weiss, H. Schweizer, and H. Giessen, “Mode coupling and interaction in a plasmonic microcavity with resonant mirrors,” Phys. Rev. B 84(23), 235402 (2011).
[CrossRef]

L. M. Gaspar Venancio, S. Hannemann, G. Lubkowski, M. Suhrke, H. Schweizer, L. Fu, H. Giessen, P. Schau, K. Frenner, and W. Osten, “Metamaterials for optical and photonic applications for space: preliminary results,” Proc. SPIE 8146, 81460E, 81460E-13 (2011).
[CrossRef]

P. Schau, K. Frenner, L. Fu, H. Schweizer, H. Giessen, and W. Osten, “Design of high-transmission metallic meander stacks with different grating periodicities for subwavelength-imaging applications,” Opt. Express 19(4), 3627–3636 (2011).
[CrossRef] [PubMed]

P. Schau, K. Frenner, L. Fu, W. Osten, H. Schweizer, and H. Giessen, “Sub-wavelength imaging using stacks of metallic meander structures with different periodicities,” Proc. SPIE 8093, 80931K, 80931K-8 (2011).
[CrossRef]

P. Schau, K. Frenner, L. Fu, H. Schweizer, and W. Osten, “Coupling between surface plasmons and Fabry-Pérot modes in metallic double meander structures,” Proc. SPIE 7711, 77111F, 77111F-10 (2010).
[CrossRef]

Fu, L.

P. Schau, K. Frenner, L. Fu, W. Osten, H. Schweizer, and H. Giessen, “Sub-wavelength imaging using stacks of metallic meander structures with different periodicities,” Proc. SPIE 8093, 80931K, 80931K-8 (2011).
[CrossRef]

P. Schau, K. Frenner, L. Fu, H. Schweizer, H. Giessen, and W. Osten, “Design of high-transmission metallic meander stacks with different grating periodicities for subwavelength-imaging applications,” Opt. Express 19(4), 3627–3636 (2011).
[CrossRef] [PubMed]

L. M. Gaspar Venancio, S. Hannemann, G. Lubkowski, M. Suhrke, H. Schweizer, L. Fu, H. Giessen, P. Schau, K. Frenner, and W. Osten, “Metamaterials for optical and photonic applications for space: preliminary results,” Proc. SPIE 8146, 81460E, 81460E-13 (2011).
[CrossRef]

L. Fu, P. Schau, K. Frenner, W. Osten, T. Weiss, H. Schweizer, and H. Giessen, “Mode coupling and interaction in a plasmonic microcavity with resonant mirrors,” Phys. Rev. B 84(23), 235402 (2011).
[CrossRef]

P. Schau, K. Frenner, L. Fu, H. Schweizer, and W. Osten, “Coupling between surface plasmons and Fabry-Pérot modes in metallic double meander structures,” Proc. SPIE 7711, 77111F, 77111F-10 (2010).
[CrossRef]

L. Fu, H. Schweizer, T. Weiss, and H. Giessen, “Optical properties of metallic meanders,” J. Opt. Soc. Am. B 26(12), B111–B119 (2009).
[CrossRef]

Gaspar Venancio, L. M.

L. M. Gaspar Venancio, S. Hannemann, G. Lubkowski, M. Suhrke, H. Schweizer, L. Fu, H. Giessen, P. Schau, K. Frenner, and W. Osten, “Metamaterials for optical and photonic applications for space: preliminary results,” Proc. SPIE 8146, 81460E, 81460E-13 (2011).
[CrossRef]

Genet, C.

Genov, D. A.

J. Valentine, S. Zhang, T. Zentgraf, E. Ulin-Avila, D. A. Genov, G. Bartal, and X. Zhang, “Three-dimensional optical metamaterial with a negative refractive index,” Nature 455(7211), 376–379 (2008).
[CrossRef] [PubMed]

Giessen, H.

L. Fu, P. Schau, K. Frenner, W. Osten, T. Weiss, H. Schweizer, and H. Giessen, “Mode coupling and interaction in a plasmonic microcavity with resonant mirrors,” Phys. Rev. B 84(23), 235402 (2011).
[CrossRef]

L. M. Gaspar Venancio, S. Hannemann, G. Lubkowski, M. Suhrke, H. Schweizer, L. Fu, H. Giessen, P. Schau, K. Frenner, and W. Osten, “Metamaterials for optical and photonic applications for space: preliminary results,” Proc. SPIE 8146, 81460E, 81460E-13 (2011).
[CrossRef]

P. Schau, K. Frenner, L. Fu, H. Schweizer, H. Giessen, and W. Osten, “Design of high-transmission metallic meander stacks with different grating periodicities for subwavelength-imaging applications,” Opt. Express 19(4), 3627–3636 (2011).
[CrossRef] [PubMed]

P. Schau, K. Frenner, L. Fu, W. Osten, H. Schweizer, and H. Giessen, “Sub-wavelength imaging using stacks of metallic meander structures with different periodicities,” Proc. SPIE 8093, 80931K, 80931K-8 (2011).
[CrossRef]

B. Gompf, J. Braun, T. Weiss, H. Giessen, M. Dressel, and U. Hübner, “Periodic nanostructures: spatial dispersion mimics chirality,” Phys. Rev. Lett. 106(18), 185501 (2011).
[CrossRef] [PubMed]

T. Weiss, N. A. Gippius, S. G. Tikhodeev, G. Granet, and H. Giessen, “Efficient calculation of the optical properties of stacked metamaterials with a Fourier modal method,” J. Opt. A, Pure Appl. Opt. 11(11), 114019 (2009).
[CrossRef]

L. Fu, H. Schweizer, T. Weiss, and H. Giessen, “Optical properties of metallic meanders,” J. Opt. Soc. Am. B 26(12), B111–B119 (2009).
[CrossRef]

Gippius, N. A.

T. Weiss, N. A. Gippius, S. G. Tikhodeev, G. Granet, and H. Giessen, “Efficient calculation of the optical properties of stacked metamaterials with a Fourier modal method,” J. Opt. A, Pure Appl. Opt. 11(11), 114019 (2009).
[CrossRef]

Gompf, B.

B. Gompf, J. Braun, T. Weiss, H. Giessen, M. Dressel, and U. Hübner, “Periodic nanostructures: spatial dispersion mimics chirality,” Phys. Rev. Lett. 106(18), 185501 (2011).
[CrossRef] [PubMed]

Gordon, R.

R. Gordon, A. G. Brolo, A. McKinnon, A. Rajora, B. Leathem, and K. L. Kavanagh, “Strong polarization in the optical transmission through elliptical nanohole arrays,” Phys. Rev. Lett. 92(3), 037401 (2004).
[CrossRef] [PubMed]

Granet, G.

T. Weiss, N. A. Gippius, S. G. Tikhodeev, G. Granet, and H. Giessen, “Efficient calculation of the optical properties of stacked metamaterials with a Fourier modal method,” J. Opt. A, Pure Appl. Opt. 11(11), 114019 (2009).
[CrossRef]

G. Granet, “Reformulation of the lamellar grating problem through the concept of adaptive spatial resolution,” J. Opt. Soc. Am. A 16(10), 2510–2516 (1999).
[CrossRef]

Greco, B.

M. Aguirre, B. Berruti, J.-L. Bezy, M. Drinkwater, F. Heliere, U. Klein, C. Mavrocordatos, P. Silvestrin, B. Greco, and J. Benveniste, “Sentinel-3: The ocean and medium-resolution land mission for GMES operational services,” ESA Bull. 131, 24–29 (2007).

Hannemann, S.

L. M. Gaspar Venancio, S. Hannemann, G. Lubkowski, M. Suhrke, H. Schweizer, L. Fu, H. Giessen, P. Schau, K. Frenner, and W. Osten, “Metamaterials for optical and photonic applications for space: preliminary results,” Proc. SPIE 8146, 81460E, 81460E-13 (2011).
[CrossRef]

Hauge, P. S.

P. S. Hauge, R. H. Muller, and C. G. Smith, “Conventions and formulas for using the Mueller-Stokes calculus in ellipsometry,” Surf. Sci. 96(1-3), 81–107 (1980).
[CrossRef]

Heliere, F.

M. Aguirre, B. Berruti, J.-L. Bezy, M. Drinkwater, F. Heliere, U. Klein, C. Mavrocordatos, P. Silvestrin, B. Greco, and J. Benveniste, “Sentinel-3: The ocean and medium-resolution land mission for GMES operational services,” ESA Bull. 131, 24–29 (2007).

Hicks, E. M.

J. Sung, M. Sukharev, E. M. Hicks, R. P. VanDuyne, T. Seideman, and K. G. Spears, “Nanoparticle spectroscopy: birefringence in two-dimensional arrays of L-shaped silver nanoparticles,” J. Phys. Chem. C 112(9), 3252–3260 (2008).
[CrossRef]

Hillman, L. W.

Hilsenrath, E.

M. R. Dobber, R. J. Dirksen, P. F. Levelt, G. H. J. van den Oord, R. H. M. Voors, Q. Kleipool, G. Jaross, M. Kowalewski, E. Hilsenrath, G. W. Leppelmeier, W. Johan de Vries, Dierssen, and N. C. Rozemeijer, “Ozone monitoring instrument calibration,” IEEE Trans. Geosci. Rem. Sens. 44(5), 1209–1238 (2006).
[CrossRef]

Honma, M.

Hsu, S.-Y.

S.-Y. Hsu, K.-L. Lee, E.-H. Lin, M.-C. Lee, and P.-K. Wei, “Giant birefringence induced by plasmonic nanoslit arrays,” Appl. Phys. Lett. 95(1), 013105 (2009).
[CrossRef]

Hübner, U.

B. Gompf, J. Braun, T. Weiss, H. Giessen, M. Dressel, and U. Hübner, “Periodic nanostructures: spatial dispersion mimics chirality,” Phys. Rev. Lett. 106(18), 185501 (2011).
[CrossRef] [PubMed]

Huib Visser,

P. F. Levelt, G. H. J. van den Oord, M. R. Dobber, A. Malkki, Huib Visser, P. Johan de Vries, J. O. V. Stammes, Lundell, and H. Saari, “The ozone monitoring instrument,” IEEE Trans. Geosci. Rem. Sens. 44(5), 1093–1101 (2006).
[CrossRef]

Hutley, M. C.

Bryan-Brown1990G. P. Bryan-Brown, J. R. Sambles, and M. C. Hutley, “Polarisation conversion through the excitation of surface plasmons on a metallic grating,” J. Mod. Opt. 37, 1227–1232 (1990).

Jaross, G.

M. R. Dobber, R. J. Dirksen, P. F. Levelt, G. H. J. van den Oord, R. H. M. Voors, Q. Kleipool, G. Jaross, M. Kowalewski, E. Hilsenrath, G. W. Leppelmeier, W. Johan de Vries, Dierssen, and N. C. Rozemeijer, “Ozone monitoring instrument calibration,” IEEE Trans. Geosci. Rem. Sens. 44(5), 1209–1238 (2006).
[CrossRef]

Johan de Vries, P.

P. F. Levelt, G. H. J. van den Oord, M. R. Dobber, A. Malkki, Huib Visser, P. Johan de Vries, J. O. V. Stammes, Lundell, and H. Saari, “The ozone monitoring instrument,” IEEE Trans. Geosci. Rem. Sens. 44(5), 1093–1101 (2006).
[CrossRef]

Johan de Vries, W.

M. R. Dobber, R. J. Dirksen, P. F. Levelt, G. H. J. van den Oord, R. H. M. Voors, Q. Kleipool, G. Jaross, M. Kowalewski, E. Hilsenrath, G. W. Leppelmeier, W. Johan de Vries, Dierssen, and N. C. Rozemeijer, “Ozone monitoring instrument calibration,” IEEE Trans. Geosci. Rem. Sens. 44(5), 1209–1238 (2006).
[CrossRef]

Johnson, P.

P. Johnson and R. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[CrossRef]

Kavanagh, K. L.

R. Gordon, A. G. Brolo, A. McKinnon, A. Rajora, B. Leathem, and K. L. Kavanagh, “Strong polarization in the optical transmission through elliptical nanohole arrays,” Phys. Rev. Lett. 92(3), 037401 (2004).
[CrossRef] [PubMed]

Klein, U.

M. Aguirre, B. Berruti, J.-L. Bezy, M. Drinkwater, F. Heliere, U. Klein, C. Mavrocordatos, P. Silvestrin, B. Greco, and J. Benveniste, “Sentinel-3: The ocean and medium-resolution land mission for GMES operational services,” ESA Bull. 131, 24–29 (2007).

Kleipool, Q.

M. R. Dobber, R. J. Dirksen, P. F. Levelt, G. H. J. van den Oord, R. H. M. Voors, Q. Kleipool, G. Jaross, M. Kowalewski, E. Hilsenrath, G. W. Leppelmeier, W. Johan de Vries, Dierssen, and N. C. Rozemeijer, “Ozone monitoring instrument calibration,” IEEE Trans. Geosci. Rem. Sens. 44(5), 1209–1238 (2006).
[CrossRef]

Komarova, V. V.

M. R. Shcherbakov, P. P. Vabishchevich, V. V. Komarova, T. V. Dolgova, V. Panov, V. V. Moshchalkov, and A. A. Fedyanin, “Ultrafast polarization shaping with Fano plasmonic crystals,” Phys. Rev. Lett. 108(25), 253903 (2012).
[CrossRef]

Kowalewski, M.

M. R. Dobber, R. J. Dirksen, P. F. Levelt, G. H. J. van den Oord, R. H. M. Voors, Q. Kleipool, G. Jaross, M. Kowalewski, E. Hilsenrath, G. W. Leppelmeier, W. Johan de Vries, Dierssen, and N. C. Rozemeijer, “Ozone monitoring instrument calibration,” IEEE Trans. Geosci. Rem. Sens. 44(5), 1209–1238 (2006).
[CrossRef]

Leathem, B.

R. Gordon, A. G. Brolo, A. McKinnon, A. Rajora, B. Leathem, and K. L. Kavanagh, “Strong polarization in the optical transmission through elliptical nanohole arrays,” Phys. Rev. Lett. 92(3), 037401 (2004).
[CrossRef] [PubMed]

Lee, K.-L.

S.-Y. Hsu, K.-L. Lee, E.-H. Lin, M.-C. Lee, and P.-K. Wei, “Giant birefringence induced by plasmonic nanoslit arrays,” Appl. Phys. Lett. 95(1), 013105 (2009).
[CrossRef]

Lee, M.-C.

S.-Y. Hsu, K.-L. Lee, E.-H. Lin, M.-C. Lee, and P.-K. Wei, “Giant birefringence induced by plasmonic nanoslit arrays,” Appl. Phys. Lett. 95(1), 013105 (2009).
[CrossRef]

Leppelmeier, G. W.

M. R. Dobber, R. J. Dirksen, P. F. Levelt, G. H. J. van den Oord, R. H. M. Voors, Q. Kleipool, G. Jaross, M. Kowalewski, E. Hilsenrath, G. W. Leppelmeier, W. Johan de Vries, Dierssen, and N. C. Rozemeijer, “Ozone monitoring instrument calibration,” IEEE Trans. Geosci. Rem. Sens. 44(5), 1209–1238 (2006).
[CrossRef]

Levelt, P. F.

M. R. Dobber, R. J. Dirksen, P. F. Levelt, G. H. J. van den Oord, R. H. M. Voors, Q. Kleipool, G. Jaross, M. Kowalewski, E. Hilsenrath, G. W. Leppelmeier, W. Johan de Vries, Dierssen, and N. C. Rozemeijer, “Ozone monitoring instrument calibration,” IEEE Trans. Geosci. Rem. Sens. 44(5), 1209–1238 (2006).
[CrossRef]

P. F. Levelt, G. H. J. van den Oord, M. R. Dobber, A. Malkki, Huib Visser, P. Johan de Vries, J. O. V. Stammes, Lundell, and H. Saari, “The ozone monitoring instrument,” IEEE Trans. Geosci. Rem. Sens. 44(5), 1093–1101 (2006).
[CrossRef]

Li, L.

Li, T.

T. Li, H. Liu, S.-M. Wang, X.-G. Yin, F.-M. Wang, S.-N. Zhu, and X. Zhang, “Manipulating optical rotation in extraordinary transmission by hybrid plasmonic excitations,” Appl. Phys. Lett. 93(2), 021110 (2008).
[CrossRef]

Lin, E.-H.

S.-Y. Hsu, K.-L. Lee, E.-H. Lin, M.-C. Lee, and P.-K. Wei, “Giant birefringence induced by plasmonic nanoslit arrays,” Appl. Phys. Lett. 95(1), 013105 (2009).
[CrossRef]

Lin, L.

Liu, H.

T. Li, H. Liu, S.-M. Wang, X.-G. Yin, F.-M. Wang, S.-N. Zhu, and X. Zhang, “Manipulating optical rotation in extraordinary transmission by hybrid plasmonic excitations,” Appl. Phys. Lett. 93(2), 021110 (2008).
[CrossRef]

Liu, Z.

L. Feng, A. Mizrahi, S. Zamek, Z. Liu, V. Lomakin, and Y. Fainman, “Metamaterials for enhanced polarization conversion in plasmonic excitation,” ACS Nano 5(6), 5100–5106 (2011).
[CrossRef] [PubMed]

L. Feng, Z. Liu, V. Lomakin, and Y. Fainman, “Form birefringence metal and its plasmonic anisotropy,” Appl. Phys. Lett. 96(4), 041112 (2010).
[CrossRef]

Lomakin, V.

L. Feng, A. Mizrahi, S. Zamek, Z. Liu, V. Lomakin, and Y. Fainman, “Metamaterials for enhanced polarization conversion in plasmonic excitation,” ACS Nano 5(6), 5100–5106 (2011).
[CrossRef] [PubMed]

L. Feng, Z. Liu, V. Lomakin, and Y. Fainman, “Form birefringence metal and its plasmonic anisotropy,” Appl. Phys. Lett. 96(4), 041112 (2010).
[CrossRef]

Lubkowski, G.

L. M. Gaspar Venancio, S. Hannemann, G. Lubkowski, M. Suhrke, H. Schweizer, L. Fu, H. Giessen, P. Schau, K. Frenner, and W. Osten, “Metamaterials for optical and photonic applications for space: preliminary results,” Proc. SPIE 8146, 81460E, 81460E-13 (2011).
[CrossRef]

Lundell,

P. F. Levelt, G. H. J. van den Oord, M. R. Dobber, A. Malkki, Huib Visser, P. Johan de Vries, J. O. V. Stammes, Lundell, and H. Saari, “The ozone monitoring instrument,” IEEE Trans. Geosci. Rem. Sens. 44(5), 1093–1101 (2006).
[CrossRef]

Malkki, A.

P. F. Levelt, G. H. J. van den Oord, M. R. Dobber, A. Malkki, Huib Visser, P. Johan de Vries, J. O. V. Stammes, Lundell, and H. Saari, “The ozone monitoring instrument,” IEEE Trans. Geosci. Rem. Sens. 44(5), 1093–1101 (2006).
[CrossRef]

Mavrocordatos, C.

M. Aguirre, B. Berruti, J.-L. Bezy, M. Drinkwater, F. Heliere, U. Klein, C. Mavrocordatos, P. Silvestrin, B. Greco, and J. Benveniste, “Sentinel-3: The ocean and medium-resolution land mission for GMES operational services,” ESA Bull. 131, 24–29 (2007).

McClain, S. C.

McKinnon, A.

R. Gordon, A. G. Brolo, A. McKinnon, A. Rajora, B. Leathem, and K. L. Kavanagh, “Strong polarization in the optical transmission through elliptical nanohole arrays,” Phys. Rev. Lett. 92(3), 037401 (2004).
[CrossRef] [PubMed]

Mizrahi, A.

L. Feng, A. Mizrahi, S. Zamek, Z. Liu, V. Lomakin, and Y. Fainman, “Metamaterials for enhanced polarization conversion in plasmonic excitation,” ACS Nano 5(6), 5100–5106 (2011).
[CrossRef] [PubMed]

Moshchalkov, V. V.

M. R. Shcherbakov, P. P. Vabishchevich, V. V. Komarova, T. V. Dolgova, V. Panov, V. V. Moshchalkov, and A. A. Fedyanin, “Ultrafast polarization shaping with Fano plasmonic crystals,” Phys. Rev. Lett. 108(25), 253903 (2012).
[CrossRef]

Muller, R. H.

P. S. Hauge, R. H. Muller, and C. G. Smith, “Conventions and formulas for using the Mueller-Stokes calculus in ellipsometry,” Surf. Sci. 96(1-3), 81–107 (1980).
[CrossRef]

Nose, T.

Osten, W.

L. Fu, P. Schau, K. Frenner, W. Osten, T. Weiss, H. Schweizer, and H. Giessen, “Mode coupling and interaction in a plasmonic microcavity with resonant mirrors,” Phys. Rev. B 84(23), 235402 (2011).
[CrossRef]

P. Schau, K. Frenner, L. Fu, W. Osten, H. Schweizer, and H. Giessen, “Sub-wavelength imaging using stacks of metallic meander structures with different periodicities,” Proc. SPIE 8093, 80931K, 80931K-8 (2011).
[CrossRef]

P. Schau, K. Frenner, L. Fu, H. Schweizer, H. Giessen, and W. Osten, “Design of high-transmission metallic meander stacks with different grating periodicities for subwavelength-imaging applications,” Opt. Express 19(4), 3627–3636 (2011).
[CrossRef] [PubMed]

L. M. Gaspar Venancio, S. Hannemann, G. Lubkowski, M. Suhrke, H. Schweizer, L. Fu, H. Giessen, P. Schau, K. Frenner, and W. Osten, “Metamaterials for optical and photonic applications for space: preliminary results,” Proc. SPIE 8146, 81460E, 81460E-13 (2011).
[CrossRef]

P. Schau, K. Frenner, L. Fu, H. Schweizer, and W. Osten, “Coupling between surface plasmons and Fabry-Pérot modes in metallic double meander structures,” Proc. SPIE 7711, 77111F, 77111F-10 (2010).
[CrossRef]

Panov, V.

M. R. Shcherbakov, P. P. Vabishchevich, V. V. Komarova, T. V. Dolgova, V. Panov, V. V. Moshchalkov, and A. A. Fedyanin, “Ultrafast polarization shaping with Fano plasmonic crystals,” Phys. Rev. Lett. 108(25), 253903 (2012).
[CrossRef]

Rajora, A.

R. Gordon, A. G. Brolo, A. McKinnon, A. Rajora, B. Leathem, and K. L. Kavanagh, “Strong polarization in the optical transmission through elliptical nanohole arrays,” Phys. Rev. Lett. 92(3), 037401 (2004).
[CrossRef] [PubMed]

Ritchie, R.

R. Ritchie, “Plasma losses by fast electrons in thin films,” Phys. Rev. 106(5), 874–881 (1957).
[CrossRef]

Roberts, A.

Rozemeijer, N. C.

M. R. Dobber, R. J. Dirksen, P. F. Levelt, G. H. J. van den Oord, R. H. M. Voors, Q. Kleipool, G. Jaross, M. Kowalewski, E. Hilsenrath, G. W. Leppelmeier, W. Johan de Vries, Dierssen, and N. C. Rozemeijer, “Ozone monitoring instrument calibration,” IEEE Trans. Geosci. Rem. Sens. 44(5), 1209–1238 (2006).
[CrossRef]

Saari, H.

P. F. Levelt, G. H. J. van den Oord, M. R. Dobber, A. Malkki, Huib Visser, P. Johan de Vries, J. O. V. Stammes, Lundell, and H. Saari, “The ozone monitoring instrument,” IEEE Trans. Geosci. Rem. Sens. 44(5), 1093–1101 (2006).
[CrossRef]

Sambles, J. R.

Bryan-Brown1990G. P. Bryan-Brown, J. R. Sambles, and M. C. Hutley, “Polarisation conversion through the excitation of surface plasmons on a metallic grating,” J. Mod. Opt. 37, 1227–1232 (1990).

Schau, P.

L. Fu, P. Schau, K. Frenner, W. Osten, T. Weiss, H. Schweizer, and H. Giessen, “Mode coupling and interaction in a plasmonic microcavity with resonant mirrors,” Phys. Rev. B 84(23), 235402 (2011).
[CrossRef]

P. Schau, K. Frenner, L. Fu, H. Schweizer, H. Giessen, and W. Osten, “Design of high-transmission metallic meander stacks with different grating periodicities for subwavelength-imaging applications,” Opt. Express 19(4), 3627–3636 (2011).
[CrossRef] [PubMed]

L. M. Gaspar Venancio, S. Hannemann, G. Lubkowski, M. Suhrke, H. Schweizer, L. Fu, H. Giessen, P. Schau, K. Frenner, and W. Osten, “Metamaterials for optical and photonic applications for space: preliminary results,” Proc. SPIE 8146, 81460E, 81460E-13 (2011).
[CrossRef]

P. Schau, K. Frenner, L. Fu, W. Osten, H. Schweizer, and H. Giessen, “Sub-wavelength imaging using stacks of metallic meander structures with different periodicities,” Proc. SPIE 8093, 80931K, 80931K-8 (2011).
[CrossRef]

P. Schau, K. Frenner, L. Fu, H. Schweizer, and W. Osten, “Coupling between surface plasmons and Fabry-Pérot modes in metallic double meander structures,” Proc. SPIE 7711, 77111F, 77111F-10 (2010).
[CrossRef]

Schweizer, H.

P. Schau, K. Frenner, L. Fu, H. Schweizer, H. Giessen, and W. Osten, “Design of high-transmission metallic meander stacks with different grating periodicities for subwavelength-imaging applications,” Opt. Express 19(4), 3627–3636 (2011).
[CrossRef] [PubMed]

P. Schau, K. Frenner, L. Fu, W. Osten, H. Schweizer, and H. Giessen, “Sub-wavelength imaging using stacks of metallic meander structures with different periodicities,” Proc. SPIE 8093, 80931K, 80931K-8 (2011).
[CrossRef]

L. M. Gaspar Venancio, S. Hannemann, G. Lubkowski, M. Suhrke, H. Schweizer, L. Fu, H. Giessen, P. Schau, K. Frenner, and W. Osten, “Metamaterials for optical and photonic applications for space: preliminary results,” Proc. SPIE 8146, 81460E, 81460E-13 (2011).
[CrossRef]

L. Fu, P. Schau, K. Frenner, W. Osten, T. Weiss, H. Schweizer, and H. Giessen, “Mode coupling and interaction in a plasmonic microcavity with resonant mirrors,” Phys. Rev. B 84(23), 235402 (2011).
[CrossRef]

P. Schau, K. Frenner, L. Fu, H. Schweizer, and W. Osten, “Coupling between surface plasmons and Fabry-Pérot modes in metallic double meander structures,” Proc. SPIE 7711, 77111F, 77111F-10 (2010).
[CrossRef]

L. Fu, H. Schweizer, T. Weiss, and H. Giessen, “Optical properties of metallic meanders,” J. Opt. Soc. Am. B 26(12), B111–B119 (2009).
[CrossRef]

Seideman, T.

J. Sung, M. Sukharev, E. M. Hicks, R. P. VanDuyne, T. Seideman, and K. G. Spears, “Nanoparticle spectroscopy: birefringence in two-dimensional arrays of L-shaped silver nanoparticles,” J. Phys. Chem. C 112(9), 3252–3260 (2008).
[CrossRef]

Sendur, K.

E. Ӧğüt and K. Şendur, “Circularly and elliptically polarized near-field radiation from nanoscale subwavelength apertures,” Appl. Phys. Lett. 96(14), 141104 (2010).
[CrossRef]

Shcherbakov, M.

M. Shcherbakov, M. Dobynde, T. Dolgova, D.-P. Tsai, and A. Fedyanin, “Full Poincaré sphere coverage with plasmonic nanoslit metamaterials at Fano resonance,” Phys. Rev. B 82(19), 193402 (2010).
[CrossRef]

Shcherbakov, M. R.

M. R. Shcherbakov, P. P. Vabishchevich, V. V. Komarova, T. V. Dolgova, V. Panov, V. V. Moshchalkov, and A. A. Fedyanin, “Ultrafast polarization shaping with Fano plasmonic crystals,” Phys. Rev. Lett. 108(25), 253903 (2012).
[CrossRef]

Silvestrin, P.

M. Aguirre, B. Berruti, J.-L. Bezy, M. Drinkwater, F. Heliere, U. Klein, C. Mavrocordatos, P. Silvestrin, B. Greco, and J. Benveniste, “Sentinel-3: The ocean and medium-resolution land mission for GMES operational services,” ESA Bull. 131, 24–29 (2007).

Smith, C. G.

P. S. Hauge, R. H. Muller, and C. G. Smith, “Conventions and formulas for using the Mueller-Stokes calculus in ellipsometry,” Surf. Sci. 96(1-3), 81–107 (1980).
[CrossRef]

Spears, K. G.

J. Sung, M. Sukharev, E. M. Hicks, R. P. VanDuyne, T. Seideman, and K. G. Spears, “Nanoparticle spectroscopy: birefringence in two-dimensional arrays of L-shaped silver nanoparticles,” J. Phys. Chem. C 112(9), 3252–3260 (2008).
[CrossRef]

Stammes, J. O. V.

P. F. Levelt, G. H. J. van den Oord, M. R. Dobber, A. Malkki, Huib Visser, P. Johan de Vries, J. O. V. Stammes, Lundell, and H. Saari, “The ozone monitoring instrument,” IEEE Trans. Geosci. Rem. Sens. 44(5), 1093–1101 (2006).
[CrossRef]

Suhrke, M.

L. M. Gaspar Venancio, S. Hannemann, G. Lubkowski, M. Suhrke, H. Schweizer, L. Fu, H. Giessen, P. Schau, K. Frenner, and W. Osten, “Metamaterials for optical and photonic applications for space: preliminary results,” Proc. SPIE 8146, 81460E, 81460E-13 (2011).
[CrossRef]

Sukharev, M.

J. Sung, M. Sukharev, E. M. Hicks, R. P. VanDuyne, T. Seideman, and K. G. Spears, “Nanoparticle spectroscopy: birefringence in two-dimensional arrays of L-shaped silver nanoparticles,” J. Phys. Chem. C 112(9), 3252–3260 (2008).
[CrossRef]

Sung, J.

J. Sung, M. Sukharev, E. M. Hicks, R. P. VanDuyne, T. Seideman, and K. G. Spears, “Nanoparticle spectroscopy: birefringence in two-dimensional arrays of L-shaped silver nanoparticles,” J. Phys. Chem. C 112(9), 3252–3260 (2008).
[CrossRef]

Tikhodeev, S. G.

T. Weiss, N. A. Gippius, S. G. Tikhodeev, G. Granet, and H. Giessen, “Efficient calculation of the optical properties of stacked metamaterials with a Fourier modal method,” J. Opt. A, Pure Appl. Opt. 11(11), 114019 (2009).
[CrossRef]

Totzeck, M.

M. Totzeck, “Numerical simulation of high-NA quantitative polarization microscopy and corresponding near-fields,” Optik (Stuttg.) 112(9), 399–406 (2001).
[CrossRef]

Tsai, D.-P.

M. Shcherbakov, M. Dobynde, T. Dolgova, D.-P. Tsai, and A. Fedyanin, “Full Poincaré sphere coverage with plasmonic nanoslit metamaterials at Fano resonance,” Phys. Rev. B 82(19), 193402 (2010).
[CrossRef]

Ulin-Avila, E.

J. Valentine, S. Zhang, T. Zentgraf, E. Ulin-Avila, D. A. Genov, G. Bartal, and X. Zhang, “Three-dimensional optical metamaterial with a negative refractive index,” Nature 455(7211), 376–379 (2008).
[CrossRef] [PubMed]

Vabishchevich, P. P.

M. R. Shcherbakov, P. P. Vabishchevich, V. V. Komarova, T. V. Dolgova, V. Panov, V. V. Moshchalkov, and A. A. Fedyanin, “Ultrafast polarization shaping with Fano plasmonic crystals,” Phys. Rev. Lett. 108(25), 253903 (2012).
[CrossRef]

Valentine, J.

J. Valentine, S. Zhang, T. Zentgraf, E. Ulin-Avila, D. A. Genov, G. Bartal, and X. Zhang, “Three-dimensional optical metamaterial with a negative refractive index,” Nature 455(7211), 376–379 (2008).
[CrossRef] [PubMed]

van den Oord, G. H. J.

M. R. Dobber, R. J. Dirksen, P. F. Levelt, G. H. J. van den Oord, R. H. M. Voors, Q. Kleipool, G. Jaross, M. Kowalewski, E. Hilsenrath, G. W. Leppelmeier, W. Johan de Vries, Dierssen, and N. C. Rozemeijer, “Ozone monitoring instrument calibration,” IEEE Trans. Geosci. Rem. Sens. 44(5), 1209–1238 (2006).
[CrossRef]

P. F. Levelt, G. H. J. van den Oord, M. R. Dobber, A. Malkki, Huib Visser, P. Johan de Vries, J. O. V. Stammes, Lundell, and H. Saari, “The ozone monitoring instrument,” IEEE Trans. Geosci. Rem. Sens. 44(5), 1093–1101 (2006).
[CrossRef]

van der Drift, E. W. J. M.

van Exter, M. P.

van Zuuk, A.

VanDuyne, R. P.

J. Sung, M. Sukharev, E. M. Hicks, R. P. VanDuyne, T. Seideman, and K. G. Spears, “Nanoparticle spectroscopy: birefringence in two-dimensional arrays of L-shaped silver nanoparticles,” J. Phys. Chem. C 112(9), 3252–3260 (2008).
[CrossRef]

Voors, R. H. M.

M. R. Dobber, R. J. Dirksen, P. F. Levelt, G. H. J. van den Oord, R. H. M. Voors, Q. Kleipool, G. Jaross, M. Kowalewski, E. Hilsenrath, G. W. Leppelmeier, W. Johan de Vries, Dierssen, and N. C. Rozemeijer, “Ozone monitoring instrument calibration,” IEEE Trans. Geosci. Rem. Sens. 44(5), 1209–1238 (2006).
[CrossRef]

Wang, F.-M.

T. Li, H. Liu, S.-M. Wang, X.-G. Yin, F.-M. Wang, S.-N. Zhu, and X. Zhang, “Manipulating optical rotation in extraordinary transmission by hybrid plasmonic excitations,” Appl. Phys. Lett. 93(2), 021110 (2008).
[CrossRef]

Wang, S.-M.

T. Li, H. Liu, S.-M. Wang, X.-G. Yin, F.-M. Wang, S.-N. Zhu, and X. Zhang, “Manipulating optical rotation in extraordinary transmission by hybrid plasmonic excitations,” Appl. Phys. Lett. 93(2), 021110 (2008).
[CrossRef]

Wei, P.-K.

S.-Y. Hsu, K.-L. Lee, E.-H. Lin, M.-C. Lee, and P.-K. Wei, “Giant birefringence induced by plasmonic nanoslit arrays,” Appl. Phys. Lett. 95(1), 013105 (2009).
[CrossRef]

Weiss, T.

B. Gompf, J. Braun, T. Weiss, H. Giessen, M. Dressel, and U. Hübner, “Periodic nanostructures: spatial dispersion mimics chirality,” Phys. Rev. Lett. 106(18), 185501 (2011).
[CrossRef] [PubMed]

L. Fu, P. Schau, K. Frenner, W. Osten, T. Weiss, H. Schweizer, and H. Giessen, “Mode coupling and interaction in a plasmonic microcavity with resonant mirrors,” Phys. Rev. B 84(23), 235402 (2011).
[CrossRef]

L. Fu, H. Schweizer, T. Weiss, and H. Giessen, “Optical properties of metallic meanders,” J. Opt. Soc. Am. B 26(12), B111–B119 (2009).
[CrossRef]

T. Weiss, N. A. Gippius, S. G. Tikhodeev, G. Granet, and H. Giessen, “Efficient calculation of the optical properties of stacked metamaterials with a Fourier modal method,” J. Opt. A, Pure Appl. Opt. 11(11), 114019 (2009).
[CrossRef]

Woerdman, J. P.

Yin, X.-G.

T. Li, H. Liu, S.-M. Wang, X.-G. Yin, F.-M. Wang, S.-N. Zhu, and X. Zhang, “Manipulating optical rotation in extraordinary transmission by hybrid plasmonic excitations,” Appl. Phys. Lett. 93(2), 021110 (2008).
[CrossRef]

Zamek, S.

L. Feng, A. Mizrahi, S. Zamek, Z. Liu, V. Lomakin, and Y. Fainman, “Metamaterials for enhanced polarization conversion in plasmonic excitation,” ACS Nano 5(6), 5100–5106 (2011).
[CrossRef] [PubMed]

Zentgraf, T.

J. Valentine, S. Zhang, T. Zentgraf, E. Ulin-Avila, D. A. Genov, G. Bartal, and X. Zhang, “Three-dimensional optical metamaterial with a negative refractive index,” Nature 455(7211), 376–379 (2008).
[CrossRef] [PubMed]

Zhang, S.

J. Valentine, S. Zhang, T. Zentgraf, E. Ulin-Avila, D. A. Genov, G. Bartal, and X. Zhang, “Three-dimensional optical metamaterial with a negative refractive index,” Nature 455(7211), 376–379 (2008).
[CrossRef] [PubMed]

Zhang, X.

J. Valentine, S. Zhang, T. Zentgraf, E. Ulin-Avila, D. A. Genov, G. Bartal, and X. Zhang, “Three-dimensional optical metamaterial with a negative refractive index,” Nature 455(7211), 376–379 (2008).
[CrossRef] [PubMed]

T. Li, H. Liu, S.-M. Wang, X.-G. Yin, F.-M. Wang, S.-N. Zhu, and X. Zhang, “Manipulating optical rotation in extraordinary transmission by hybrid plasmonic excitations,” Appl. Phys. Lett. 93(2), 021110 (2008).
[CrossRef]

Zhu, S.-N.

T. Li, H. Liu, S.-M. Wang, X.-G. Yin, F.-M. Wang, S.-N. Zhu, and X. Zhang, “Manipulating optical rotation in extraordinary transmission by hybrid plasmonic excitations,” Appl. Phys. Lett. 93(2), 021110 (2008).
[CrossRef]

ACS Nano (1)

L. Feng, A. Mizrahi, S. Zamek, Z. Liu, V. Lomakin, and Y. Fainman, “Metamaterials for enhanced polarization conversion in plasmonic excitation,” ACS Nano 5(6), 5100–5106 (2011).
[CrossRef] [PubMed]

Appl. Opt. (2)

Appl. Phys. Lett. (4)

T. Li, H. Liu, S.-M. Wang, X.-G. Yin, F.-M. Wang, S.-N. Zhu, and X. Zhang, “Manipulating optical rotation in extraordinary transmission by hybrid plasmonic excitations,” Appl. Phys. Lett. 93(2), 021110 (2008).
[CrossRef]

L. Feng, Z. Liu, V. Lomakin, and Y. Fainman, “Form birefringence metal and its plasmonic anisotropy,” Appl. Phys. Lett. 96(4), 041112 (2010).
[CrossRef]

S.-Y. Hsu, K.-L. Lee, E.-H. Lin, M.-C. Lee, and P.-K. Wei, “Giant birefringence induced by plasmonic nanoslit arrays,” Appl. Phys. Lett. 95(1), 013105 (2009).
[CrossRef]

E. Ӧğüt and K. Şendur, “Circularly and elliptically polarized near-field radiation from nanoscale subwavelength apertures,” Appl. Phys. Lett. 96(14), 141104 (2010).
[CrossRef]

ESA Bull. (1)

M. Aguirre, B. Berruti, J.-L. Bezy, M. Drinkwater, F. Heliere, U. Klein, C. Mavrocordatos, P. Silvestrin, B. Greco, and J. Benveniste, “Sentinel-3: The ocean and medium-resolution land mission for GMES operational services,” ESA Bull. 131, 24–29 (2007).

IEEE Trans. Geosci. Rem. Sens. (2)

M. R. Dobber, R. J. Dirksen, P. F. Levelt, G. H. J. van den Oord, R. H. M. Voors, Q. Kleipool, G. Jaross, M. Kowalewski, E. Hilsenrath, G. W. Leppelmeier, W. Johan de Vries, Dierssen, and N. C. Rozemeijer, “Ozone monitoring instrument calibration,” IEEE Trans. Geosci. Rem. Sens. 44(5), 1209–1238 (2006).
[CrossRef]

P. F. Levelt, G. H. J. van den Oord, M. R. Dobber, A. Malkki, Huib Visser, P. Johan de Vries, J. O. V. Stammes, Lundell, and H. Saari, “The ozone monitoring instrument,” IEEE Trans. Geosci. Rem. Sens. 44(5), 1093–1101 (2006).
[CrossRef]

J. Mod. Opt. (1)

Bryan-Brown1990G. P. Bryan-Brown, J. R. Sambles, and M. C. Hutley, “Polarisation conversion through the excitation of surface plasmons on a metallic grating,” J. Mod. Opt. 37, 1227–1232 (1990).

J. Opt. A, Pure Appl. Opt. (1)

T. Weiss, N. A. Gippius, S. G. Tikhodeev, G. Granet, and H. Giessen, “Efficient calculation of the optical properties of stacked metamaterials with a Fourier modal method,” J. Opt. A, Pure Appl. Opt. 11(11), 114019 (2009).
[CrossRef]

J. Opt. Soc. Am. A (2)

J. Opt. Soc. Am. B (1)

J. Phys. Chem. C (1)

J. Sung, M. Sukharev, E. M. Hicks, R. P. VanDuyne, T. Seideman, and K. G. Spears, “Nanoparticle spectroscopy: birefringence in two-dimensional arrays of L-shaped silver nanoparticles,” J. Phys. Chem. C 112(9), 3252–3260 (2008).
[CrossRef]

Nature (1)

J. Valentine, S. Zhang, T. Zentgraf, E. Ulin-Avila, D. A. Genov, G. Bartal, and X. Zhang, “Three-dimensional optical metamaterial with a negative refractive index,” Nature 455(7211), 376–379 (2008).
[CrossRef] [PubMed]

Opt. Express (1)

Opt. Lett. (2)

Optik (Stuttg.) (1)

M. Totzeck, “Numerical simulation of high-NA quantitative polarization microscopy and corresponding near-fields,” Optik (Stuttg.) 112(9), 399–406 (2001).
[CrossRef]

Phys. Rev. (1)

R. Ritchie, “Plasma losses by fast electrons in thin films,” Phys. Rev. 106(5), 874–881 (1957).
[CrossRef]

Phys. Rev. B (3)

P. Johnson and R. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[CrossRef]

M. Shcherbakov, M. Dobynde, T. Dolgova, D.-P. Tsai, and A. Fedyanin, “Full Poincaré sphere coverage with plasmonic nanoslit metamaterials at Fano resonance,” Phys. Rev. B 82(19), 193402 (2010).
[CrossRef]

L. Fu, P. Schau, K. Frenner, W. Osten, T. Weiss, H. Schweizer, and H. Giessen, “Mode coupling and interaction in a plasmonic microcavity with resonant mirrors,” Phys. Rev. B 84(23), 235402 (2011).
[CrossRef]

Phys. Rev. Lett. (4)

M. R. Shcherbakov, P. P. Vabishchevich, V. V. Komarova, T. V. Dolgova, V. Panov, V. V. Moshchalkov, and A. A. Fedyanin, “Ultrafast polarization shaping with Fano plasmonic crystals,” Phys. Rev. Lett. 108(25), 253903 (2012).
[CrossRef]

R. Gordon, A. G. Brolo, A. McKinnon, A. Rajora, B. Leathem, and K. L. Kavanagh, “Strong polarization in the optical transmission through elliptical nanohole arrays,” Phys. Rev. Lett. 92(3), 037401 (2004).
[CrossRef] [PubMed]

A. Drezet, C. Genet, and T. W. Ebbesen, “Miniature plasmonic wave plates,” Phys. Rev. Lett. 101(4), 043902 (2008).
[CrossRef] [PubMed]

B. Gompf, J. Braun, T. Weiss, H. Giessen, M. Dressel, and U. Hübner, “Periodic nanostructures: spatial dispersion mimics chirality,” Phys. Rev. Lett. 106(18), 185501 (2011).
[CrossRef] [PubMed]

Proc. SPIE (3)

P. Schau, K. Frenner, L. Fu, H. Schweizer, and W. Osten, “Coupling between surface plasmons and Fabry-Pérot modes in metallic double meander structures,” Proc. SPIE 7711, 77111F, 77111F-10 (2010).
[CrossRef]

P. Schau, K. Frenner, L. Fu, W. Osten, H. Schweizer, and H. Giessen, “Sub-wavelength imaging using stacks of metallic meander structures with different periodicities,” Proc. SPIE 8093, 80931K, 80931K-8 (2011).
[CrossRef]

L. M. Gaspar Venancio, S. Hannemann, G. Lubkowski, M. Suhrke, H. Schweizer, L. Fu, H. Giessen, P. Schau, K. Frenner, and W. Osten, “Metamaterials for optical and photonic applications for space: preliminary results,” Proc. SPIE 8146, 81460E, 81460E-13 (2011).
[CrossRef]

Surf. Sci. (1)

P. S. Hauge, R. H. Muller, and C. G. Smith, “Conventions and formulas for using the Mueller-Stokes calculus in ellipsometry,” Surf. Sci. 96(1-3), 81–107 (1980).
[CrossRef]

Other (5)

A. Röseler, Infrared Spectroscopic Ellipsometry (Akademie-Verlag, 1990).

D. H. Goldstein, Polarized Light, Third Edition, Revised (CRC Press Inc., Taylor & Francis Group, 2010).

H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer, 1988).

MERIS Product Handbook, Issue 3.0 (European Space Agency, 2011).

“GES DISC DAAC Data Guide: Coastal Zone Color Scanner (CZCS) Instrument Guide,” http://disc.sci.gsfc.nasa.gov/oceans/documentation/scientific-documentation/CZCS_Sensor.gd.shtml .

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

(a) The meander structure is defined by the geometrical parameters thickness t, corrugation depth D, ridge width Wr and periodicity Px. (b) For a double meander structure, the distance between the two sheets is defined as Dspa.

Fig. 2
Fig. 2

(a) Transmittance, reflectance and absorptance spectra of a single meander structure (t = 30 nm, D = 40 nm, Px = 400 nm) at perpendicular incidence. (b) Dispersion diagram (extinction, -ln(T)) of the same structure. The kx axis is scaled by the reciprocal lattice vector Kg = 2π/Px = 1.57 × 105 cm−1. The pass band between the SRSPP (550 THz) and LRSPP (710 THz) modes occurs via interaction of two Fano-type resonances. The inset located in the upper-right corner shows the transmittance of the same structure with a color scale ranging from 0 to 1.

Fig. 3
Fig. 3

(a) Transmittance spectra of p-polarized (Tp) and s-polarized light (Ts) as a function of the azimuth angle ϕ at normal incidence for f = 600 THz, 630 THz and 650 THz. The fit curves are indicated by markers and were obtained by calculating |Jpp|2 or |Jss|2 from Eq. (5) respectively. The fit parameters for 600 THz were A = 0.9, B = 0.23 and ψ = 0.005, for 630 THz A = 0.94, B = 0.24 and ψ = 0.67 and for 650 THz A = 0.89, B = 0.25 and ψ = 1.19 (b) Phase retardation δ as a function of the azimuth angle ϕ. The changes agree well with the analytical model from Eq. (5) (arg(Jpp)-arg(Jss)). For different frequencies in the pass band, δ has different slopes. (c) Transmittance of p-polarized light as a function of the azimuth angle ϕ for incident s-polarized light |Jps|2 or |Jsp|2, respectively. The investigated meander structure has the same geometry parameters as the one in Fig. 2 (Px = 400 nm, D = 40 nm, t = 30 nm).

Fig. 4
Fig. 4

(a) Spectrum of a single meander layer with period Px = 400 nm, corrugation depth D = 40 nm and metal layer thickness t = 30 nm (b,d) Mueller matrix (elements mij with row index i = 0-3 from left to right and column index j = 0-3 from top to bottom) of the same structure at 600 THz and 650 THz, respectively. (c,e) Mueller matrix elements from (b) and (d) averaged over the azimuth angle ϕ from 0° to 180°.

Fig. 5
Fig. 5

(a) Spectrum of a double meander structure with period Px = 400 nm, corrugation depth D = 40 nm, thickness t = 30 nm and spacer thickness Dspa = 600 nm. (b,d) Mueller matrix (elements mij with row index i = 0-3 and column index j = 0-3) of the same structure at 600 THz and 650 THz, respectively. (c,e) Mueller matrix elements from (b) and (d) averaged over the azimuth angle ϕ from 0° to 180°.

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

[ S 0 S 1 S 2 S 3 ]=[ m 00 m 10 m 20 m 30 m 10 m 11 m 21 m 31 m 20 m 12 m 22 m 32 m 30 m 13 m 23 m 33 ][ S 0 S 1 S 2 S 3 ].
M partial =[ 1 0 0 0 0 a 0 0 0 0 b 0 0 0 0 c ],
P = I pol I tot = S 1 2 + S 2 2 + S 3 2 S 0 .
J anisotropic =[ A e iψ 0 0 B ].
J meander (ϕ)=R(ϕ)[ A e iψ 0 0 B ]R(ϕ) =[ A e iψ cos 2 ϕ+B sin 2 ϕ BcosϕsinϕA e iψ cosϕsinϕ BcosϕsinϕA e iψ cosϕsinϕ A e iψ sin 2 ϕ+B cos 2 ϕ ]
R(ϕ)=[ cosϕ sinϕ sinϕ cosϕ ].
M meander = A + ( J J * )A
A= 1 2 [ 1 1 0 0 0 0 1 i 0 0 1 i 1 1 0 0 ].
M 600THz =[ 1 0 0 0 0 0.74 0 0 0 0 0.73 0 0 0 0 0.47 ], M 630THz =[ 1 0 0 0 0 0.69 0 0 0 0 0.68 0 0 0 0 0.37 ], M 650THz =[ 1 0 0 0 0 0.61 0 0 0 0 0.60 0 0 0 0 0.21 ].

Metrics