Abstract

We report on an environmentally stable giant chirp oscillator operating at 1030 nm. Thanks to the use of a nonlinear amplifying loop mirror as the mode-locker, we are able to extract pulse energies in excess of 10 nJ from a robust all-PM cavity with no free-space elements. Extensive numerical simulations reveal that the output oscillator energy and duration can simply be up-scaled through the lengthening of the cavity with suitably positioned single-mode fiber. Experimentally, using different cavity lengths we have achieved environmentally stable mode-locking at 10, 3.7 and 1.7 MHz with corresponding pulse energies of 2.3, 10 and 16 nJ. In all cases external grating-pair compression below 400 fs has been demonstrated.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. K. Nielsen, B. Ortaç, T. Schreiber, J. Limpert, R. Hohmuth, W. Richter, and A. Tünnermann “Self-starting self-similar all-polarization maintaining Yb-doped fiber laser,” Opt. Express 13, 9346–9351 (2005).
    [CrossRef] [PubMed]
  2. C. K. Nielsen and S. R. Keiding, “All-fiber mode-locked fiber laser,” Opt. Lett. 32, 1474–1476 (2007).
    [CrossRef] [PubMed]
  3. A. Chong, W. H. Renninger, and F. W. Wise, “Environmentally stable all-normal-dispersion femtosecond fiber laser,” Opt. Lett. 33, 1071–1073 (2008).
    [CrossRef] [PubMed]
  4. X. Liu, J. Lægsgaard, and D. Turchinovich, “Highly-stable monolithic femtosecond Yb-fiber laser system based on photonic crystal fibers,” Opt. Express 18, 15475–15483 (2010).
    [CrossRef] [PubMed]
  5. I. N. Duling, “All-fiber ring soliton laser mode locked with a nonlinear mirror,” Opt. Lett. 16, 539–541 (1991).
    [CrossRef]
  6. K. Tamura, E. P. Ippen, H. A. Haus, and L. E. Nelson, “77-fs pulse generation from a stretched-pulse mode locked all-fiber ring laser,” Opt. Lett. 18, 1080–1082 (1993).
    [CrossRef] [PubMed]
  7. A. Chong, J. Buckley, W. H. Renninger, and F. W. Wise, “All-normal-dispersion femtosecond fiber laser,” Opt. Express 14, 10095–10100 (2006).
    [CrossRef] [PubMed]
  8. J. Buckley, A. Chong, S. Zhou, W. Renninger, and F. W. Wise, “Stabilization of high-energy femtosecond ytterbium fiber lasers by use of a frequency filter,” J. Opt. Soc. Am. B. 24, 1803–1806 (2007).
    [CrossRef]
  9. B. G. Bale, J. N. Kutz, A. Chong, W. H. Renninger, and F. W. Wise, “Spectral filtering for mode locking in the normal dispersive regime,” Opt. Lett. 33, 941–943 (2008).
    [CrossRef] [PubMed]
  10. B. G. Bale, J. N. Kutz, A. Chong, W. H. Renninger, and F. W. Wise, “Spectral filtering for high-energy mode-locking in normal dispersion fiber lasers,” J. Opt. Soc. Am. B. 25, 1763–1770 (2008).
    [CrossRef]
  11. C. Aguergaray, D. Méchin, V. Kruglov, and J. D. Harvey, “Experimental realization of a mode-locked parabolic Raman fiber oscillator,” Opt. Express 18, 8680–8687 (2010).
    [CrossRef] [PubMed]
  12. A. Chong, W. H. Renninger, and F. W. Wise, “All-normal-dispersion femtosecond fiber laser with pulse energy above 20 nJ,” Opt. Lett. 32, 2408–2410 (2007).
    [CrossRef] [PubMed]
  13. O. Prochnow, A. Ruehl, M. Schultz, D. Wandt, and D. Kracht, “All-fiber similariton laser at 1 μm without dispersion compensation,” Opt. Express 15, 6889–6893 (2007).
    [CrossRef] [PubMed]
  14. B. Ortaç, O. Schmidt, T. Schreiber, J. Limpert, A. Tünnermann, and A. Hideur “High-energy femtosecond Yb-doped dispersion compensation free fiber laser,” Opt. Express 15, 10725–10732 (2007).
    [CrossRef] [PubMed]
  15. W. H. Renninger, A. Chong, and F. W. Wise, “Self-similar pulse evolution in an all-normal-dispersion laser,” Phys. Rev. A 82, 021805(R) (2010).
    [CrossRef]
  16. C. Aguergaray, N. G. R. Broderick, M. Erkintalo, J. S. Y. Chen, and V. Kruglov, “Mode-locked femtosecond all-normal all-PM Yb-doped fiber laser using a nonlinear amplifying loop mirror,” Opt. Express 20, 10545–10551 (2012).
    [CrossRef] [PubMed]
  17. W. H. Renninger, A. Chong, and F. W. Wise, “Giant-chirp oscillators for short-pulse fiber amplifiers,” Opt. Lett. 33, 3025–3027 (2008).
    [CrossRef] [PubMed]
  18. N. B. Chichkov, K. Hausmann, D. Wandt, U. Morgner, J. Neumann, and D. Kracht, “High-power dissipative solitons from an all-normal dispersion erbium fiber oscillator,” Opt. Lett. 35, 2807–2809 (2010).
    [CrossRef] [PubMed]
  19. N. B. Chichkov, C. Hapke, K. Hausmann, T. Theeg, D. Wandt, U. Morgner, J. Neumann, and D. Kracht, “0.5 μJ pulses from a giant-chirp ytterbium fiber oscillator,” Opt. Express 19, 3647–3650 (2011).
    [CrossRef] [PubMed]
  20. E. J. R. Kelleher, J. C. Travers, E. P. Ippen, Z. Sun, A. C. Ferrari, S. V. Popov, and J. R. Taylor, “Generation and direct measurement of giant chirp in a passively mode-locked laser,” Opt. Lett. 34, 3526–3528 (2009).
    [CrossRef] [PubMed]
  21. X. Tian, M. Tang, P. P. Shum, Y. Gong, C. Lin, S. Fu, and T. Zhang, “High-energy laser pulse with a submegahertz repetition rate from a passively mode-locked fiber laser,” Opt. Lett. 34, 1432–1434 (2009).
    [CrossRef] [PubMed]
  22. C. Barnard, P. Myslinski, J. Chrostowski, and M. Kavehrad, “Analytical model for rare-earth-doped fiber amplifiers and lasers,” IEEE J. Quantum. Electon. 30, 1817–1830 (1994).
    [CrossRef]

2012

2011

2010

2009

2008

2007

2006

2005

1994

C. Barnard, P. Myslinski, J. Chrostowski, and M. Kavehrad, “Analytical model for rare-earth-doped fiber amplifiers and lasers,” IEEE J. Quantum. Electon. 30, 1817–1830 (1994).
[CrossRef]

1993

1991

Aguergaray, C.

Bale, B. G.

B. G. Bale, J. N. Kutz, A. Chong, W. H. Renninger, and F. W. Wise, “Spectral filtering for mode locking in the normal dispersive regime,” Opt. Lett. 33, 941–943 (2008).
[CrossRef] [PubMed]

B. G. Bale, J. N. Kutz, A. Chong, W. H. Renninger, and F. W. Wise, “Spectral filtering for high-energy mode-locking in normal dispersion fiber lasers,” J. Opt. Soc. Am. B. 25, 1763–1770 (2008).
[CrossRef]

Barnard, C.

C. Barnard, P. Myslinski, J. Chrostowski, and M. Kavehrad, “Analytical model for rare-earth-doped fiber amplifiers and lasers,” IEEE J. Quantum. Electon. 30, 1817–1830 (1994).
[CrossRef]

Broderick, N. G. R.

Buckley, J.

J. Buckley, A. Chong, S. Zhou, W. Renninger, and F. W. Wise, “Stabilization of high-energy femtosecond ytterbium fiber lasers by use of a frequency filter,” J. Opt. Soc. Am. B. 24, 1803–1806 (2007).
[CrossRef]

A. Chong, J. Buckley, W. H. Renninger, and F. W. Wise, “All-normal-dispersion femtosecond fiber laser,” Opt. Express 14, 10095–10100 (2006).
[CrossRef] [PubMed]

Chen, J. S. Y.

Chichkov, N. B.

Chong, A.

Chrostowski, J.

C. Barnard, P. Myslinski, J. Chrostowski, and M. Kavehrad, “Analytical model for rare-earth-doped fiber amplifiers and lasers,” IEEE J. Quantum. Electon. 30, 1817–1830 (1994).
[CrossRef]

Duling, I. N.

Erkintalo, M.

Ferrari, A. C.

Fu, S.

Gong, Y.

Hapke, C.

Harvey, J. D.

Haus, H. A.

Hausmann, K.

Hideur, A.

Hohmuth, R.

Ippen, E. P.

Kavehrad, M.

C. Barnard, P. Myslinski, J. Chrostowski, and M. Kavehrad, “Analytical model for rare-earth-doped fiber amplifiers and lasers,” IEEE J. Quantum. Electon. 30, 1817–1830 (1994).
[CrossRef]

Keiding, S. R.

Kelleher, E. J. R.

Kracht, D.

Kruglov, V.

Kutz, J. N.

B. G. Bale, J. N. Kutz, A. Chong, W. H. Renninger, and F. W. Wise, “Spectral filtering for mode locking in the normal dispersive regime,” Opt. Lett. 33, 941–943 (2008).
[CrossRef] [PubMed]

B. G. Bale, J. N. Kutz, A. Chong, W. H. Renninger, and F. W. Wise, “Spectral filtering for high-energy mode-locking in normal dispersion fiber lasers,” J. Opt. Soc. Am. B. 25, 1763–1770 (2008).
[CrossRef]

Lægsgaard, J.

Limpert, J.

Lin, C.

Liu, X.

Méchin, D.

Morgner, U.

Myslinski, P.

C. Barnard, P. Myslinski, J. Chrostowski, and M. Kavehrad, “Analytical model for rare-earth-doped fiber amplifiers and lasers,” IEEE J. Quantum. Electon. 30, 1817–1830 (1994).
[CrossRef]

Nelson, L. E.

Neumann, J.

Nielsen, C. K.

Ortaç, B.

Popov, S. V.

Prochnow, O.

Renninger, W.

J. Buckley, A. Chong, S. Zhou, W. Renninger, and F. W. Wise, “Stabilization of high-energy femtosecond ytterbium fiber lasers by use of a frequency filter,” J. Opt. Soc. Am. B. 24, 1803–1806 (2007).
[CrossRef]

Renninger, W. H.

Richter, W.

Ruehl, A.

Schmidt, O.

Schreiber, T.

Schultz, M.

Shum, P. P.

Sun, Z.

Tamura, K.

Tang, M.

Taylor, J. R.

Theeg, T.

Tian, X.

Travers, J. C.

Tünnermann, A.

Turchinovich, D.

Wandt, D.

Wise, F. W.

Zhang, T.

Zhou, S.

J. Buckley, A. Chong, S. Zhou, W. Renninger, and F. W. Wise, “Stabilization of high-energy femtosecond ytterbium fiber lasers by use of a frequency filter,” J. Opt. Soc. Am. B. 24, 1803–1806 (2007).
[CrossRef]

IEEE J. Quantum. Electon.

C. Barnard, P. Myslinski, J. Chrostowski, and M. Kavehrad, “Analytical model for rare-earth-doped fiber amplifiers and lasers,” IEEE J. Quantum. Electon. 30, 1817–1830 (1994).
[CrossRef]

J. Opt. Soc. Am. B.

J. Buckley, A. Chong, S. Zhou, W. Renninger, and F. W. Wise, “Stabilization of high-energy femtosecond ytterbium fiber lasers by use of a frequency filter,” J. Opt. Soc. Am. B. 24, 1803–1806 (2007).
[CrossRef]

B. G. Bale, J. N. Kutz, A. Chong, W. H. Renninger, and F. W. Wise, “Spectral filtering for high-energy mode-locking in normal dispersion fiber lasers,” J. Opt. Soc. Am. B. 25, 1763–1770 (2008).
[CrossRef]

Opt. Express

C. Aguergaray, D. Méchin, V. Kruglov, and J. D. Harvey, “Experimental realization of a mode-locked parabolic Raman fiber oscillator,” Opt. Express 18, 8680–8687 (2010).
[CrossRef] [PubMed]

C. K. Nielsen, B. Ortaç, T. Schreiber, J. Limpert, R. Hohmuth, W. Richter, and A. Tünnermann “Self-starting self-similar all-polarization maintaining Yb-doped fiber laser,” Opt. Express 13, 9346–9351 (2005).
[CrossRef] [PubMed]

X. Liu, J. Lægsgaard, and D. Turchinovich, “Highly-stable monolithic femtosecond Yb-fiber laser system based on photonic crystal fibers,” Opt. Express 18, 15475–15483 (2010).
[CrossRef] [PubMed]

A. Chong, J. Buckley, W. H. Renninger, and F. W. Wise, “All-normal-dispersion femtosecond fiber laser,” Opt. Express 14, 10095–10100 (2006).
[CrossRef] [PubMed]

N. B. Chichkov, C. Hapke, K. Hausmann, T. Theeg, D. Wandt, U. Morgner, J. Neumann, and D. Kracht, “0.5 μJ pulses from a giant-chirp ytterbium fiber oscillator,” Opt. Express 19, 3647–3650 (2011).
[CrossRef] [PubMed]

O. Prochnow, A. Ruehl, M. Schultz, D. Wandt, and D. Kracht, “All-fiber similariton laser at 1 μm without dispersion compensation,” Opt. Express 15, 6889–6893 (2007).
[CrossRef] [PubMed]

B. Ortaç, O. Schmidt, T. Schreiber, J. Limpert, A. Tünnermann, and A. Hideur “High-energy femtosecond Yb-doped dispersion compensation free fiber laser,” Opt. Express 15, 10725–10732 (2007).
[CrossRef] [PubMed]

C. Aguergaray, N. G. R. Broderick, M. Erkintalo, J. S. Y. Chen, and V. Kruglov, “Mode-locked femtosecond all-normal all-PM Yb-doped fiber laser using a nonlinear amplifying loop mirror,” Opt. Express 20, 10545–10551 (2012).
[CrossRef] [PubMed]

Opt. Lett.

W. H. Renninger, A. Chong, and F. W. Wise, “Giant-chirp oscillators for short-pulse fiber amplifiers,” Opt. Lett. 33, 3025–3027 (2008).
[CrossRef] [PubMed]

N. B. Chichkov, K. Hausmann, D. Wandt, U. Morgner, J. Neumann, and D. Kracht, “High-power dissipative solitons from an all-normal dispersion erbium fiber oscillator,” Opt. Lett. 35, 2807–2809 (2010).
[CrossRef] [PubMed]

E. J. R. Kelleher, J. C. Travers, E. P. Ippen, Z. Sun, A. C. Ferrari, S. V. Popov, and J. R. Taylor, “Generation and direct measurement of giant chirp in a passively mode-locked laser,” Opt. Lett. 34, 3526–3528 (2009).
[CrossRef] [PubMed]

X. Tian, M. Tang, P. P. Shum, Y. Gong, C. Lin, S. Fu, and T. Zhang, “High-energy laser pulse with a submegahertz repetition rate from a passively mode-locked fiber laser,” Opt. Lett. 34, 1432–1434 (2009).
[CrossRef] [PubMed]

I. N. Duling, “All-fiber ring soliton laser mode locked with a nonlinear mirror,” Opt. Lett. 16, 539–541 (1991).
[CrossRef]

K. Tamura, E. P. Ippen, H. A. Haus, and L. E. Nelson, “77-fs pulse generation from a stretched-pulse mode locked all-fiber ring laser,” Opt. Lett. 18, 1080–1082 (1993).
[CrossRef] [PubMed]

C. K. Nielsen and S. R. Keiding, “All-fiber mode-locked fiber laser,” Opt. Lett. 32, 1474–1476 (2007).
[CrossRef] [PubMed]

A. Chong, W. H. Renninger, and F. W. Wise, “Environmentally stable all-normal-dispersion femtosecond fiber laser,” Opt. Lett. 33, 1071–1073 (2008).
[CrossRef] [PubMed]

A. Chong, W. H. Renninger, and F. W. Wise, “All-normal-dispersion femtosecond fiber laser with pulse energy above 20 nJ,” Opt. Lett. 32, 2408–2410 (2007).
[CrossRef] [PubMed]

B. G. Bale, J. N. Kutz, A. Chong, W. H. Renninger, and F. W. Wise, “Spectral filtering for mode locking in the normal dispersive regime,” Opt. Lett. 33, 941–943 (2008).
[CrossRef] [PubMed]

Phys. Rev. A

W. H. Renninger, A. Chong, and F. W. Wise, “Self-similar pulse evolution in an all-normal-dispersion laser,” Phys. Rev. A 82, 021805(R) (2010).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Schematic of the cavity. BPF, bandpass filter; LD, laser diode

Fig. 2
Fig. 2

(a) Output pulse energy (dark blue) and temporal r.m.s. width (black) as a function of LSMF. (b) Shows the output spectrum for varying LSMF. Black and white arrows in (a) and (b) denote the transition to the GCO regime, respectively.

Fig. 3
Fig. 3

(a) Output pulse temporal profile as a function of LSMF. (b) and (c) show the temporal profiles (black) and corresponding chirps (dark blue) in more detail for LSMF = 70 m and LSMF = 150 m, respectively.

Fig. 4
Fig. 4

Simulation results showing the evolution of the (a) temporal and (b) spectral profiles during a single roundtrip in the cavity with LSMF = 50 m.

Fig. 5
Fig. 5

Experimental results. In (a,d) we plot the output spectrum, in (b,e) the oscillator temporal profile retrieved from a FROG trace and in (c,f) the temporal profile post-compression. In (a–c) LSMF = 50 m, in (d–f) LSMF = 100 m and the insets in (a,d) show the spectrum on a linear scale.

Tables (1)

Tables Icon

Table 1 Laser performance characteristics and pump powers. Pm, main pump power; PN, NALM pump power; frep, repetition rate; Pavg, average output power; Δτosc, oscillator FWHM duration; Δτcompr, compressed FWHM duration; Pp, compressed peak power.

Metrics