Abstract

Earlier it was observed that polarization rotation in an AWG built from birefringent waveguides can result in sidelobes in its response. This effect was measured in a polarization sensitive AWG with an orthogonal layout. Now we investigate through detailed simulation whether this effect also exists in polarization desensitised AWGs. It is shown that a dispersion compensated AWG does not suffer from a polarization sidelobe. Alternatively, the AWG can be designed to minimize polarization rotation to suppress the sidelobe.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Smit and C. van Dam, “PHASAR-based WDM-devices: principles, design and applications,” IEEE J. Sel. Top. Quantum Electron. 2, 236–250 (1996).
    [CrossRef]
  2. T. Kamalakis, T. Sphicopoulos, and D. Syvridis, “An estimation of performance degradation due to fabrication errors in AWGs,” J. Lightwave Technol. 20, 1779–1787 (2002).
    [CrossRef]
  3. S. Day, J. P. Stagg, D. Moule, S. J. Clements, C. Rogers, S. Ojha, T. Clapp, J. Brook, and J. Morley, “The elimination of sidelobes in the arrayed waveguide wdm,” in “Integrated Photonics Research,” (Optical Society of America, 1996), p. IMC5.
  4. M. Kohtoku, T. Hirono, Member, S. Oku, Y. Kadota, Y. Shibata, and Y. Yoshikuni, “Control of higher order leaky modes in deep-ridge waveguides and application to low-crosstalk arrayed waveguide gratings,” J. Lightwave Technol. 22, 499–508 (2004).
    [CrossRef]
  5. F. Soares, W. Jiang, N. Fontaine, S. Seo, J. Baek, R. Broeke, J. Cao, K. Okamoto, F. Olsson, S. Lourdudoss, and S. Yoo, “InP-based arrayed-waveguide grating with a channel spacing of 10 GHz,” in “Optical Fiber communication/National Fiber Optic Engineers Conference, 2008. OFC/NFOEC 2008. Conference on,” (2008), pp. 1–3.
    [CrossRef] [PubMed]
  6. E. Kleijn, P. Williams, N. Whitbread, M. Wale, M. Smit, and X. Leijtens, “Sidelobes caused by polarization rotation in arrayed waveguide gratings,” in “Information Photonics (IP), 2011 ICO International Conference on,” (2011).
    [CrossRef]
  7. W. W. Lui, T. Hirono, K. Yokoyama, and W.-P. Huang, “Polarization rotation in semiconductor bending waveguides: A coupled-mode theory formulation,” J. Lightwave Technol. 16, 929–936 (1998).
    [CrossRef]
  8. A. Klekamp and R. Münzner, “Calculation of imaging errors of AWG,” J. Lightwave Technol. 21, 1978–1986 (2003).
    [CrossRef]
  9. H. Takahashi, Y. Hibino, and I. Nishi, “Polarization-insensitive arrayed-waveguide grating wavelength multiplexer on silicon,” Opt. Lett. 17, 499–501 (1992).
    [CrossRef] [PubMed]
  10. M. Zirngibl, C. Joyner, and P. Chou, “Polarisation compensated waveguide grating router on InP,” Electron. Lett. 31, 1662–1664 (1995).
    [CrossRef]
  11. H. Takahashi, Y. Hibino, Y. Ohmori, and M. Kawachi, “Polarization-insensitive arrayed-waveguide wavelength multiplexer with birefringence compensating film,” IEEE Photon. Technol. Lett. 5, 707–709 (1993).
    [CrossRef]
  12. M. Zirngibl, C. Joyner, L. Stulz, T. Gaiffe, and C. Dragone, “Polarization independent 8 × 8 waveguide grating multiplexer on InP,” Electron. Lett. 29, 201–202 (1993).
    [CrossRef]

2004 (1)

2003 (1)

2002 (1)

1998 (1)

1996 (1)

M. Smit and C. van Dam, “PHASAR-based WDM-devices: principles, design and applications,” IEEE J. Sel. Top. Quantum Electron. 2, 236–250 (1996).
[CrossRef]

1995 (1)

M. Zirngibl, C. Joyner, and P. Chou, “Polarisation compensated waveguide grating router on InP,” Electron. Lett. 31, 1662–1664 (1995).
[CrossRef]

1993 (2)

H. Takahashi, Y. Hibino, Y. Ohmori, and M. Kawachi, “Polarization-insensitive arrayed-waveguide wavelength multiplexer with birefringence compensating film,” IEEE Photon. Technol. Lett. 5, 707–709 (1993).
[CrossRef]

M. Zirngibl, C. Joyner, L. Stulz, T. Gaiffe, and C. Dragone, “Polarization independent 8 × 8 waveguide grating multiplexer on InP,” Electron. Lett. 29, 201–202 (1993).
[CrossRef]

1992 (1)

Baek, J.

F. Soares, W. Jiang, N. Fontaine, S. Seo, J. Baek, R. Broeke, J. Cao, K. Okamoto, F. Olsson, S. Lourdudoss, and S. Yoo, “InP-based arrayed-waveguide grating with a channel spacing of 10 GHz,” in “Optical Fiber communication/National Fiber Optic Engineers Conference, 2008. OFC/NFOEC 2008. Conference on,” (2008), pp. 1–3.
[CrossRef] [PubMed]

Broeke, R.

F. Soares, W. Jiang, N. Fontaine, S. Seo, J. Baek, R. Broeke, J. Cao, K. Okamoto, F. Olsson, S. Lourdudoss, and S. Yoo, “InP-based arrayed-waveguide grating with a channel spacing of 10 GHz,” in “Optical Fiber communication/National Fiber Optic Engineers Conference, 2008. OFC/NFOEC 2008. Conference on,” (2008), pp. 1–3.
[CrossRef] [PubMed]

Brook, J.

S. Day, J. P. Stagg, D. Moule, S. J. Clements, C. Rogers, S. Ojha, T. Clapp, J. Brook, and J. Morley, “The elimination of sidelobes in the arrayed waveguide wdm,” in “Integrated Photonics Research,” (Optical Society of America, 1996), p. IMC5.

Cao, J.

F. Soares, W. Jiang, N. Fontaine, S. Seo, J. Baek, R. Broeke, J. Cao, K. Okamoto, F. Olsson, S. Lourdudoss, and S. Yoo, “InP-based arrayed-waveguide grating with a channel spacing of 10 GHz,” in “Optical Fiber communication/National Fiber Optic Engineers Conference, 2008. OFC/NFOEC 2008. Conference on,” (2008), pp. 1–3.
[CrossRef] [PubMed]

Chou, P.

M. Zirngibl, C. Joyner, and P. Chou, “Polarisation compensated waveguide grating router on InP,” Electron. Lett. 31, 1662–1664 (1995).
[CrossRef]

Clapp, T.

S. Day, J. P. Stagg, D. Moule, S. J. Clements, C. Rogers, S. Ojha, T. Clapp, J. Brook, and J. Morley, “The elimination of sidelobes in the arrayed waveguide wdm,” in “Integrated Photonics Research,” (Optical Society of America, 1996), p. IMC5.

Clements, S. J.

S. Day, J. P. Stagg, D. Moule, S. J. Clements, C. Rogers, S. Ojha, T. Clapp, J. Brook, and J. Morley, “The elimination of sidelobes in the arrayed waveguide wdm,” in “Integrated Photonics Research,” (Optical Society of America, 1996), p. IMC5.

Day, S.

S. Day, J. P. Stagg, D. Moule, S. J. Clements, C. Rogers, S. Ojha, T. Clapp, J. Brook, and J. Morley, “The elimination of sidelobes in the arrayed waveguide wdm,” in “Integrated Photonics Research,” (Optical Society of America, 1996), p. IMC5.

Dragone, C.

M. Zirngibl, C. Joyner, L. Stulz, T. Gaiffe, and C. Dragone, “Polarization independent 8 × 8 waveguide grating multiplexer on InP,” Electron. Lett. 29, 201–202 (1993).
[CrossRef]

Fontaine, N.

F. Soares, W. Jiang, N. Fontaine, S. Seo, J. Baek, R. Broeke, J. Cao, K. Okamoto, F. Olsson, S. Lourdudoss, and S. Yoo, “InP-based arrayed-waveguide grating with a channel spacing of 10 GHz,” in “Optical Fiber communication/National Fiber Optic Engineers Conference, 2008. OFC/NFOEC 2008. Conference on,” (2008), pp. 1–3.
[CrossRef] [PubMed]

Gaiffe, T.

M. Zirngibl, C. Joyner, L. Stulz, T. Gaiffe, and C. Dragone, “Polarization independent 8 × 8 waveguide grating multiplexer on InP,” Electron. Lett. 29, 201–202 (1993).
[CrossRef]

Hibino, Y.

H. Takahashi, Y. Hibino, Y. Ohmori, and M. Kawachi, “Polarization-insensitive arrayed-waveguide wavelength multiplexer with birefringence compensating film,” IEEE Photon. Technol. Lett. 5, 707–709 (1993).
[CrossRef]

H. Takahashi, Y. Hibino, and I. Nishi, “Polarization-insensitive arrayed-waveguide grating wavelength multiplexer on silicon,” Opt. Lett. 17, 499–501 (1992).
[CrossRef] [PubMed]

Hirono, T.

Huang, W.-P.

Jiang, W.

F. Soares, W. Jiang, N. Fontaine, S. Seo, J. Baek, R. Broeke, J. Cao, K. Okamoto, F. Olsson, S. Lourdudoss, and S. Yoo, “InP-based arrayed-waveguide grating with a channel spacing of 10 GHz,” in “Optical Fiber communication/National Fiber Optic Engineers Conference, 2008. OFC/NFOEC 2008. Conference on,” (2008), pp. 1–3.
[CrossRef] [PubMed]

Joyner, C.

M. Zirngibl, C. Joyner, and P. Chou, “Polarisation compensated waveguide grating router on InP,” Electron. Lett. 31, 1662–1664 (1995).
[CrossRef]

M. Zirngibl, C. Joyner, L. Stulz, T. Gaiffe, and C. Dragone, “Polarization independent 8 × 8 waveguide grating multiplexer on InP,” Electron. Lett. 29, 201–202 (1993).
[CrossRef]

Kadota, Y.

Kamalakis, T.

Kawachi, M.

H. Takahashi, Y. Hibino, Y. Ohmori, and M. Kawachi, “Polarization-insensitive arrayed-waveguide wavelength multiplexer with birefringence compensating film,” IEEE Photon. Technol. Lett. 5, 707–709 (1993).
[CrossRef]

Kleijn, E.

E. Kleijn, P. Williams, N. Whitbread, M. Wale, M. Smit, and X. Leijtens, “Sidelobes caused by polarization rotation in arrayed waveguide gratings,” in “Information Photonics (IP), 2011 ICO International Conference on,” (2011).
[CrossRef]

Klekamp, A.

Kohtoku, M.

Leijtens, X.

E. Kleijn, P. Williams, N. Whitbread, M. Wale, M. Smit, and X. Leijtens, “Sidelobes caused by polarization rotation in arrayed waveguide gratings,” in “Information Photonics (IP), 2011 ICO International Conference on,” (2011).
[CrossRef]

Lourdudoss, S.

F. Soares, W. Jiang, N. Fontaine, S. Seo, J. Baek, R. Broeke, J. Cao, K. Okamoto, F. Olsson, S. Lourdudoss, and S. Yoo, “InP-based arrayed-waveguide grating with a channel spacing of 10 GHz,” in “Optical Fiber communication/National Fiber Optic Engineers Conference, 2008. OFC/NFOEC 2008. Conference on,” (2008), pp. 1–3.
[CrossRef] [PubMed]

Lui, W. W.

Member,

Morley, J.

S. Day, J. P. Stagg, D. Moule, S. J. Clements, C. Rogers, S. Ojha, T. Clapp, J. Brook, and J. Morley, “The elimination of sidelobes in the arrayed waveguide wdm,” in “Integrated Photonics Research,” (Optical Society of America, 1996), p. IMC5.

Moule, D.

S. Day, J. P. Stagg, D. Moule, S. J. Clements, C. Rogers, S. Ojha, T. Clapp, J. Brook, and J. Morley, “The elimination of sidelobes in the arrayed waveguide wdm,” in “Integrated Photonics Research,” (Optical Society of America, 1996), p. IMC5.

Münzner, R.

Nishi, I.

Ohmori, Y.

H. Takahashi, Y. Hibino, Y. Ohmori, and M. Kawachi, “Polarization-insensitive arrayed-waveguide wavelength multiplexer with birefringence compensating film,” IEEE Photon. Technol. Lett. 5, 707–709 (1993).
[CrossRef]

Ojha, S.

S. Day, J. P. Stagg, D. Moule, S. J. Clements, C. Rogers, S. Ojha, T. Clapp, J. Brook, and J. Morley, “The elimination of sidelobes in the arrayed waveguide wdm,” in “Integrated Photonics Research,” (Optical Society of America, 1996), p. IMC5.

Okamoto, K.

F. Soares, W. Jiang, N. Fontaine, S. Seo, J. Baek, R. Broeke, J. Cao, K. Okamoto, F. Olsson, S. Lourdudoss, and S. Yoo, “InP-based arrayed-waveguide grating with a channel spacing of 10 GHz,” in “Optical Fiber communication/National Fiber Optic Engineers Conference, 2008. OFC/NFOEC 2008. Conference on,” (2008), pp. 1–3.
[CrossRef] [PubMed]

Oku, S.

Olsson, F.

F. Soares, W. Jiang, N. Fontaine, S. Seo, J. Baek, R. Broeke, J. Cao, K. Okamoto, F. Olsson, S. Lourdudoss, and S. Yoo, “InP-based arrayed-waveguide grating with a channel spacing of 10 GHz,” in “Optical Fiber communication/National Fiber Optic Engineers Conference, 2008. OFC/NFOEC 2008. Conference on,” (2008), pp. 1–3.
[CrossRef] [PubMed]

Rogers, C.

S. Day, J. P. Stagg, D. Moule, S. J. Clements, C. Rogers, S. Ojha, T. Clapp, J. Brook, and J. Morley, “The elimination of sidelobes in the arrayed waveguide wdm,” in “Integrated Photonics Research,” (Optical Society of America, 1996), p. IMC5.

Seo, S.

F. Soares, W. Jiang, N. Fontaine, S. Seo, J. Baek, R. Broeke, J. Cao, K. Okamoto, F. Olsson, S. Lourdudoss, and S. Yoo, “InP-based arrayed-waveguide grating with a channel spacing of 10 GHz,” in “Optical Fiber communication/National Fiber Optic Engineers Conference, 2008. OFC/NFOEC 2008. Conference on,” (2008), pp. 1–3.
[CrossRef] [PubMed]

Shibata, Y.

Smit, M.

M. Smit and C. van Dam, “PHASAR-based WDM-devices: principles, design and applications,” IEEE J. Sel. Top. Quantum Electron. 2, 236–250 (1996).
[CrossRef]

E. Kleijn, P. Williams, N. Whitbread, M. Wale, M. Smit, and X. Leijtens, “Sidelobes caused by polarization rotation in arrayed waveguide gratings,” in “Information Photonics (IP), 2011 ICO International Conference on,” (2011).
[CrossRef]

Soares, F.

F. Soares, W. Jiang, N. Fontaine, S. Seo, J. Baek, R. Broeke, J. Cao, K. Okamoto, F. Olsson, S. Lourdudoss, and S. Yoo, “InP-based arrayed-waveguide grating with a channel spacing of 10 GHz,” in “Optical Fiber communication/National Fiber Optic Engineers Conference, 2008. OFC/NFOEC 2008. Conference on,” (2008), pp. 1–3.
[CrossRef] [PubMed]

Sphicopoulos, T.

Stagg, J. P.

S. Day, J. P. Stagg, D. Moule, S. J. Clements, C. Rogers, S. Ojha, T. Clapp, J. Brook, and J. Morley, “The elimination of sidelobes in the arrayed waveguide wdm,” in “Integrated Photonics Research,” (Optical Society of America, 1996), p. IMC5.

Stulz, L.

M. Zirngibl, C. Joyner, L. Stulz, T. Gaiffe, and C. Dragone, “Polarization independent 8 × 8 waveguide grating multiplexer on InP,” Electron. Lett. 29, 201–202 (1993).
[CrossRef]

Syvridis, D.

Takahashi, H.

H. Takahashi, Y. Hibino, Y. Ohmori, and M. Kawachi, “Polarization-insensitive arrayed-waveguide wavelength multiplexer with birefringence compensating film,” IEEE Photon. Technol. Lett. 5, 707–709 (1993).
[CrossRef]

H. Takahashi, Y. Hibino, and I. Nishi, “Polarization-insensitive arrayed-waveguide grating wavelength multiplexer on silicon,” Opt. Lett. 17, 499–501 (1992).
[CrossRef] [PubMed]

van Dam, C.

M. Smit and C. van Dam, “PHASAR-based WDM-devices: principles, design and applications,” IEEE J. Sel. Top. Quantum Electron. 2, 236–250 (1996).
[CrossRef]

Wale, M.

E. Kleijn, P. Williams, N. Whitbread, M. Wale, M. Smit, and X. Leijtens, “Sidelobes caused by polarization rotation in arrayed waveguide gratings,” in “Information Photonics (IP), 2011 ICO International Conference on,” (2011).
[CrossRef]

Whitbread, N.

E. Kleijn, P. Williams, N. Whitbread, M. Wale, M. Smit, and X. Leijtens, “Sidelobes caused by polarization rotation in arrayed waveguide gratings,” in “Information Photonics (IP), 2011 ICO International Conference on,” (2011).
[CrossRef]

Williams, P.

E. Kleijn, P. Williams, N. Whitbread, M. Wale, M. Smit, and X. Leijtens, “Sidelobes caused by polarization rotation in arrayed waveguide gratings,” in “Information Photonics (IP), 2011 ICO International Conference on,” (2011).
[CrossRef]

Yokoyama, K.

Yoo, S.

F. Soares, W. Jiang, N. Fontaine, S. Seo, J. Baek, R. Broeke, J. Cao, K. Okamoto, F. Olsson, S. Lourdudoss, and S. Yoo, “InP-based arrayed-waveguide grating with a channel spacing of 10 GHz,” in “Optical Fiber communication/National Fiber Optic Engineers Conference, 2008. OFC/NFOEC 2008. Conference on,” (2008), pp. 1–3.
[CrossRef] [PubMed]

Yoshikuni, Y.

Zirngibl, M.

M. Zirngibl, C. Joyner, and P. Chou, “Polarisation compensated waveguide grating router on InP,” Electron. Lett. 31, 1662–1664 (1995).
[CrossRef]

M. Zirngibl, C. Joyner, L. Stulz, T. Gaiffe, and C. Dragone, “Polarization independent 8 × 8 waveguide grating multiplexer on InP,” Electron. Lett. 29, 201–202 (1993).
[CrossRef]

Electron. Lett. (2)

M. Zirngibl, C. Joyner, and P. Chou, “Polarisation compensated waveguide grating router on InP,” Electron. Lett. 31, 1662–1664 (1995).
[CrossRef]

M. Zirngibl, C. Joyner, L. Stulz, T. Gaiffe, and C. Dragone, “Polarization independent 8 × 8 waveguide grating multiplexer on InP,” Electron. Lett. 29, 201–202 (1993).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

M. Smit and C. van Dam, “PHASAR-based WDM-devices: principles, design and applications,” IEEE J. Sel. Top. Quantum Electron. 2, 236–250 (1996).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

H. Takahashi, Y. Hibino, Y. Ohmori, and M. Kawachi, “Polarization-insensitive arrayed-waveguide wavelength multiplexer with birefringence compensating film,” IEEE Photon. Technol. Lett. 5, 707–709 (1993).
[CrossRef]

J. Lightwave Technol. (4)

Opt. Lett. (1)

Other (3)

S. Day, J. P. Stagg, D. Moule, S. J. Clements, C. Rogers, S. Ojha, T. Clapp, J. Brook, and J. Morley, “The elimination of sidelobes in the arrayed waveguide wdm,” in “Integrated Photonics Research,” (Optical Society of America, 1996), p. IMC5.

F. Soares, W. Jiang, N. Fontaine, S. Seo, J. Baek, R. Broeke, J. Cao, K. Okamoto, F. Olsson, S. Lourdudoss, and S. Yoo, “InP-based arrayed-waveguide grating with a channel spacing of 10 GHz,” in “Optical Fiber communication/National Fiber Optic Engineers Conference, 2008. OFC/NFOEC 2008. Conference on,” (2008), pp. 1–3.
[CrossRef] [PubMed]

E. Kleijn, P. Williams, N. Whitbread, M. Wale, M. Smit, and X. Leijtens, “Sidelobes caused by polarization rotation in arrayed waveguide gratings,” in “Information Photonics (IP), 2011 ICO International Conference on,” (2011).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

(a) Layout of the manufactured AWG. (b) Scanning Electron Microscope (SEM) image of a waveguide cross-section of the manufactured AWG. The indicated angle is 87 degrees, which means the sidewall angle equals 3 degrees.

Fig. 2
Fig. 2

Typical response of the characterized devices for TE input (black) and TM input (grey). The arrows indicate the PR-sidelobes.

Fig. 3
Fig. 3

Schematic of the experimental setup. The input polarizer is present in all measurement; in some measurements no output polarizer was used. ASE: Amplified Spontaneous Emission source, SMF: Single Mode Fiber, DUT: Device Under Test, OSA: Optical Spectrum Analyzer.

Fig. 4
Fig. 4

OSA trace of the filtered, TE polarized ASE spectrum for: no output polarizer (solid), output polarizer set to TE (dashed), output polarizer set to TM (dotted). The traces have been normalized, correcting for the nonuniform shape of the ASE spectrum.

Fig. 5
Fig. 5

Simulation of an AWG with polarization rotation occurring in the curved array waveguides. The result of the simulation matches well with the measurement results shown in Fig. 4

Fig. 6
Fig. 6

Simulated response of an AWG with an inserted half-wave plate subject to polarization rotation in the curved waveguides. The PR-sidelobe is not removed by this method, but only displaced in frequency.

Fig. 7
Fig. 7

(a) Simulated response of an AWG subject to polarization rotation in the curved waveguides, with one dispersion compensation section in the center. (b) Simulated response of an AWG subject to polarization rotation in the curved waveguides, with dispersion compensation sections before the curved waveguides. The TE trace is covered by the TE+TM trace.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

T s = ( exp ( j β TE L ) 0 0 exp ( j β TM L ) )
T c = ( sin φ cos φ cos φ sin φ ) ( exp ( j β 0 R θ ) 0 0 exp ( j β 1 R θ ) ) ( sin φ cos φ cos φ sin φ )

Metrics