Abstract

We demonstrate optically stable amorphous silicon nanowires with both high nonlinear figure of merit (FOM) of ~5 and high nonlinearity Re(γ) = 1200W−1m−1. We observe no degradation in these parameters over the entire course of our experiments including systematic study under operation at 2 W coupled peak power (i.e. ~2GW/cm2) over timescales of at least an hour.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Leuthold, C. Koos, and W. Freude, “Nonlinear silicon photonics,” Nat. Photonics 4(8), 535–544 (2010).
    [CrossRef]
  2. M. A. Foster, A. C. Turner, J. E. Sharping, B. S. Schmidt, M. Lipson, and A. L. Gaeta, “Broad-band optical parametric gain on a silicon photonic chip,” Nature 441(7096), 960–963 (2006).
    [CrossRef] [PubMed]
  3. F. Li, M. Pelusi, D. X. Xu, A. Densmore, R. Ma, S. Janz, and D. J. Moss, “Error-free all-optical demultiplexing at 160Gb/s via FWM in a silicon nanowire,” Opt. Express 18(4), 3905–3910 (2010).
    [CrossRef] [PubMed]
  4. H. Ji, M. Galili, H. Hu, M. Pu, L. K. Oxenlowe, K. Yvind, J. M. Hvam, and P. Jeppesen, “1.28-Tb/s demultiplexing of an OTDM DPSK data signal using a silicon waveguide,” IEEE Photon. Technol. Lett. 22(23), 1762–1764 (2010).
    [CrossRef]
  5. B. Corcoran, C. Monat, C. Grillet, D. J. Moss, B. J. Eggleton, T. P. White, L. O’Faolain, and T. F. Krauss, “Green light emission in silicon through slow-light enhanced third-harmonic generation in photonic crystal waveguides,” Nat. Photonics 3(4), 206–210 (2009).
    [CrossRef]
  6. B. Corcoran, C. Monat, M. Pelusi, C. Grillet, T. P. White, L. O’Faolain, T. F. Krauss, B. J. Eggleton, and D. J. Moss, “Optical signal processing on a silicon chip at 640Gb/s using slow-light,” Opt. Express 18(8), 7770–7781 (2010).
    [CrossRef] [PubMed]
  7. C. Xiong, C. Monat, A. S. Clark, C. Grillet, G. D. Marshall, M. J. Steel, J. Li, L. O’Faolain, T. F. Krauss, J. G. Rarity, and B. J. Eggleton, “Slow-light enhanced correlated photon pair generation in a silicon photonic crystal waveguide,” Opt. Lett. 36(17), 3413–3415 (2011).
    [CrossRef] [PubMed]
  8. S. Zlatanovic, J. S. Park, S. Moro, J. M. Chavez Boggio, I. B. Divliansky, N. Alic, S. Mookherjea, and S. Radic, “Mid-infrared wavelength conversion in silicon waveguides using ultracompact telecom-band-derived pump source,” Nat. Photonics 4(8), 561–564 (2010).
    [CrossRef]
  9. X. Liu, R. M. Osgood, Y. A. Vlasov, and W. J. Green, “Mid-infrared optical parametric amplifier using Si nanophotonic waveguides,” Nat. Photonics 4(8), 557–560 (2010).
    [CrossRef]
  10. B. Kuyken, X. Liu, G. Roelkens, R. Baets, R. M. Osgood, and W. M. Green, “50 dB parametric on-chip gain in silicon photonic wires,” Opt. Lett. 36(22), 4401–4403 (2011).
    [CrossRef] [PubMed]
  11. B. Kuyken, X. Liu, R. M. Osgood, R. Baets, G. Roelkens, and W. M. Green, “Mid-infrared to telecom-band supercontinuum generation in highly nonlinear silicon-on-insulator wire waveguides,” Opt. Express 19(21), 20172–20181 (2011).
    [CrossRef] [PubMed]
  12. R. K. W. Lau, M. Ménard, Y. Okawachi, M. A. Foster, A. C. Turner-Foster, R. Salem, M. Lipson, and A. L. Gaeta, “Continuous-wave mid-infrared frequency conversion in silicon nanowaveguides,” Opt. Lett. 36(7), 1263–1265 (2011).
    [CrossRef] [PubMed]
  13. R. A. Soref, “Mid-infrared photonics in silicon and germanium,” Nat. Photonics 4(8), 495–497 (2010).
    [CrossRef]
  14. B. Jalali, “Silicon photonics: nonlinear optics in the mid-infrared,” Nat. Photonics 4(8), 506–508 (2010).
    [CrossRef]
  15. K. Ikeda, Y. M. Shen, and Y. Fainman, “Enhanced optical nonlinearity in amorphous silicon and its application to waveguide devices,” Opt. Express 15(26), 17761–17771 (2007).
    [CrossRef] [PubMed]
  16. S. K. O’Leary, S. R. Johnson, and P. K. Lim, “The relationship between the distribution of electronic states and the optical absorption spectrum of an amorphous semiconductor: an empirical analysis,” J. Appl. Phys. 82(7), 3334–3340 (1997).
    [CrossRef]
  17. Y. Shoji, T. Ogasawara, T. Kamei, Y. Sakakibara, S. Suda, K. Kintaka, H. Kawashima, M. Okano, T. Hasama, H. Ishikawa, and M. Mori, “Ultrafast nonlinear effects in hydrogenated amorphous silicon wire waveguide,” Opt. Express 18(6), 5668–5673 (2010).
    [CrossRef] [PubMed]
  18. K. Narayanan and S. F. Preble, “Optical nonlinearities in hydrogenated-amorphous silicon waveguides,” Opt. Express 18(9), 8998–9005 (2010).
    [CrossRef] [PubMed]
  19. S. Suda, K. Tanizawa, Y. Sakakibara, T. Kamei, K. Nakanishi, E. Itoga, T. Ogasawara, R. Takei, H. Kawashima, S. Namiki, M. Mori, T. Hasama, and H. Ishikawa, “Pattern-effect-free all-optical wavelength conversion using a hydrogenated amorphous silicon waveguide with ultra-fast carrier decay,” Opt. Lett. 37(8), 1382–1384 (2012).
    [CrossRef] [PubMed]
  20. K.-Y. Wang and A. C. Foster, “Ultralow power continuous-wave frequency conversion in hydrogenated amorphous silicon waveguides,” Opt. Lett. 37(8), 1331–1333 (2012).
    [CrossRef] [PubMed]
  21. B. Kuyken, S. Clemmen, S. K. Selvaraja, W. Bogaerts, D. Van Thourhout, P. Emplit, S. Massar, G. Roelkens, and R. Baets, “On-chip parametric amplification with 26.5 dB gain at telecommunication wavelengths using CMOS-compatible hydrogenated amorphous silicon waveguides,” Opt. Lett. 36(4), 552–554 (2011).
    [CrossRef] [PubMed]
  22. B. Kuyken, H. Ji, S. Clemmen, S. K. Selvaraja, H. Hu, M. Pu, M. Galili, P. Jeppesen, G. Morthier, S. Massar, L. K. Oxenløwe, G. Roelkens, and R. Baets, “Nonlinear properties of and nonlinear processing in hydrogenated amorphous silicon waveguides,” Opt. Express 19(26), B146–B153 (2011).
    [CrossRef] [PubMed]
  23. H. K. Tsang, R. V. Penty, I. H. White, R. S. Grant, W. Sibbett, J. B. D. Soole, H. P. Leblanc, N. C. Andreadakis, R. Bhat, and M. A. Koza, “Two-photon absorption and self-phase modulation in InGaAsP/InP multi-quantum well waveguides,” J. Appl. Phys. 70(7), 3992–3994 (1991).
    [CrossRef]
  24. O. Boyraz, T. Indukuri, and B. Jalali, “Self-phase-modulation induced spectral broadening in silicon waveguides,” Opt. Express 12(5), 829–834 (2004).
    [CrossRef] [PubMed]
  25. E. Dulkeith, Y. A. Vlasov, X. Chen, N. C. Panoiu, and R. M. Osgood., “Self-phase-modulation in submicron silicon-on-insulator photonic wires,” Opt. Express 14(12), 5524–5534 (2006).
    [CrossRef] [PubMed]
  26. X. Liu, J. B. Driscoll, J. I. Dadap, R. M. Osgood, S. Assefa, Y. A. Vlasov, and W. M. J. Green, “Self-phase modulation and nonlinear loss in silicon nanophotonic wires near the mid-infrared two-photon absorption edge,” Opt. Express 19(8), 7778–7789 (2011).
    [CrossRef] [PubMed]
  27. K. Narayanan, A. W. Elshaari, and S. F. Preble, “Broadband all-optical modulation in hydrogenated-amorphous silicon waveguides,” Opt. Express 18(10), 9809–9814 (2010).
    [CrossRef] [PubMed]
  28. C. Sciancalepore, B. Bakir, X. Letartre, J. Harduin, N. Olivier, C. Seassal, J. M. Fedeli, and P. Viktorovitch, “CMOS-compatible ultra-compact 1.55-μm emitting VCSELs using double photonic crystal mirrors,” IEEE Photon. Technol. Lett. 24(6), 455–457 (2012).
    [CrossRef]
  29. R. Orobtchouk, S. Jeannot, B. Han, T. Benyattou, J. M. Fedeli, and P. Mur, “Ultra compact optical link made in amorphous silicon waveguide,” Proc. SPIE 6183, 618304, 618304-10 (2006).
    [CrossRef]
  30. K.-Y. Wang, K. G. Petrillo, M. A. Foster, and A. C. Foster, “Ultralow-power 160-Gb/s all-optical demultiplexing in hydrogenated amorphous silicon waveguides,” in Integrated Photonics Research, Silicon and Nanophotonics, OSA Technical Digest (online), paper IW4C.3 (2012).
  31. J. M. Fedeli, M. Migette, L. Di Cioccio, L. El Melhaoui, R. Orobtchouk, C. Seassal, P. Rojo-Romeo, F. Mandorlo, D. Marris-Morini, and L. Vivien, “Incorporation of a photonic layer at the metallization levels of a CMOS circuit,” in Proceedings of 3rd IEEE International Conf. on Group IV Photonics (2006), pp. 200–202.
  32. J. M. Fedeli, R. Orobtchouk, C. Seassal, and L. Vivien, “Integration issues of a photonic layer on top of a CMOS circuit,” Proc. SPIE 6125, 61250H, 61250H-15 (2006).
    [CrossRef]
  33. J. M. Fedeli, L. Di Cioccio, D. Marris-Morini, L. Vivien, R. Orobtchouk, P. Rojo-Romeo, C. Seassal, and F. Mandorlo, “Development of silicon photonics devices using microelectronic tools for the integration on top of a CMOS wafer,” Adv. Opt. Technol. 2008, 412518 (2008).
    [CrossRef]

2012 (3)

2011 (7)

X. Liu, J. B. Driscoll, J. I. Dadap, R. M. Osgood, S. Assefa, Y. A. Vlasov, and W. M. J. Green, “Self-phase modulation and nonlinear loss in silicon nanophotonic wires near the mid-infrared two-photon absorption edge,” Opt. Express 19(8), 7778–7789 (2011).
[CrossRef] [PubMed]

B. Kuyken, S. Clemmen, S. K. Selvaraja, W. Bogaerts, D. Van Thourhout, P. Emplit, S. Massar, G. Roelkens, and R. Baets, “On-chip parametric amplification with 26.5 dB gain at telecommunication wavelengths using CMOS-compatible hydrogenated amorphous silicon waveguides,” Opt. Lett. 36(4), 552–554 (2011).
[CrossRef] [PubMed]

B. Kuyken, H. Ji, S. Clemmen, S. K. Selvaraja, H. Hu, M. Pu, M. Galili, P. Jeppesen, G. Morthier, S. Massar, L. K. Oxenløwe, G. Roelkens, and R. Baets, “Nonlinear properties of and nonlinear processing in hydrogenated amorphous silicon waveguides,” Opt. Express 19(26), B146–B153 (2011).
[CrossRef] [PubMed]

C. Xiong, C. Monat, A. S. Clark, C. Grillet, G. D. Marshall, M. J. Steel, J. Li, L. O’Faolain, T. F. Krauss, J. G. Rarity, and B. J. Eggleton, “Slow-light enhanced correlated photon pair generation in a silicon photonic crystal waveguide,” Opt. Lett. 36(17), 3413–3415 (2011).
[CrossRef] [PubMed]

B. Kuyken, X. Liu, G. Roelkens, R. Baets, R. M. Osgood, and W. M. Green, “50 dB parametric on-chip gain in silicon photonic wires,” Opt. Lett. 36(22), 4401–4403 (2011).
[CrossRef] [PubMed]

B. Kuyken, X. Liu, R. M. Osgood, R. Baets, G. Roelkens, and W. M. Green, “Mid-infrared to telecom-band supercontinuum generation in highly nonlinear silicon-on-insulator wire waveguides,” Opt. Express 19(21), 20172–20181 (2011).
[CrossRef] [PubMed]

R. K. W. Lau, M. Ménard, Y. Okawachi, M. A. Foster, A. C. Turner-Foster, R. Salem, M. Lipson, and A. L. Gaeta, “Continuous-wave mid-infrared frequency conversion in silicon nanowaveguides,” Opt. Lett. 36(7), 1263–1265 (2011).
[CrossRef] [PubMed]

2010 (11)

R. A. Soref, “Mid-infrared photonics in silicon and germanium,” Nat. Photonics 4(8), 495–497 (2010).
[CrossRef]

B. Jalali, “Silicon photonics: nonlinear optics in the mid-infrared,” Nat. Photonics 4(8), 506–508 (2010).
[CrossRef]

J. Leuthold, C. Koos, and W. Freude, “Nonlinear silicon photonics,” Nat. Photonics 4(8), 535–544 (2010).
[CrossRef]

F. Li, M. Pelusi, D. X. Xu, A. Densmore, R. Ma, S. Janz, and D. J. Moss, “Error-free all-optical demultiplexing at 160Gb/s via FWM in a silicon nanowire,” Opt. Express 18(4), 3905–3910 (2010).
[CrossRef] [PubMed]

H. Ji, M. Galili, H. Hu, M. Pu, L. K. Oxenlowe, K. Yvind, J. M. Hvam, and P. Jeppesen, “1.28-Tb/s demultiplexing of an OTDM DPSK data signal using a silicon waveguide,” IEEE Photon. Technol. Lett. 22(23), 1762–1764 (2010).
[CrossRef]

S. Zlatanovic, J. S. Park, S. Moro, J. M. Chavez Boggio, I. B. Divliansky, N. Alic, S. Mookherjea, and S. Radic, “Mid-infrared wavelength conversion in silicon waveguides using ultracompact telecom-band-derived pump source,” Nat. Photonics 4(8), 561–564 (2010).
[CrossRef]

X. Liu, R. M. Osgood, Y. A. Vlasov, and W. J. Green, “Mid-infrared optical parametric amplifier using Si nanophotonic waveguides,” Nat. Photonics 4(8), 557–560 (2010).
[CrossRef]

Y. Shoji, T. Ogasawara, T. Kamei, Y. Sakakibara, S. Suda, K. Kintaka, H. Kawashima, M. Okano, T. Hasama, H. Ishikawa, and M. Mori, “Ultrafast nonlinear effects in hydrogenated amorphous silicon wire waveguide,” Opt. Express 18(6), 5668–5673 (2010).
[CrossRef] [PubMed]

K. Narayanan and S. F. Preble, “Optical nonlinearities in hydrogenated-amorphous silicon waveguides,” Opt. Express 18(9), 8998–9005 (2010).
[CrossRef] [PubMed]

K. Narayanan, A. W. Elshaari, and S. F. Preble, “Broadband all-optical modulation in hydrogenated-amorphous silicon waveguides,” Opt. Express 18(10), 9809–9814 (2010).
[CrossRef] [PubMed]

B. Corcoran, C. Monat, M. Pelusi, C. Grillet, T. P. White, L. O’Faolain, T. F. Krauss, B. J. Eggleton, and D. J. Moss, “Optical signal processing on a silicon chip at 640Gb/s using slow-light,” Opt. Express 18(8), 7770–7781 (2010).
[CrossRef] [PubMed]

2009 (1)

B. Corcoran, C. Monat, C. Grillet, D. J. Moss, B. J. Eggleton, T. P. White, L. O’Faolain, and T. F. Krauss, “Green light emission in silicon through slow-light enhanced third-harmonic generation in photonic crystal waveguides,” Nat. Photonics 3(4), 206–210 (2009).
[CrossRef]

2008 (1)

J. M. Fedeli, L. Di Cioccio, D. Marris-Morini, L. Vivien, R. Orobtchouk, P. Rojo-Romeo, C. Seassal, and F. Mandorlo, “Development of silicon photonics devices using microelectronic tools for the integration on top of a CMOS wafer,” Adv. Opt. Technol. 2008, 412518 (2008).
[CrossRef]

2007 (1)

2006 (4)

M. A. Foster, A. C. Turner, J. E. Sharping, B. S. Schmidt, M. Lipson, and A. L. Gaeta, “Broad-band optical parametric gain on a silicon photonic chip,” Nature 441(7096), 960–963 (2006).
[CrossRef] [PubMed]

E. Dulkeith, Y. A. Vlasov, X. Chen, N. C. Panoiu, and R. M. Osgood., “Self-phase-modulation in submicron silicon-on-insulator photonic wires,” Opt. Express 14(12), 5524–5534 (2006).
[CrossRef] [PubMed]

R. Orobtchouk, S. Jeannot, B. Han, T. Benyattou, J. M. Fedeli, and P. Mur, “Ultra compact optical link made in amorphous silicon waveguide,” Proc. SPIE 6183, 618304, 618304-10 (2006).
[CrossRef]

J. M. Fedeli, R. Orobtchouk, C. Seassal, and L. Vivien, “Integration issues of a photonic layer on top of a CMOS circuit,” Proc. SPIE 6125, 61250H, 61250H-15 (2006).
[CrossRef]

2004 (1)

1997 (1)

S. K. O’Leary, S. R. Johnson, and P. K. Lim, “The relationship between the distribution of electronic states and the optical absorption spectrum of an amorphous semiconductor: an empirical analysis,” J. Appl. Phys. 82(7), 3334–3340 (1997).
[CrossRef]

1991 (1)

H. K. Tsang, R. V. Penty, I. H. White, R. S. Grant, W. Sibbett, J. B. D. Soole, H. P. Leblanc, N. C. Andreadakis, R. Bhat, and M. A. Koza, “Two-photon absorption and self-phase modulation in InGaAsP/InP multi-quantum well waveguides,” J. Appl. Phys. 70(7), 3992–3994 (1991).
[CrossRef]

Alic, N.

S. Zlatanovic, J. S. Park, S. Moro, J. M. Chavez Boggio, I. B. Divliansky, N. Alic, S. Mookherjea, and S. Radic, “Mid-infrared wavelength conversion in silicon waveguides using ultracompact telecom-band-derived pump source,” Nat. Photonics 4(8), 561–564 (2010).
[CrossRef]

Andreadakis, N. C.

H. K. Tsang, R. V. Penty, I. H. White, R. S. Grant, W. Sibbett, J. B. D. Soole, H. P. Leblanc, N. C. Andreadakis, R. Bhat, and M. A. Koza, “Two-photon absorption and self-phase modulation in InGaAsP/InP multi-quantum well waveguides,” J. Appl. Phys. 70(7), 3992–3994 (1991).
[CrossRef]

Assefa, S.

Baets, R.

Bakir, B.

C. Sciancalepore, B. Bakir, X. Letartre, J. Harduin, N. Olivier, C. Seassal, J. M. Fedeli, and P. Viktorovitch, “CMOS-compatible ultra-compact 1.55-μm emitting VCSELs using double photonic crystal mirrors,” IEEE Photon. Technol. Lett. 24(6), 455–457 (2012).
[CrossRef]

Benyattou, T.

R. Orobtchouk, S. Jeannot, B. Han, T. Benyattou, J. M. Fedeli, and P. Mur, “Ultra compact optical link made in amorphous silicon waveguide,” Proc. SPIE 6183, 618304, 618304-10 (2006).
[CrossRef]

Bhat, R.

H. K. Tsang, R. V. Penty, I. H. White, R. S. Grant, W. Sibbett, J. B. D. Soole, H. P. Leblanc, N. C. Andreadakis, R. Bhat, and M. A. Koza, “Two-photon absorption and self-phase modulation in InGaAsP/InP multi-quantum well waveguides,” J. Appl. Phys. 70(7), 3992–3994 (1991).
[CrossRef]

Bogaerts, W.

Boyraz, O.

Chavez Boggio, J. M.

S. Zlatanovic, J. S. Park, S. Moro, J. M. Chavez Boggio, I. B. Divliansky, N. Alic, S. Mookherjea, and S. Radic, “Mid-infrared wavelength conversion in silicon waveguides using ultracompact telecom-band-derived pump source,” Nat. Photonics 4(8), 561–564 (2010).
[CrossRef]

Chen, X.

Clark, A. S.

Clemmen, S.

Corcoran, B.

B. Corcoran, C. Monat, M. Pelusi, C. Grillet, T. P. White, L. O’Faolain, T. F. Krauss, B. J. Eggleton, and D. J. Moss, “Optical signal processing on a silicon chip at 640Gb/s using slow-light,” Opt. Express 18(8), 7770–7781 (2010).
[CrossRef] [PubMed]

B. Corcoran, C. Monat, C. Grillet, D. J. Moss, B. J. Eggleton, T. P. White, L. O’Faolain, and T. F. Krauss, “Green light emission in silicon through slow-light enhanced third-harmonic generation in photonic crystal waveguides,” Nat. Photonics 3(4), 206–210 (2009).
[CrossRef]

Dadap, J. I.

Densmore, A.

Di Cioccio, L.

J. M. Fedeli, L. Di Cioccio, D. Marris-Morini, L. Vivien, R. Orobtchouk, P. Rojo-Romeo, C. Seassal, and F. Mandorlo, “Development of silicon photonics devices using microelectronic tools for the integration on top of a CMOS wafer,” Adv. Opt. Technol. 2008, 412518 (2008).
[CrossRef]

Divliansky, I. B.

S. Zlatanovic, J. S. Park, S. Moro, J. M. Chavez Boggio, I. B. Divliansky, N. Alic, S. Mookherjea, and S. Radic, “Mid-infrared wavelength conversion in silicon waveguides using ultracompact telecom-band-derived pump source,” Nat. Photonics 4(8), 561–564 (2010).
[CrossRef]

Driscoll, J. B.

Dulkeith, E.

Eggleton, B. J.

Elshaari, A. W.

Emplit, P.

Fainman, Y.

Fedeli, J. M.

C. Sciancalepore, B. Bakir, X. Letartre, J. Harduin, N. Olivier, C. Seassal, J. M. Fedeli, and P. Viktorovitch, “CMOS-compatible ultra-compact 1.55-μm emitting VCSELs using double photonic crystal mirrors,” IEEE Photon. Technol. Lett. 24(6), 455–457 (2012).
[CrossRef]

J. M. Fedeli, L. Di Cioccio, D. Marris-Morini, L. Vivien, R. Orobtchouk, P. Rojo-Romeo, C. Seassal, and F. Mandorlo, “Development of silicon photonics devices using microelectronic tools for the integration on top of a CMOS wafer,” Adv. Opt. Technol. 2008, 412518 (2008).
[CrossRef]

R. Orobtchouk, S. Jeannot, B. Han, T. Benyattou, J. M. Fedeli, and P. Mur, “Ultra compact optical link made in amorphous silicon waveguide,” Proc. SPIE 6183, 618304, 618304-10 (2006).
[CrossRef]

J. M. Fedeli, R. Orobtchouk, C. Seassal, and L. Vivien, “Integration issues of a photonic layer on top of a CMOS circuit,” Proc. SPIE 6125, 61250H, 61250H-15 (2006).
[CrossRef]

Foster, A. C.

Foster, M. A.

R. K. W. Lau, M. Ménard, Y. Okawachi, M. A. Foster, A. C. Turner-Foster, R. Salem, M. Lipson, and A. L. Gaeta, “Continuous-wave mid-infrared frequency conversion in silicon nanowaveguides,” Opt. Lett. 36(7), 1263–1265 (2011).
[CrossRef] [PubMed]

M. A. Foster, A. C. Turner, J. E. Sharping, B. S. Schmidt, M. Lipson, and A. L. Gaeta, “Broad-band optical parametric gain on a silicon photonic chip,” Nature 441(7096), 960–963 (2006).
[CrossRef] [PubMed]

Freude, W.

J. Leuthold, C. Koos, and W. Freude, “Nonlinear silicon photonics,” Nat. Photonics 4(8), 535–544 (2010).
[CrossRef]

Gaeta, A. L.

R. K. W. Lau, M. Ménard, Y. Okawachi, M. A. Foster, A. C. Turner-Foster, R. Salem, M. Lipson, and A. L. Gaeta, “Continuous-wave mid-infrared frequency conversion in silicon nanowaveguides,” Opt. Lett. 36(7), 1263–1265 (2011).
[CrossRef] [PubMed]

M. A. Foster, A. C. Turner, J. E. Sharping, B. S. Schmidt, M. Lipson, and A. L. Gaeta, “Broad-band optical parametric gain on a silicon photonic chip,” Nature 441(7096), 960–963 (2006).
[CrossRef] [PubMed]

Galili, M.

B. Kuyken, H. Ji, S. Clemmen, S. K. Selvaraja, H. Hu, M. Pu, M. Galili, P. Jeppesen, G. Morthier, S. Massar, L. K. Oxenløwe, G. Roelkens, and R. Baets, “Nonlinear properties of and nonlinear processing in hydrogenated amorphous silicon waveguides,” Opt. Express 19(26), B146–B153 (2011).
[CrossRef] [PubMed]

H. Ji, M. Galili, H. Hu, M. Pu, L. K. Oxenlowe, K. Yvind, J. M. Hvam, and P. Jeppesen, “1.28-Tb/s demultiplexing of an OTDM DPSK data signal using a silicon waveguide,” IEEE Photon. Technol. Lett. 22(23), 1762–1764 (2010).
[CrossRef]

Grant, R. S.

H. K. Tsang, R. V. Penty, I. H. White, R. S. Grant, W. Sibbett, J. B. D. Soole, H. P. Leblanc, N. C. Andreadakis, R. Bhat, and M. A. Koza, “Two-photon absorption and self-phase modulation in InGaAsP/InP multi-quantum well waveguides,” J. Appl. Phys. 70(7), 3992–3994 (1991).
[CrossRef]

Green, W. J.

X. Liu, R. M. Osgood, Y. A. Vlasov, and W. J. Green, “Mid-infrared optical parametric amplifier using Si nanophotonic waveguides,” Nat. Photonics 4(8), 557–560 (2010).
[CrossRef]

Green, W. M.

Green, W. M. J.

Grillet, C.

Han, B.

R. Orobtchouk, S. Jeannot, B. Han, T. Benyattou, J. M. Fedeli, and P. Mur, “Ultra compact optical link made in amorphous silicon waveguide,” Proc. SPIE 6183, 618304, 618304-10 (2006).
[CrossRef]

Harduin, J.

C. Sciancalepore, B. Bakir, X. Letartre, J. Harduin, N. Olivier, C. Seassal, J. M. Fedeli, and P. Viktorovitch, “CMOS-compatible ultra-compact 1.55-μm emitting VCSELs using double photonic crystal mirrors,” IEEE Photon. Technol. Lett. 24(6), 455–457 (2012).
[CrossRef]

Hasama, T.

Hu, H.

B. Kuyken, H. Ji, S. Clemmen, S. K. Selvaraja, H. Hu, M. Pu, M. Galili, P. Jeppesen, G. Morthier, S. Massar, L. K. Oxenløwe, G. Roelkens, and R. Baets, “Nonlinear properties of and nonlinear processing in hydrogenated amorphous silicon waveguides,” Opt. Express 19(26), B146–B153 (2011).
[CrossRef] [PubMed]

H. Ji, M. Galili, H. Hu, M. Pu, L. K. Oxenlowe, K. Yvind, J. M. Hvam, and P. Jeppesen, “1.28-Tb/s demultiplexing of an OTDM DPSK data signal using a silicon waveguide,” IEEE Photon. Technol. Lett. 22(23), 1762–1764 (2010).
[CrossRef]

Hvam, J. M.

H. Ji, M. Galili, H. Hu, M. Pu, L. K. Oxenlowe, K. Yvind, J. M. Hvam, and P. Jeppesen, “1.28-Tb/s demultiplexing of an OTDM DPSK data signal using a silicon waveguide,” IEEE Photon. Technol. Lett. 22(23), 1762–1764 (2010).
[CrossRef]

Ikeda, K.

Indukuri, T.

Ishikawa, H.

Itoga, E.

Jalali, B.

Janz, S.

Jeannot, S.

R. Orobtchouk, S. Jeannot, B. Han, T. Benyattou, J. M. Fedeli, and P. Mur, “Ultra compact optical link made in amorphous silicon waveguide,” Proc. SPIE 6183, 618304, 618304-10 (2006).
[CrossRef]

Jeppesen, P.

B. Kuyken, H. Ji, S. Clemmen, S. K. Selvaraja, H. Hu, M. Pu, M. Galili, P. Jeppesen, G. Morthier, S. Massar, L. K. Oxenløwe, G. Roelkens, and R. Baets, “Nonlinear properties of and nonlinear processing in hydrogenated amorphous silicon waveguides,” Opt. Express 19(26), B146–B153 (2011).
[CrossRef] [PubMed]

H. Ji, M. Galili, H. Hu, M. Pu, L. K. Oxenlowe, K. Yvind, J. M. Hvam, and P. Jeppesen, “1.28-Tb/s demultiplexing of an OTDM DPSK data signal using a silicon waveguide,” IEEE Photon. Technol. Lett. 22(23), 1762–1764 (2010).
[CrossRef]

Ji, H.

B. Kuyken, H. Ji, S. Clemmen, S. K. Selvaraja, H. Hu, M. Pu, M. Galili, P. Jeppesen, G. Morthier, S. Massar, L. K. Oxenløwe, G. Roelkens, and R. Baets, “Nonlinear properties of and nonlinear processing in hydrogenated amorphous silicon waveguides,” Opt. Express 19(26), B146–B153 (2011).
[CrossRef] [PubMed]

H. Ji, M. Galili, H. Hu, M. Pu, L. K. Oxenlowe, K. Yvind, J. M. Hvam, and P. Jeppesen, “1.28-Tb/s demultiplexing of an OTDM DPSK data signal using a silicon waveguide,” IEEE Photon. Technol. Lett. 22(23), 1762–1764 (2010).
[CrossRef]

Johnson, S. R.

S. K. O’Leary, S. R. Johnson, and P. K. Lim, “The relationship between the distribution of electronic states and the optical absorption spectrum of an amorphous semiconductor: an empirical analysis,” J. Appl. Phys. 82(7), 3334–3340 (1997).
[CrossRef]

Kamei, T.

Kawashima, H.

Kintaka, K.

Koos, C.

J. Leuthold, C. Koos, and W. Freude, “Nonlinear silicon photonics,” Nat. Photonics 4(8), 535–544 (2010).
[CrossRef]

Koza, M. A.

H. K. Tsang, R. V. Penty, I. H. White, R. S. Grant, W. Sibbett, J. B. D. Soole, H. P. Leblanc, N. C. Andreadakis, R. Bhat, and M. A. Koza, “Two-photon absorption and self-phase modulation in InGaAsP/InP multi-quantum well waveguides,” J. Appl. Phys. 70(7), 3992–3994 (1991).
[CrossRef]

Krauss, T. F.

Kuyken, B.

Lau, R. K. W.

Leblanc, H. P.

H. K. Tsang, R. V. Penty, I. H. White, R. S. Grant, W. Sibbett, J. B. D. Soole, H. P. Leblanc, N. C. Andreadakis, R. Bhat, and M. A. Koza, “Two-photon absorption and self-phase modulation in InGaAsP/InP multi-quantum well waveguides,” J. Appl. Phys. 70(7), 3992–3994 (1991).
[CrossRef]

Letartre, X.

C. Sciancalepore, B. Bakir, X. Letartre, J. Harduin, N. Olivier, C. Seassal, J. M. Fedeli, and P. Viktorovitch, “CMOS-compatible ultra-compact 1.55-μm emitting VCSELs using double photonic crystal mirrors,” IEEE Photon. Technol. Lett. 24(6), 455–457 (2012).
[CrossRef]

Leuthold, J.

J. Leuthold, C. Koos, and W. Freude, “Nonlinear silicon photonics,” Nat. Photonics 4(8), 535–544 (2010).
[CrossRef]

Li, F.

Li, J.

Lim, P. K.

S. K. O’Leary, S. R. Johnson, and P. K. Lim, “The relationship between the distribution of electronic states and the optical absorption spectrum of an amorphous semiconductor: an empirical analysis,” J. Appl. Phys. 82(7), 3334–3340 (1997).
[CrossRef]

Lipson, M.

R. K. W. Lau, M. Ménard, Y. Okawachi, M. A. Foster, A. C. Turner-Foster, R. Salem, M. Lipson, and A. L. Gaeta, “Continuous-wave mid-infrared frequency conversion in silicon nanowaveguides,” Opt. Lett. 36(7), 1263–1265 (2011).
[CrossRef] [PubMed]

M. A. Foster, A. C. Turner, J. E. Sharping, B. S. Schmidt, M. Lipson, and A. L. Gaeta, “Broad-band optical parametric gain on a silicon photonic chip,” Nature 441(7096), 960–963 (2006).
[CrossRef] [PubMed]

Liu, X.

Ma, R.

Mandorlo, F.

J. M. Fedeli, L. Di Cioccio, D. Marris-Morini, L. Vivien, R. Orobtchouk, P. Rojo-Romeo, C. Seassal, and F. Mandorlo, “Development of silicon photonics devices using microelectronic tools for the integration on top of a CMOS wafer,” Adv. Opt. Technol. 2008, 412518 (2008).
[CrossRef]

Marris-Morini, D.

J. M. Fedeli, L. Di Cioccio, D. Marris-Morini, L. Vivien, R. Orobtchouk, P. Rojo-Romeo, C. Seassal, and F. Mandorlo, “Development of silicon photonics devices using microelectronic tools for the integration on top of a CMOS wafer,” Adv. Opt. Technol. 2008, 412518 (2008).
[CrossRef]

Marshall, G. D.

Massar, S.

Ménard, M.

Monat, C.

Mookherjea, S.

S. Zlatanovic, J. S. Park, S. Moro, J. M. Chavez Boggio, I. B. Divliansky, N. Alic, S. Mookherjea, and S. Radic, “Mid-infrared wavelength conversion in silicon waveguides using ultracompact telecom-band-derived pump source,” Nat. Photonics 4(8), 561–564 (2010).
[CrossRef]

Mori, M.

Moro, S.

S. Zlatanovic, J. S. Park, S. Moro, J. M. Chavez Boggio, I. B. Divliansky, N. Alic, S. Mookherjea, and S. Radic, “Mid-infrared wavelength conversion in silicon waveguides using ultracompact telecom-band-derived pump source,” Nat. Photonics 4(8), 561–564 (2010).
[CrossRef]

Morthier, G.

Moss, D. J.

Mur, P.

R. Orobtchouk, S. Jeannot, B. Han, T. Benyattou, J. M. Fedeli, and P. Mur, “Ultra compact optical link made in amorphous silicon waveguide,” Proc. SPIE 6183, 618304, 618304-10 (2006).
[CrossRef]

Nakanishi, K.

Namiki, S.

Narayanan, K.

O’Faolain, L.

O’Leary, S. K.

S. K. O’Leary, S. R. Johnson, and P. K. Lim, “The relationship between the distribution of electronic states and the optical absorption spectrum of an amorphous semiconductor: an empirical analysis,” J. Appl. Phys. 82(7), 3334–3340 (1997).
[CrossRef]

Ogasawara, T.

Okano, M.

Okawachi, Y.

Olivier, N.

C. Sciancalepore, B. Bakir, X. Letartre, J. Harduin, N. Olivier, C. Seassal, J. M. Fedeli, and P. Viktorovitch, “CMOS-compatible ultra-compact 1.55-μm emitting VCSELs using double photonic crystal mirrors,” IEEE Photon. Technol. Lett. 24(6), 455–457 (2012).
[CrossRef]

Orobtchouk, R.

J. M. Fedeli, L. Di Cioccio, D. Marris-Morini, L. Vivien, R. Orobtchouk, P. Rojo-Romeo, C. Seassal, and F. Mandorlo, “Development of silicon photonics devices using microelectronic tools for the integration on top of a CMOS wafer,” Adv. Opt. Technol. 2008, 412518 (2008).
[CrossRef]

J. M. Fedeli, R. Orobtchouk, C. Seassal, and L. Vivien, “Integration issues of a photonic layer on top of a CMOS circuit,” Proc. SPIE 6125, 61250H, 61250H-15 (2006).
[CrossRef]

R. Orobtchouk, S. Jeannot, B. Han, T. Benyattou, J. M. Fedeli, and P. Mur, “Ultra compact optical link made in amorphous silicon waveguide,” Proc. SPIE 6183, 618304, 618304-10 (2006).
[CrossRef]

Osgood, R. M.

Oxenlowe, L. K.

H. Ji, M. Galili, H. Hu, M. Pu, L. K. Oxenlowe, K. Yvind, J. M. Hvam, and P. Jeppesen, “1.28-Tb/s demultiplexing of an OTDM DPSK data signal using a silicon waveguide,” IEEE Photon. Technol. Lett. 22(23), 1762–1764 (2010).
[CrossRef]

Oxenløwe, L. K.

Panoiu, N. C.

Park, J. S.

S. Zlatanovic, J. S. Park, S. Moro, J. M. Chavez Boggio, I. B. Divliansky, N. Alic, S. Mookherjea, and S. Radic, “Mid-infrared wavelength conversion in silicon waveguides using ultracompact telecom-band-derived pump source,” Nat. Photonics 4(8), 561–564 (2010).
[CrossRef]

Pelusi, M.

Penty, R. V.

H. K. Tsang, R. V. Penty, I. H. White, R. S. Grant, W. Sibbett, J. B. D. Soole, H. P. Leblanc, N. C. Andreadakis, R. Bhat, and M. A. Koza, “Two-photon absorption and self-phase modulation in InGaAsP/InP multi-quantum well waveguides,” J. Appl. Phys. 70(7), 3992–3994 (1991).
[CrossRef]

Preble, S. F.

Pu, M.

B. Kuyken, H. Ji, S. Clemmen, S. K. Selvaraja, H. Hu, M. Pu, M. Galili, P. Jeppesen, G. Morthier, S. Massar, L. K. Oxenløwe, G. Roelkens, and R. Baets, “Nonlinear properties of and nonlinear processing in hydrogenated amorphous silicon waveguides,” Opt. Express 19(26), B146–B153 (2011).
[CrossRef] [PubMed]

H. Ji, M. Galili, H. Hu, M. Pu, L. K. Oxenlowe, K. Yvind, J. M. Hvam, and P. Jeppesen, “1.28-Tb/s demultiplexing of an OTDM DPSK data signal using a silicon waveguide,” IEEE Photon. Technol. Lett. 22(23), 1762–1764 (2010).
[CrossRef]

Radic, S.

S. Zlatanovic, J. S. Park, S. Moro, J. M. Chavez Boggio, I. B. Divliansky, N. Alic, S. Mookherjea, and S. Radic, “Mid-infrared wavelength conversion in silicon waveguides using ultracompact telecom-band-derived pump source,” Nat. Photonics 4(8), 561–564 (2010).
[CrossRef]

Rarity, J. G.

Roelkens, G.

Rojo-Romeo, P.

J. M. Fedeli, L. Di Cioccio, D. Marris-Morini, L. Vivien, R. Orobtchouk, P. Rojo-Romeo, C. Seassal, and F. Mandorlo, “Development of silicon photonics devices using microelectronic tools for the integration on top of a CMOS wafer,” Adv. Opt. Technol. 2008, 412518 (2008).
[CrossRef]

Sakakibara, Y.

Salem, R.

Schmidt, B. S.

M. A. Foster, A. C. Turner, J. E. Sharping, B. S. Schmidt, M. Lipson, and A. L. Gaeta, “Broad-band optical parametric gain on a silicon photonic chip,” Nature 441(7096), 960–963 (2006).
[CrossRef] [PubMed]

Sciancalepore, C.

C. Sciancalepore, B. Bakir, X. Letartre, J. Harduin, N. Olivier, C. Seassal, J. M. Fedeli, and P. Viktorovitch, “CMOS-compatible ultra-compact 1.55-μm emitting VCSELs using double photonic crystal mirrors,” IEEE Photon. Technol. Lett. 24(6), 455–457 (2012).
[CrossRef]

Seassal, C.

C. Sciancalepore, B. Bakir, X. Letartre, J. Harduin, N. Olivier, C. Seassal, J. M. Fedeli, and P. Viktorovitch, “CMOS-compatible ultra-compact 1.55-μm emitting VCSELs using double photonic crystal mirrors,” IEEE Photon. Technol. Lett. 24(6), 455–457 (2012).
[CrossRef]

J. M. Fedeli, L. Di Cioccio, D. Marris-Morini, L. Vivien, R. Orobtchouk, P. Rojo-Romeo, C. Seassal, and F. Mandorlo, “Development of silicon photonics devices using microelectronic tools for the integration on top of a CMOS wafer,” Adv. Opt. Technol. 2008, 412518 (2008).
[CrossRef]

J. M. Fedeli, R. Orobtchouk, C. Seassal, and L. Vivien, “Integration issues of a photonic layer on top of a CMOS circuit,” Proc. SPIE 6125, 61250H, 61250H-15 (2006).
[CrossRef]

Selvaraja, S. K.

Sharping, J. E.

M. A. Foster, A. C. Turner, J. E. Sharping, B. S. Schmidt, M. Lipson, and A. L. Gaeta, “Broad-band optical parametric gain on a silicon photonic chip,” Nature 441(7096), 960–963 (2006).
[CrossRef] [PubMed]

Shen, Y. M.

Shoji, Y.

Sibbett, W.

H. K. Tsang, R. V. Penty, I. H. White, R. S. Grant, W. Sibbett, J. B. D. Soole, H. P. Leblanc, N. C. Andreadakis, R. Bhat, and M. A. Koza, “Two-photon absorption and self-phase modulation in InGaAsP/InP multi-quantum well waveguides,” J. Appl. Phys. 70(7), 3992–3994 (1991).
[CrossRef]

Soole, J. B. D.

H. K. Tsang, R. V. Penty, I. H. White, R. S. Grant, W. Sibbett, J. B. D. Soole, H. P. Leblanc, N. C. Andreadakis, R. Bhat, and M. A. Koza, “Two-photon absorption and self-phase modulation in InGaAsP/InP multi-quantum well waveguides,” J. Appl. Phys. 70(7), 3992–3994 (1991).
[CrossRef]

Soref, R. A.

R. A. Soref, “Mid-infrared photonics in silicon and germanium,” Nat. Photonics 4(8), 495–497 (2010).
[CrossRef]

Steel, M. J.

Suda, S.

Takei, R.

Tanizawa, K.

Tsang, H. K.

H. K. Tsang, R. V. Penty, I. H. White, R. S. Grant, W. Sibbett, J. B. D. Soole, H. P. Leblanc, N. C. Andreadakis, R. Bhat, and M. A. Koza, “Two-photon absorption and self-phase modulation in InGaAsP/InP multi-quantum well waveguides,” J. Appl. Phys. 70(7), 3992–3994 (1991).
[CrossRef]

Turner, A. C.

M. A. Foster, A. C. Turner, J. E. Sharping, B. S. Schmidt, M. Lipson, and A. L. Gaeta, “Broad-band optical parametric gain on a silicon photonic chip,” Nature 441(7096), 960–963 (2006).
[CrossRef] [PubMed]

Turner-Foster, A. C.

Van Thourhout, D.

Viktorovitch, P.

C. Sciancalepore, B. Bakir, X. Letartre, J. Harduin, N. Olivier, C. Seassal, J. M. Fedeli, and P. Viktorovitch, “CMOS-compatible ultra-compact 1.55-μm emitting VCSELs using double photonic crystal mirrors,” IEEE Photon. Technol. Lett. 24(6), 455–457 (2012).
[CrossRef]

Vivien, L.

J. M. Fedeli, L. Di Cioccio, D. Marris-Morini, L. Vivien, R. Orobtchouk, P. Rojo-Romeo, C. Seassal, and F. Mandorlo, “Development of silicon photonics devices using microelectronic tools for the integration on top of a CMOS wafer,” Adv. Opt. Technol. 2008, 412518 (2008).
[CrossRef]

J. M. Fedeli, R. Orobtchouk, C. Seassal, and L. Vivien, “Integration issues of a photonic layer on top of a CMOS circuit,” Proc. SPIE 6125, 61250H, 61250H-15 (2006).
[CrossRef]

Vlasov, Y. A.

Wang, K.-Y.

White, I. H.

H. K. Tsang, R. V. Penty, I. H. White, R. S. Grant, W. Sibbett, J. B. D. Soole, H. P. Leblanc, N. C. Andreadakis, R. Bhat, and M. A. Koza, “Two-photon absorption and self-phase modulation in InGaAsP/InP multi-quantum well waveguides,” J. Appl. Phys. 70(7), 3992–3994 (1991).
[CrossRef]

White, T. P.

B. Corcoran, C. Monat, M. Pelusi, C. Grillet, T. P. White, L. O’Faolain, T. F. Krauss, B. J. Eggleton, and D. J. Moss, “Optical signal processing on a silicon chip at 640Gb/s using slow-light,” Opt. Express 18(8), 7770–7781 (2010).
[CrossRef] [PubMed]

B. Corcoran, C. Monat, C. Grillet, D. J. Moss, B. J. Eggleton, T. P. White, L. O’Faolain, and T. F. Krauss, “Green light emission in silicon through slow-light enhanced third-harmonic generation in photonic crystal waveguides,” Nat. Photonics 3(4), 206–210 (2009).
[CrossRef]

Xiong, C.

Xu, D. X.

Yvind, K.

H. Ji, M. Galili, H. Hu, M. Pu, L. K. Oxenlowe, K. Yvind, J. M. Hvam, and P. Jeppesen, “1.28-Tb/s demultiplexing of an OTDM DPSK data signal using a silicon waveguide,” IEEE Photon. Technol. Lett. 22(23), 1762–1764 (2010).
[CrossRef]

Zlatanovic, S.

S. Zlatanovic, J. S. Park, S. Moro, J. M. Chavez Boggio, I. B. Divliansky, N. Alic, S. Mookherjea, and S. Radic, “Mid-infrared wavelength conversion in silicon waveguides using ultracompact telecom-band-derived pump source,” Nat. Photonics 4(8), 561–564 (2010).
[CrossRef]

Adv. Opt. Technol. (1)

J. M. Fedeli, L. Di Cioccio, D. Marris-Morini, L. Vivien, R. Orobtchouk, P. Rojo-Romeo, C. Seassal, and F. Mandorlo, “Development of silicon photonics devices using microelectronic tools for the integration on top of a CMOS wafer,” Adv. Opt. Technol. 2008, 412518 (2008).
[CrossRef]

IEEE Photon. Technol. Lett. (2)

C. Sciancalepore, B. Bakir, X. Letartre, J. Harduin, N. Olivier, C. Seassal, J. M. Fedeli, and P. Viktorovitch, “CMOS-compatible ultra-compact 1.55-μm emitting VCSELs using double photonic crystal mirrors,” IEEE Photon. Technol. Lett. 24(6), 455–457 (2012).
[CrossRef]

H. Ji, M. Galili, H. Hu, M. Pu, L. K. Oxenlowe, K. Yvind, J. M. Hvam, and P. Jeppesen, “1.28-Tb/s demultiplexing of an OTDM DPSK data signal using a silicon waveguide,” IEEE Photon. Technol. Lett. 22(23), 1762–1764 (2010).
[CrossRef]

J. Appl. Phys. (2)

S. K. O’Leary, S. R. Johnson, and P. K. Lim, “The relationship between the distribution of electronic states and the optical absorption spectrum of an amorphous semiconductor: an empirical analysis,” J. Appl. Phys. 82(7), 3334–3340 (1997).
[CrossRef]

H. K. Tsang, R. V. Penty, I. H. White, R. S. Grant, W. Sibbett, J. B. D. Soole, H. P. Leblanc, N. C. Andreadakis, R. Bhat, and M. A. Koza, “Two-photon absorption and self-phase modulation in InGaAsP/InP multi-quantum well waveguides,” J. Appl. Phys. 70(7), 3992–3994 (1991).
[CrossRef]

Nat. Photonics (6)

R. A. Soref, “Mid-infrared photonics in silicon and germanium,” Nat. Photonics 4(8), 495–497 (2010).
[CrossRef]

B. Jalali, “Silicon photonics: nonlinear optics in the mid-infrared,” Nat. Photonics 4(8), 506–508 (2010).
[CrossRef]

B. Corcoran, C. Monat, C. Grillet, D. J. Moss, B. J. Eggleton, T. P. White, L. O’Faolain, and T. F. Krauss, “Green light emission in silicon through slow-light enhanced third-harmonic generation in photonic crystal waveguides,” Nat. Photonics 3(4), 206–210 (2009).
[CrossRef]

J. Leuthold, C. Koos, and W. Freude, “Nonlinear silicon photonics,” Nat. Photonics 4(8), 535–544 (2010).
[CrossRef]

S. Zlatanovic, J. S. Park, S. Moro, J. M. Chavez Boggio, I. B. Divliansky, N. Alic, S. Mookherjea, and S. Radic, “Mid-infrared wavelength conversion in silicon waveguides using ultracompact telecom-band-derived pump source,” Nat. Photonics 4(8), 561–564 (2010).
[CrossRef]

X. Liu, R. M. Osgood, Y. A. Vlasov, and W. J. Green, “Mid-infrared optical parametric amplifier using Si nanophotonic waveguides,” Nat. Photonics 4(8), 557–560 (2010).
[CrossRef]

Nature (1)

M. A. Foster, A. C. Turner, J. E. Sharping, B. S. Schmidt, M. Lipson, and A. L. Gaeta, “Broad-band optical parametric gain on a silicon photonic chip,” Nature 441(7096), 960–963 (2006).
[CrossRef] [PubMed]

Opt. Express (11)

F. Li, M. Pelusi, D. X. Xu, A. Densmore, R. Ma, S. Janz, and D. J. Moss, “Error-free all-optical demultiplexing at 160Gb/s via FWM in a silicon nanowire,” Opt. Express 18(4), 3905–3910 (2010).
[CrossRef] [PubMed]

B. Corcoran, C. Monat, M. Pelusi, C. Grillet, T. P. White, L. O’Faolain, T. F. Krauss, B. J. Eggleton, and D. J. Moss, “Optical signal processing on a silicon chip at 640Gb/s using slow-light,” Opt. Express 18(8), 7770–7781 (2010).
[CrossRef] [PubMed]

K. Ikeda, Y. M. Shen, and Y. Fainman, “Enhanced optical nonlinearity in amorphous silicon and its application to waveguide devices,” Opt. Express 15(26), 17761–17771 (2007).
[CrossRef] [PubMed]

B. Kuyken, X. Liu, R. M. Osgood, R. Baets, G. Roelkens, and W. M. Green, “Mid-infrared to telecom-band supercontinuum generation in highly nonlinear silicon-on-insulator wire waveguides,” Opt. Express 19(21), 20172–20181 (2011).
[CrossRef] [PubMed]

Y. Shoji, T. Ogasawara, T. Kamei, Y. Sakakibara, S. Suda, K. Kintaka, H. Kawashima, M. Okano, T. Hasama, H. Ishikawa, and M. Mori, “Ultrafast nonlinear effects in hydrogenated amorphous silicon wire waveguide,” Opt. Express 18(6), 5668–5673 (2010).
[CrossRef] [PubMed]

K. Narayanan and S. F. Preble, “Optical nonlinearities in hydrogenated-amorphous silicon waveguides,” Opt. Express 18(9), 8998–9005 (2010).
[CrossRef] [PubMed]

O. Boyraz, T. Indukuri, and B. Jalali, “Self-phase-modulation induced spectral broadening in silicon waveguides,” Opt. Express 12(5), 829–834 (2004).
[CrossRef] [PubMed]

E. Dulkeith, Y. A. Vlasov, X. Chen, N. C. Panoiu, and R. M. Osgood., “Self-phase-modulation in submicron silicon-on-insulator photonic wires,” Opt. Express 14(12), 5524–5534 (2006).
[CrossRef] [PubMed]

X. Liu, J. B. Driscoll, J. I. Dadap, R. M. Osgood, S. Assefa, Y. A. Vlasov, and W. M. J. Green, “Self-phase modulation and nonlinear loss in silicon nanophotonic wires near the mid-infrared two-photon absorption edge,” Opt. Express 19(8), 7778–7789 (2011).
[CrossRef] [PubMed]

K. Narayanan, A. W. Elshaari, and S. F. Preble, “Broadband all-optical modulation in hydrogenated-amorphous silicon waveguides,” Opt. Express 18(10), 9809–9814 (2010).
[CrossRef] [PubMed]

B. Kuyken, H. Ji, S. Clemmen, S. K. Selvaraja, H. Hu, M. Pu, M. Galili, P. Jeppesen, G. Morthier, S. Massar, L. K. Oxenløwe, G. Roelkens, and R. Baets, “Nonlinear properties of and nonlinear processing in hydrogenated amorphous silicon waveguides,” Opt. Express 19(26), B146–B153 (2011).
[CrossRef] [PubMed]

Opt. Lett. (6)

S. Suda, K. Tanizawa, Y. Sakakibara, T. Kamei, K. Nakanishi, E. Itoga, T. Ogasawara, R. Takei, H. Kawashima, S. Namiki, M. Mori, T. Hasama, and H. Ishikawa, “Pattern-effect-free all-optical wavelength conversion using a hydrogenated amorphous silicon waveguide with ultra-fast carrier decay,” Opt. Lett. 37(8), 1382–1384 (2012).
[CrossRef] [PubMed]

K.-Y. Wang and A. C. Foster, “Ultralow power continuous-wave frequency conversion in hydrogenated amorphous silicon waveguides,” Opt. Lett. 37(8), 1331–1333 (2012).
[CrossRef] [PubMed]

B. Kuyken, S. Clemmen, S. K. Selvaraja, W. Bogaerts, D. Van Thourhout, P. Emplit, S. Massar, G. Roelkens, and R. Baets, “On-chip parametric amplification with 26.5 dB gain at telecommunication wavelengths using CMOS-compatible hydrogenated amorphous silicon waveguides,” Opt. Lett. 36(4), 552–554 (2011).
[CrossRef] [PubMed]

R. K. W. Lau, M. Ménard, Y. Okawachi, M. A. Foster, A. C. Turner-Foster, R. Salem, M. Lipson, and A. L. Gaeta, “Continuous-wave mid-infrared frequency conversion in silicon nanowaveguides,” Opt. Lett. 36(7), 1263–1265 (2011).
[CrossRef] [PubMed]

C. Xiong, C. Monat, A. S. Clark, C. Grillet, G. D. Marshall, M. J. Steel, J. Li, L. O’Faolain, T. F. Krauss, J. G. Rarity, and B. J. Eggleton, “Slow-light enhanced correlated photon pair generation in a silicon photonic crystal waveguide,” Opt. Lett. 36(17), 3413–3415 (2011).
[CrossRef] [PubMed]

B. Kuyken, X. Liu, G. Roelkens, R. Baets, R. M. Osgood, and W. M. Green, “50 dB parametric on-chip gain in silicon photonic wires,” Opt. Lett. 36(22), 4401–4403 (2011).
[CrossRef] [PubMed]

Proc. SPIE (2)

J. M. Fedeli, R. Orobtchouk, C. Seassal, and L. Vivien, “Integration issues of a photonic layer on top of a CMOS circuit,” Proc. SPIE 6125, 61250H, 61250H-15 (2006).
[CrossRef]

R. Orobtchouk, S. Jeannot, B. Han, T. Benyattou, J. M. Fedeli, and P. Mur, “Ultra compact optical link made in amorphous silicon waveguide,” Proc. SPIE 6183, 618304, 618304-10 (2006).
[CrossRef]

Other (2)

K.-Y. Wang, K. G. Petrillo, M. A. Foster, and A. C. Foster, “Ultralow-power 160-Gb/s all-optical demultiplexing in hydrogenated amorphous silicon waveguides,” in Integrated Photonics Research, Silicon and Nanophotonics, OSA Technical Digest (online), paper IW4C.3 (2012).

J. M. Fedeli, M. Migette, L. Di Cioccio, L. El Melhaoui, R. Orobtchouk, C. Seassal, P. Rojo-Romeo, F. Mandorlo, D. Marris-Morini, and L. Vivien, “Incorporation of a photonic layer at the metallization levels of a CMOS circuit,” in Proceedings of 3rd IEEE International Conf. on Group IV Photonics (2006), pp. 200–202.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

(a) Experimental setup for observing SPM in a-Si:H waveguide. (b) SEM cross-section of the a-Si:H nanophotonic wire embedded in silica.

Fig. 2
Fig. 2

Output spectra for 0.03W, 1.21W and 3.03W coupled peak power - (a): Experiment, (b): Simulation. The curves are normalized and shifted upwards with increasing powers for clarity.

Fig. 3
Fig. 3

(a) Experimental and (b) theory 2D plots showing the spectral broadening of the output pulse spectra vs coupled peak power. Note the linear intensity scale at the right is relative.

Fig. 4
Fig. 4

Inverse of the measured waveguide transmission versus coupled peak power (circles) along with a linear fit at low power.

Fig. 5
Fig. 5

Nonlinear phase shift versus coupled peak power extracted from experiment (stars) and simulations (red line).

Fig. 6
Fig. 6

Output spectra as a function time for a coupled peak power of 1.5W. The spectra are recorded every 2min over 1 hour.

Fig. 7
Fig. 7

(a) Normalized power and (b) RMS spectral broadening of the output pulse measured under 2.25W coupled peak power launched over one hour duration.

Tables (1)

Tables Icon

Table 1 Summary of the nonlinear characteristics reported for a-Si waveguides fabricated by various groups

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

1 T = P(0) P(L) =2Im(γ) L eff e αL P(0)+ e αL

Metrics