Abstract

We experimentally confirm that diamond surface cooling can significantly enhance the output performance of a sub-nanosecond diode-end-pumped passively Q-switched Yb:YAG laser. It is found that the pulse energy obtained with diamond cooling is approximately 1.5 times greater than that obtained without diamond cooling, where a Cr4+:YAG absorber with the initial transmission of 84% is employed. Furthermore, the standard deviation of the pulse amplitude peak-to-peak fluctuation is found to be approximately 3 times lower than that measured without diamond cooling. Under a pump power of 3.9 W, the passively Q-switched Yb:YAG laser can generate a pulse train of 3.3 kHz repetition rate with a pulse energy of 287 μJ and with a pulse width of 650 ps.

© 2012 OSA

PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. Bhandari and T. Taira, “> 6 MW peak power at 532 nm from passively Q-switched Nd:YAG/Cr4+:YAG microchip laser,” Opt. Express 19(20), 19135–19141 (2011).
    [CrossRef] [PubMed]
  2. Z. Zhuo, S. G. Li, T. Li, C. X. Shan, J. M. Jiang, B. Zhao, J. Li, and J. Z. Chen, “Diode-end-pumped passively Q-switched Nd:Y0.8Lu0.2VO4 laser with Cr4+:YAG crystal,” Opt. Commun. 283(9), 1886–1888 (2010).
    [CrossRef]
  3. B. Y. Zhang, J. L. Xu, G. J. Wang, J. L. He, W. J. Wang, Q. L. Zhang, D. L. Sun, J. Q. Luo, and S. T. Yin, “Continuous-wave and passively Q-switched laser performance of a disordered Nd:GYSGG crystal,” Opt. Commun. 284(24), 5734–5737 (2011).
    [CrossRef]
  4. W. Z. Zhuang, W. C. Huang, Y. P. Huang, K. W. Su, and Y. F. Chen, “Passively Q-switched photonic crystal fiber laser and intracavity optical parametric oscillator,” Opt. Express 18(9), 8969–8975 (2010).
    [CrossRef] [PubMed]
  5. J. Liu, U. Griebner, V. Petrov, H. Zhang, J. Zhang, and J. Wang, “Efficient continuous-wave and Q-switched operation of a diode-pumped Yb:KLu(WO4)2 laser with self-Raman conversion,” Opt. Lett. 30(18), 2427–2429 (2005).
    [CrossRef] [PubMed]
  6. J. Dong, K. Ueda, and A. A. Kaminskii, “Efficient passively Q-switched Yb:LuAG microchip laser,” Opt. Lett. 32(22), 3266–3268 (2007).
    [CrossRef] [PubMed]
  7. D. S. Sumida and T. Y. Fan, “Effect of radiation trapping on fluorescence lifetime and emission cross section measurements in solid-state laser media,” Opt. Lett. 19(17), 1343–1345 (1994).
    [CrossRef] [PubMed]
  8. H. W. Bruesselbach, D. S. Sumida, R. A. Reeder, and R. W. Byren, “Low-heat high-power scaling using InGaAs-diode-pumped Yb:YAG lasers,” IEEE J. Sel. Top. Quantum Electron. 3(1), 105–116 (1997).
    [CrossRef]
  9. J. Dong, K. Ueda, A. Shirakawa, H. Yagi, T. Yanagitani, and A. A. Kaminskii, “Composite Yb:YAG/Cr4+:YAG ceramics picosecond microchip lasers,” Opt. Express 15(22), 14516–14523 (2007).
    [CrossRef] [PubMed]
  10. J. Dong, A. Shirakawa, K. Ueda, H. Yagi, T. Yanagitani, and A. A. Kaminskii, “Near-diffraction-limited passively Q-switched Yb:Y3Al5O12 ceramic lasers with peak power >150kW,” Appl. Phys. Lett. 90(13), 131105 (2007).
    [CrossRef]
  11. J. Dong, A. Shirakawa, and K. Ueda, “Sub-nanosecond passively Q-switched Yb:YAG/Cr4+:YAG sandwiched microchip laser,” Appl. Phys. B 85(4), 513–518 (2006).
    [CrossRef]
  12. J. M. Hopkins, S. A. Smith, C. W. Jeon, H. D. Sun, D. Burns, S. Calvez, M. D. Dawson, T. Jouhti, and M. Pessa, “0.6 W CW GaInNAs vertical external-cavity surface emitting laser operating at 1.32 μm,” Electron. Lett. 40(1), 30–31 (2004).
    [CrossRef]
  13. Y. Tzuk, A. Tal, S. Goldring, Y. Glick, E. Lebiush, G. Kaufman, and R. Lavi, “Diamond cooling of high-power diode-pumped solid-state lasers,” IEEE J. Quantum Electron. 40(3), 262–269 (2004).
    [CrossRef]
  14. P. Millar, A. J. Kemp, and D. Burns, “Power scaling of Nd:YVO4 and Nd:GdVO4 disk lasers using synthetic diamond as a heat spreader,” Opt. Lett. 34(6), 782–784 (2009).
    [CrossRef] [PubMed]
  15. P. Millar, R. B. Birch, A. J. Kemp, and D. Burns, “Synthetic diamond for intracavity thermal management in compact solid-state lasers,” IEEE J. Quantum Electron. 44(8), 709–717 (2008).
    [CrossRef]
  16. W. Koechner, Solid State Laser Engineering (Springer, 2006).
  17. Y. Kalisky, C. Labbe, K. Waichman, L. Kravchik, U. Rachum, P. Deng, J. Xu, J. Dong, and W. Chen, “Passively Q-switched diode-pumped Yb:YAG laser using Cr4+–doped garnets,” Opt. Mater. 19(4), 403–413 (2002).
    [CrossRef]
  18. Q. Hao, W. Li, H. Pan, X. Zhang, B. Jiang, Y. Pan, and H. Zeng, “Laser-diode pumped 40-W Yb:YAG ceramic laser,” Opt. Express 17(20), 17734–17738 (2009).
    [CrossRef] [PubMed]
  19. J. Dong, J. Ma, Y. Cheng, Y. Y. Ren, K. Ueda, and A. A. Kaminskii, “Comparative study on enhancement of self-Q-switched Cr,Yb:YAG lasers by bonding Yb:YAG ceramic and crystal,” Laser Phys. Lett. 8(12), 845–852 (2011).
    [CrossRef]
  20. J. Dong, J. Li, S. Huang, A. Shirakawa, and K. Ueda, “Multi-longitudinal-mode oscillation of self-Q-switched Cr,Yb:YAG laser with a plano-concave resonator,” Opt. Commun. 256(1-3), 158–165 (2005).
    [CrossRef]
  21. J. Dong, A. Shirakawa, K. I. Ueda, and A. A. Kaminskii, “Effect of ytterbium concentration on cw Yb:YAG microchip laser performance at ambient temperature - Part I: Experiments,” Appl. Phys. B 89(2-3), 359–365 (2007).
    [CrossRef]
  22. J. Dong, A. Shirakawa, K. I. Ueda, and A. A. Kaminskii, “Effect of ytterbium concentration on cw Yb:YAG microchip laser performance at ambient temperature - Part II: Theoretical modeling,” Appl. Phys. B 89(2-3), 367–376 (2007).
    [CrossRef]
  23. D. C. Brown, “Ultrahigh-average-power diode-pumped Nd:YAG and Yb:YAG lasers,” IEEE J. Quantum Electron. 33(5), 861–873 (1997).
    [CrossRef]
  24. Q. Liu, X. Fu, M. Gong, and L. Huang, “Effects of the temperature dependence of the absorption coefficients in edge-pumped Yb:YAG slab lasers,” J. Opt. Soc. Am. B 24(9), 2081–2089 (2007).
    [CrossRef]
  25. J. Dong, M. Bass, Y. Mao, P. Deng, and F. Gan, “Dependence of the Yb3+ emission cross section and lifetime on temperature and concentration in yttrium aluminum garnet,” J. Opt. Soc. Am. B 20(9), 1975–1979 (2003).
    [CrossRef]
  26. T. Kasamatsu, H. Sekita, and Y. Kuwano, “Temperature dependence and optimization of 970-nm diode-pumped Yb:YAG and Yb:LuAG lasers,” Appl. Opt. 38(24), 5149–5153 (1999).
    [CrossRef] [PubMed]
  27. J. Dong and K. Ueda, “Temperature-tuning Yb:YAG microchip lasers,” Laser Phys. Lett. 2(9), 429–436 (2005).
    [CrossRef]
  28. M. Ostermeyer and A. Straesser, “Theoretical investigation of feasibility of Yb:YAG as laser material for nanosecond pulse emission with large energies in the Joule range,” Opt. Commun. 274(2), 422–428 (2007).
    [CrossRef]
  29. C. Li, Q. Liu, M. Gong, G. Chen, and P. Yan, “Q-switched operation of end-pumped Yb:YAG lasers with non-uniform temperature distribution,” Opt. Commun. 231(1-6), 331–341 (2004).
    [CrossRef]
  30. Y. F. Chen, K. W. Su, W. L. Chen, K. F. Huang, and Y. F. Chen, “High-peak-power optically pumped AlGaInAs eye-safe laser at 500-kHz repetition rate with an intracavity diamond heat spreader,” Appl. Phys. B ((to be published), doi:.
    [CrossRef] [PubMed]
  31. Y. F. Chen, “High-power diode-pumped Q-switched intracavity frequency-doubled Nd:YVO4 laser with a sandwich-type resonator,” Opt. Lett. 24(15), 1032–1034 (1999).
    [CrossRef] [PubMed]
  32. W. A. Clarkson and D. C. Hanna, “Efficient Nd:YAG laser end pumped by a 20-W diode-laser bar,” Opt. Lett. 21(12), 869–871 (1996).
    [CrossRef] [PubMed]
  33. J. J. Zayhowski, C. Dill III, C. Cook, and J. L. Daneu, “Mid-and high-power passively Q-switched microchip lasers,” in Proceeding of Advanced Solid-State Lasers, M. M. Fejer, H. Injeyan, and U. Keller, eds., Vol. 26 of OSA Trends in Optics and Photonic Series (Optical Society of America, Washington, D. C., 1999), pp. 178–186.
  34. J. J. Zayhowski, “Microchip lasers,” Opt. Mater. 11(2-3), 255–267 (1999).
    [CrossRef]
  35. J. J. Zayhowski, “Passively Q-switched Nd:YAG microchip lasers and applications,” J. Alloy. Comp. 303–304, 393–400 (2000).
    [CrossRef]

2011 (3)

B. Y. Zhang, J. L. Xu, G. J. Wang, J. L. He, W. J. Wang, Q. L. Zhang, D. L. Sun, J. Q. Luo, and S. T. Yin, “Continuous-wave and passively Q-switched laser performance of a disordered Nd:GYSGG crystal,” Opt. Commun. 284(24), 5734–5737 (2011).
[CrossRef]

J. Dong, J. Ma, Y. Cheng, Y. Y. Ren, K. Ueda, and A. A. Kaminskii, “Comparative study on enhancement of self-Q-switched Cr,Yb:YAG lasers by bonding Yb:YAG ceramic and crystal,” Laser Phys. Lett. 8(12), 845–852 (2011).
[CrossRef]

R. Bhandari and T. Taira, “> 6 MW peak power at 532 nm from passively Q-switched Nd:YAG/Cr4+:YAG microchip laser,” Opt. Express 19(20), 19135–19141 (2011).
[CrossRef] [PubMed]

2010 (2)

W. Z. Zhuang, W. C. Huang, Y. P. Huang, K. W. Su, and Y. F. Chen, “Passively Q-switched photonic crystal fiber laser and intracavity optical parametric oscillator,” Opt. Express 18(9), 8969–8975 (2010).
[CrossRef] [PubMed]

Z. Zhuo, S. G. Li, T. Li, C. X. Shan, J. M. Jiang, B. Zhao, J. Li, and J. Z. Chen, “Diode-end-pumped passively Q-switched Nd:Y0.8Lu0.2VO4 laser with Cr4+:YAG crystal,” Opt. Commun. 283(9), 1886–1888 (2010).
[CrossRef]

2009 (2)

2008 (1)

P. Millar, R. B. Birch, A. J. Kemp, and D. Burns, “Synthetic diamond for intracavity thermal management in compact solid-state lasers,” IEEE J. Quantum Electron. 44(8), 709–717 (2008).
[CrossRef]

2007 (7)

J. Dong, A. Shirakawa, K. I. Ueda, and A. A. Kaminskii, “Effect of ytterbium concentration on cw Yb:YAG microchip laser performance at ambient temperature - Part I: Experiments,” Appl. Phys. B 89(2-3), 359–365 (2007).
[CrossRef]

J. Dong, A. Shirakawa, K. I. Ueda, and A. A. Kaminskii, “Effect of ytterbium concentration on cw Yb:YAG microchip laser performance at ambient temperature - Part II: Theoretical modeling,” Appl. Phys. B 89(2-3), 367–376 (2007).
[CrossRef]

M. Ostermeyer and A. Straesser, “Theoretical investigation of feasibility of Yb:YAG as laser material for nanosecond pulse emission with large energies in the Joule range,” Opt. Commun. 274(2), 422–428 (2007).
[CrossRef]

J. Dong, A. Shirakawa, K. Ueda, H. Yagi, T. Yanagitani, and A. A. Kaminskii, “Near-diffraction-limited passively Q-switched Yb:Y3Al5O12 ceramic lasers with peak power >150kW,” Appl. Phys. Lett. 90(13), 131105 (2007).
[CrossRef]

Q. Liu, X. Fu, M. Gong, and L. Huang, “Effects of the temperature dependence of the absorption coefficients in edge-pumped Yb:YAG slab lasers,” J. Opt. Soc. Am. B 24(9), 2081–2089 (2007).
[CrossRef]

J. Dong, K. Ueda, A. Shirakawa, H. Yagi, T. Yanagitani, and A. A. Kaminskii, “Composite Yb:YAG/Cr4+:YAG ceramics picosecond microchip lasers,” Opt. Express 15(22), 14516–14523 (2007).
[CrossRef] [PubMed]

J. Dong, K. Ueda, and A. A. Kaminskii, “Efficient passively Q-switched Yb:LuAG microchip laser,” Opt. Lett. 32(22), 3266–3268 (2007).
[CrossRef] [PubMed]

2006 (1)

J. Dong, A. Shirakawa, and K. Ueda, “Sub-nanosecond passively Q-switched Yb:YAG/Cr4+:YAG sandwiched microchip laser,” Appl. Phys. B 85(4), 513–518 (2006).
[CrossRef]

2005 (3)

J. Dong, J. Li, S. Huang, A. Shirakawa, and K. Ueda, “Multi-longitudinal-mode oscillation of self-Q-switched Cr,Yb:YAG laser with a plano-concave resonator,” Opt. Commun. 256(1-3), 158–165 (2005).
[CrossRef]

J. Dong and K. Ueda, “Temperature-tuning Yb:YAG microchip lasers,” Laser Phys. Lett. 2(9), 429–436 (2005).
[CrossRef]

J. Liu, U. Griebner, V. Petrov, H. Zhang, J. Zhang, and J. Wang, “Efficient continuous-wave and Q-switched operation of a diode-pumped Yb:KLu(WO4)2 laser with self-Raman conversion,” Opt. Lett. 30(18), 2427–2429 (2005).
[CrossRef] [PubMed]

2004 (3)

C. Li, Q. Liu, M. Gong, G. Chen, and P. Yan, “Q-switched operation of end-pumped Yb:YAG lasers with non-uniform temperature distribution,” Opt. Commun. 231(1-6), 331–341 (2004).
[CrossRef]

J. M. Hopkins, S. A. Smith, C. W. Jeon, H. D. Sun, D. Burns, S. Calvez, M. D. Dawson, T. Jouhti, and M. Pessa, “0.6 W CW GaInNAs vertical external-cavity surface emitting laser operating at 1.32 μm,” Electron. Lett. 40(1), 30–31 (2004).
[CrossRef]

Y. Tzuk, A. Tal, S. Goldring, Y. Glick, E. Lebiush, G. Kaufman, and R. Lavi, “Diamond cooling of high-power diode-pumped solid-state lasers,” IEEE J. Quantum Electron. 40(3), 262–269 (2004).
[CrossRef]

2003 (1)

2002 (1)

Y. Kalisky, C. Labbe, K. Waichman, L. Kravchik, U. Rachum, P. Deng, J. Xu, J. Dong, and W. Chen, “Passively Q-switched diode-pumped Yb:YAG laser using Cr4+–doped garnets,” Opt. Mater. 19(4), 403–413 (2002).
[CrossRef]

2000 (1)

J. J. Zayhowski, “Passively Q-switched Nd:YAG microchip lasers and applications,” J. Alloy. Comp. 303–304, 393–400 (2000).
[CrossRef]

1999 (3)

1997 (2)

D. C. Brown, “Ultrahigh-average-power diode-pumped Nd:YAG and Yb:YAG lasers,” IEEE J. Quantum Electron. 33(5), 861–873 (1997).
[CrossRef]

H. W. Bruesselbach, D. S. Sumida, R. A. Reeder, and R. W. Byren, “Low-heat high-power scaling using InGaAs-diode-pumped Yb:YAG lasers,” IEEE J. Sel. Top. Quantum Electron. 3(1), 105–116 (1997).
[CrossRef]

1996 (1)

1994 (1)

Bass, M.

Bhandari, R.

Birch, R. B.

P. Millar, R. B. Birch, A. J. Kemp, and D. Burns, “Synthetic diamond for intracavity thermal management in compact solid-state lasers,” IEEE J. Quantum Electron. 44(8), 709–717 (2008).
[CrossRef]

Brown, D. C.

D. C. Brown, “Ultrahigh-average-power diode-pumped Nd:YAG and Yb:YAG lasers,” IEEE J. Quantum Electron. 33(5), 861–873 (1997).
[CrossRef]

Bruesselbach, H. W.

H. W. Bruesselbach, D. S. Sumida, R. A. Reeder, and R. W. Byren, “Low-heat high-power scaling using InGaAs-diode-pumped Yb:YAG lasers,” IEEE J. Sel. Top. Quantum Electron. 3(1), 105–116 (1997).
[CrossRef]

Burns, D.

P. Millar, A. J. Kemp, and D. Burns, “Power scaling of Nd:YVO4 and Nd:GdVO4 disk lasers using synthetic diamond as a heat spreader,” Opt. Lett. 34(6), 782–784 (2009).
[CrossRef] [PubMed]

P. Millar, R. B. Birch, A. J. Kemp, and D. Burns, “Synthetic diamond for intracavity thermal management in compact solid-state lasers,” IEEE J. Quantum Electron. 44(8), 709–717 (2008).
[CrossRef]

J. M. Hopkins, S. A. Smith, C. W. Jeon, H. D. Sun, D. Burns, S. Calvez, M. D. Dawson, T. Jouhti, and M. Pessa, “0.6 W CW GaInNAs vertical external-cavity surface emitting laser operating at 1.32 μm,” Electron. Lett. 40(1), 30–31 (2004).
[CrossRef]

Byren, R. W.

H. W. Bruesselbach, D. S. Sumida, R. A. Reeder, and R. W. Byren, “Low-heat high-power scaling using InGaAs-diode-pumped Yb:YAG lasers,” IEEE J. Sel. Top. Quantum Electron. 3(1), 105–116 (1997).
[CrossRef]

Calvez, S.

J. M. Hopkins, S. A. Smith, C. W. Jeon, H. D. Sun, D. Burns, S. Calvez, M. D. Dawson, T. Jouhti, and M. Pessa, “0.6 W CW GaInNAs vertical external-cavity surface emitting laser operating at 1.32 μm,” Electron. Lett. 40(1), 30–31 (2004).
[CrossRef]

Chen, G.

C. Li, Q. Liu, M. Gong, G. Chen, and P. Yan, “Q-switched operation of end-pumped Yb:YAG lasers with non-uniform temperature distribution,” Opt. Commun. 231(1-6), 331–341 (2004).
[CrossRef]

Chen, J. Z.

Z. Zhuo, S. G. Li, T. Li, C. X. Shan, J. M. Jiang, B. Zhao, J. Li, and J. Z. Chen, “Diode-end-pumped passively Q-switched Nd:Y0.8Lu0.2VO4 laser with Cr4+:YAG crystal,” Opt. Commun. 283(9), 1886–1888 (2010).
[CrossRef]

Chen, W.

Y. Kalisky, C. Labbe, K. Waichman, L. Kravchik, U. Rachum, P. Deng, J. Xu, J. Dong, and W. Chen, “Passively Q-switched diode-pumped Yb:YAG laser using Cr4+–doped garnets,” Opt. Mater. 19(4), 403–413 (2002).
[CrossRef]

Chen, W. L.

Y. F. Chen, K. W. Su, W. L. Chen, K. F. Huang, and Y. F. Chen, “High-peak-power optically pumped AlGaInAs eye-safe laser at 500-kHz repetition rate with an intracavity diamond heat spreader,” Appl. Phys. B ((to be published), doi:.
[CrossRef] [PubMed]

Chen, Y. F.

W. Z. Zhuang, W. C. Huang, Y. P. Huang, K. W. Su, and Y. F. Chen, “Passively Q-switched photonic crystal fiber laser and intracavity optical parametric oscillator,” Opt. Express 18(9), 8969–8975 (2010).
[CrossRef] [PubMed]

Y. F. Chen, “High-power diode-pumped Q-switched intracavity frequency-doubled Nd:YVO4 laser with a sandwich-type resonator,” Opt. Lett. 24(15), 1032–1034 (1999).
[CrossRef] [PubMed]

Y. F. Chen, K. W. Su, W. L. Chen, K. F. Huang, and Y. F. Chen, “High-peak-power optically pumped AlGaInAs eye-safe laser at 500-kHz repetition rate with an intracavity diamond heat spreader,” Appl. Phys. B ((to be published), doi:.
[CrossRef] [PubMed]

Y. F. Chen, K. W. Su, W. L. Chen, K. F. Huang, and Y. F. Chen, “High-peak-power optically pumped AlGaInAs eye-safe laser at 500-kHz repetition rate with an intracavity diamond heat spreader,” Appl. Phys. B ((to be published), doi:.
[CrossRef] [PubMed]

Cheng, Y.

J. Dong, J. Ma, Y. Cheng, Y. Y. Ren, K. Ueda, and A. A. Kaminskii, “Comparative study on enhancement of self-Q-switched Cr,Yb:YAG lasers by bonding Yb:YAG ceramic and crystal,” Laser Phys. Lett. 8(12), 845–852 (2011).
[CrossRef]

Clarkson, W. A.

Dawson, M. D.

J. M. Hopkins, S. A. Smith, C. W. Jeon, H. D. Sun, D. Burns, S. Calvez, M. D. Dawson, T. Jouhti, and M. Pessa, “0.6 W CW GaInNAs vertical external-cavity surface emitting laser operating at 1.32 μm,” Electron. Lett. 40(1), 30–31 (2004).
[CrossRef]

Deng, P.

J. Dong, M. Bass, Y. Mao, P. Deng, and F. Gan, “Dependence of the Yb3+ emission cross section and lifetime on temperature and concentration in yttrium aluminum garnet,” J. Opt. Soc. Am. B 20(9), 1975–1979 (2003).
[CrossRef]

Y. Kalisky, C. Labbe, K. Waichman, L. Kravchik, U. Rachum, P. Deng, J. Xu, J. Dong, and W. Chen, “Passively Q-switched diode-pumped Yb:YAG laser using Cr4+–doped garnets,” Opt. Mater. 19(4), 403–413 (2002).
[CrossRef]

Dong, J.

J. Dong, J. Ma, Y. Cheng, Y. Y. Ren, K. Ueda, and A. A. Kaminskii, “Comparative study on enhancement of self-Q-switched Cr,Yb:YAG lasers by bonding Yb:YAG ceramic and crystal,” Laser Phys. Lett. 8(12), 845–852 (2011).
[CrossRef]

J. Dong, A. Shirakawa, K. I. Ueda, and A. A. Kaminskii, “Effect of ytterbium concentration on cw Yb:YAG microchip laser performance at ambient temperature - Part I: Experiments,” Appl. Phys. B 89(2-3), 359–365 (2007).
[CrossRef]

J. Dong, A. Shirakawa, K. I. Ueda, and A. A. Kaminskii, “Effect of ytterbium concentration on cw Yb:YAG microchip laser performance at ambient temperature - Part II: Theoretical modeling,” Appl. Phys. B 89(2-3), 367–376 (2007).
[CrossRef]

J. Dong, K. Ueda, A. Shirakawa, H. Yagi, T. Yanagitani, and A. A. Kaminskii, “Composite Yb:YAG/Cr4+:YAG ceramics picosecond microchip lasers,” Opt. Express 15(22), 14516–14523 (2007).
[CrossRef] [PubMed]

J. Dong, A. Shirakawa, K. Ueda, H. Yagi, T. Yanagitani, and A. A. Kaminskii, “Near-diffraction-limited passively Q-switched Yb:Y3Al5O12 ceramic lasers with peak power >150kW,” Appl. Phys. Lett. 90(13), 131105 (2007).
[CrossRef]

J. Dong, K. Ueda, and A. A. Kaminskii, “Efficient passively Q-switched Yb:LuAG microchip laser,” Opt. Lett. 32(22), 3266–3268 (2007).
[CrossRef] [PubMed]

J. Dong, A. Shirakawa, and K. Ueda, “Sub-nanosecond passively Q-switched Yb:YAG/Cr4+:YAG sandwiched microchip laser,” Appl. Phys. B 85(4), 513–518 (2006).
[CrossRef]

J. Dong, J. Li, S. Huang, A. Shirakawa, and K. Ueda, “Multi-longitudinal-mode oscillation of self-Q-switched Cr,Yb:YAG laser with a plano-concave resonator,” Opt. Commun. 256(1-3), 158–165 (2005).
[CrossRef]

J. Dong and K. Ueda, “Temperature-tuning Yb:YAG microchip lasers,” Laser Phys. Lett. 2(9), 429–436 (2005).
[CrossRef]

J. Dong, M. Bass, Y. Mao, P. Deng, and F. Gan, “Dependence of the Yb3+ emission cross section and lifetime on temperature and concentration in yttrium aluminum garnet,” J. Opt. Soc. Am. B 20(9), 1975–1979 (2003).
[CrossRef]

Y. Kalisky, C. Labbe, K. Waichman, L. Kravchik, U. Rachum, P. Deng, J. Xu, J. Dong, and W. Chen, “Passively Q-switched diode-pumped Yb:YAG laser using Cr4+–doped garnets,” Opt. Mater. 19(4), 403–413 (2002).
[CrossRef]

Fan, T. Y.

Fu, X.

Gan, F.

Glick, Y.

Y. Tzuk, A. Tal, S. Goldring, Y. Glick, E. Lebiush, G. Kaufman, and R. Lavi, “Diamond cooling of high-power diode-pumped solid-state lasers,” IEEE J. Quantum Electron. 40(3), 262–269 (2004).
[CrossRef]

Goldring, S.

Y. Tzuk, A. Tal, S. Goldring, Y. Glick, E. Lebiush, G. Kaufman, and R. Lavi, “Diamond cooling of high-power diode-pumped solid-state lasers,” IEEE J. Quantum Electron. 40(3), 262–269 (2004).
[CrossRef]

Gong, M.

Q. Liu, X. Fu, M. Gong, and L. Huang, “Effects of the temperature dependence of the absorption coefficients in edge-pumped Yb:YAG slab lasers,” J. Opt. Soc. Am. B 24(9), 2081–2089 (2007).
[CrossRef]

C. Li, Q. Liu, M. Gong, G. Chen, and P. Yan, “Q-switched operation of end-pumped Yb:YAG lasers with non-uniform temperature distribution,” Opt. Commun. 231(1-6), 331–341 (2004).
[CrossRef]

Griebner, U.

Hanna, D. C.

Hao, Q.

He, J. L.

B. Y. Zhang, J. L. Xu, G. J. Wang, J. L. He, W. J. Wang, Q. L. Zhang, D. L. Sun, J. Q. Luo, and S. T. Yin, “Continuous-wave and passively Q-switched laser performance of a disordered Nd:GYSGG crystal,” Opt. Commun. 284(24), 5734–5737 (2011).
[CrossRef]

Hopkins, J. M.

J. M. Hopkins, S. A. Smith, C. W. Jeon, H. D. Sun, D. Burns, S. Calvez, M. D. Dawson, T. Jouhti, and M. Pessa, “0.6 W CW GaInNAs vertical external-cavity surface emitting laser operating at 1.32 μm,” Electron. Lett. 40(1), 30–31 (2004).
[CrossRef]

Huang, K. F.

Y. F. Chen, K. W. Su, W. L. Chen, K. F. Huang, and Y. F. Chen, “High-peak-power optically pumped AlGaInAs eye-safe laser at 500-kHz repetition rate with an intracavity diamond heat spreader,” Appl. Phys. B ((to be published), doi:.
[CrossRef] [PubMed]

Huang, L.

Huang, S.

J. Dong, J. Li, S. Huang, A. Shirakawa, and K. Ueda, “Multi-longitudinal-mode oscillation of self-Q-switched Cr,Yb:YAG laser with a plano-concave resonator,” Opt. Commun. 256(1-3), 158–165 (2005).
[CrossRef]

Huang, W. C.

Huang, Y. P.

Jeon, C. W.

J. M. Hopkins, S. A. Smith, C. W. Jeon, H. D. Sun, D. Burns, S. Calvez, M. D. Dawson, T. Jouhti, and M. Pessa, “0.6 W CW GaInNAs vertical external-cavity surface emitting laser operating at 1.32 μm,” Electron. Lett. 40(1), 30–31 (2004).
[CrossRef]

Jiang, B.

Jiang, J. M.

Z. Zhuo, S. G. Li, T. Li, C. X. Shan, J. M. Jiang, B. Zhao, J. Li, and J. Z. Chen, “Diode-end-pumped passively Q-switched Nd:Y0.8Lu0.2VO4 laser with Cr4+:YAG crystal,” Opt. Commun. 283(9), 1886–1888 (2010).
[CrossRef]

Jouhti, T.

J. M. Hopkins, S. A. Smith, C. W. Jeon, H. D. Sun, D. Burns, S. Calvez, M. D. Dawson, T. Jouhti, and M. Pessa, “0.6 W CW GaInNAs vertical external-cavity surface emitting laser operating at 1.32 μm,” Electron. Lett. 40(1), 30–31 (2004).
[CrossRef]

Kalisky, Y.

Y. Kalisky, C. Labbe, K. Waichman, L. Kravchik, U. Rachum, P. Deng, J. Xu, J. Dong, and W. Chen, “Passively Q-switched diode-pumped Yb:YAG laser using Cr4+–doped garnets,” Opt. Mater. 19(4), 403–413 (2002).
[CrossRef]

Kaminskii, A. A.

J. Dong, J. Ma, Y. Cheng, Y. Y. Ren, K. Ueda, and A. A. Kaminskii, “Comparative study on enhancement of self-Q-switched Cr,Yb:YAG lasers by bonding Yb:YAG ceramic and crystal,” Laser Phys. Lett. 8(12), 845–852 (2011).
[CrossRef]

J. Dong, A. Shirakawa, K. I. Ueda, and A. A. Kaminskii, “Effect of ytterbium concentration on cw Yb:YAG microchip laser performance at ambient temperature - Part I: Experiments,” Appl. Phys. B 89(2-3), 359–365 (2007).
[CrossRef]

J. Dong, A. Shirakawa, K. I. Ueda, and A. A. Kaminskii, “Effect of ytterbium concentration on cw Yb:YAG microchip laser performance at ambient temperature - Part II: Theoretical modeling,” Appl. Phys. B 89(2-3), 367–376 (2007).
[CrossRef]

J. Dong, A. Shirakawa, K. Ueda, H. Yagi, T. Yanagitani, and A. A. Kaminskii, “Near-diffraction-limited passively Q-switched Yb:Y3Al5O12 ceramic lasers with peak power >150kW,” Appl. Phys. Lett. 90(13), 131105 (2007).
[CrossRef]

J. Dong, K. Ueda, A. Shirakawa, H. Yagi, T. Yanagitani, and A. A. Kaminskii, “Composite Yb:YAG/Cr4+:YAG ceramics picosecond microchip lasers,” Opt. Express 15(22), 14516–14523 (2007).
[CrossRef] [PubMed]

J. Dong, K. Ueda, and A. A. Kaminskii, “Efficient passively Q-switched Yb:LuAG microchip laser,” Opt. Lett. 32(22), 3266–3268 (2007).
[CrossRef] [PubMed]

Kasamatsu, T.

Kaufman, G.

Y. Tzuk, A. Tal, S. Goldring, Y. Glick, E. Lebiush, G. Kaufman, and R. Lavi, “Diamond cooling of high-power diode-pumped solid-state lasers,” IEEE J. Quantum Electron. 40(3), 262–269 (2004).
[CrossRef]

Kemp, A. J.

P. Millar, A. J. Kemp, and D. Burns, “Power scaling of Nd:YVO4 and Nd:GdVO4 disk lasers using synthetic diamond as a heat spreader,” Opt. Lett. 34(6), 782–784 (2009).
[CrossRef] [PubMed]

P. Millar, R. B. Birch, A. J. Kemp, and D. Burns, “Synthetic diamond for intracavity thermal management in compact solid-state lasers,” IEEE J. Quantum Electron. 44(8), 709–717 (2008).
[CrossRef]

Kravchik, L.

Y. Kalisky, C. Labbe, K. Waichman, L. Kravchik, U. Rachum, P. Deng, J. Xu, J. Dong, and W. Chen, “Passively Q-switched diode-pumped Yb:YAG laser using Cr4+–doped garnets,” Opt. Mater. 19(4), 403–413 (2002).
[CrossRef]

Kuwano, Y.

Labbe, C.

Y. Kalisky, C. Labbe, K. Waichman, L. Kravchik, U. Rachum, P. Deng, J. Xu, J. Dong, and W. Chen, “Passively Q-switched diode-pumped Yb:YAG laser using Cr4+–doped garnets,” Opt. Mater. 19(4), 403–413 (2002).
[CrossRef]

Lavi, R.

Y. Tzuk, A. Tal, S. Goldring, Y. Glick, E. Lebiush, G. Kaufman, and R. Lavi, “Diamond cooling of high-power diode-pumped solid-state lasers,” IEEE J. Quantum Electron. 40(3), 262–269 (2004).
[CrossRef]

Lebiush, E.

Y. Tzuk, A. Tal, S. Goldring, Y. Glick, E. Lebiush, G. Kaufman, and R. Lavi, “Diamond cooling of high-power diode-pumped solid-state lasers,” IEEE J. Quantum Electron. 40(3), 262–269 (2004).
[CrossRef]

Li, C.

C. Li, Q. Liu, M. Gong, G. Chen, and P. Yan, “Q-switched operation of end-pumped Yb:YAG lasers with non-uniform temperature distribution,” Opt. Commun. 231(1-6), 331–341 (2004).
[CrossRef]

Li, J.

Z. Zhuo, S. G. Li, T. Li, C. X. Shan, J. M. Jiang, B. Zhao, J. Li, and J. Z. Chen, “Diode-end-pumped passively Q-switched Nd:Y0.8Lu0.2VO4 laser with Cr4+:YAG crystal,” Opt. Commun. 283(9), 1886–1888 (2010).
[CrossRef]

J. Dong, J. Li, S. Huang, A. Shirakawa, and K. Ueda, “Multi-longitudinal-mode oscillation of self-Q-switched Cr,Yb:YAG laser with a plano-concave resonator,” Opt. Commun. 256(1-3), 158–165 (2005).
[CrossRef]

Li, S. G.

Z. Zhuo, S. G. Li, T. Li, C. X. Shan, J. M. Jiang, B. Zhao, J. Li, and J. Z. Chen, “Diode-end-pumped passively Q-switched Nd:Y0.8Lu0.2VO4 laser with Cr4+:YAG crystal,” Opt. Commun. 283(9), 1886–1888 (2010).
[CrossRef]

Li, T.

Z. Zhuo, S. G. Li, T. Li, C. X. Shan, J. M. Jiang, B. Zhao, J. Li, and J. Z. Chen, “Diode-end-pumped passively Q-switched Nd:Y0.8Lu0.2VO4 laser with Cr4+:YAG crystal,” Opt. Commun. 283(9), 1886–1888 (2010).
[CrossRef]

Li, W.

Liu, J.

Liu, Q.

Q. Liu, X. Fu, M. Gong, and L. Huang, “Effects of the temperature dependence of the absorption coefficients in edge-pumped Yb:YAG slab lasers,” J. Opt. Soc. Am. B 24(9), 2081–2089 (2007).
[CrossRef]

C. Li, Q. Liu, M. Gong, G. Chen, and P. Yan, “Q-switched operation of end-pumped Yb:YAG lasers with non-uniform temperature distribution,” Opt. Commun. 231(1-6), 331–341 (2004).
[CrossRef]

Luo, J. Q.

B. Y. Zhang, J. L. Xu, G. J. Wang, J. L. He, W. J. Wang, Q. L. Zhang, D. L. Sun, J. Q. Luo, and S. T. Yin, “Continuous-wave and passively Q-switched laser performance of a disordered Nd:GYSGG crystal,” Opt. Commun. 284(24), 5734–5737 (2011).
[CrossRef]

Ma, J.

J. Dong, J. Ma, Y. Cheng, Y. Y. Ren, K. Ueda, and A. A. Kaminskii, “Comparative study on enhancement of self-Q-switched Cr,Yb:YAG lasers by bonding Yb:YAG ceramic and crystal,” Laser Phys. Lett. 8(12), 845–852 (2011).
[CrossRef]

Mao, Y.

Millar, P.

P. Millar, A. J. Kemp, and D. Burns, “Power scaling of Nd:YVO4 and Nd:GdVO4 disk lasers using synthetic diamond as a heat spreader,” Opt. Lett. 34(6), 782–784 (2009).
[CrossRef] [PubMed]

P. Millar, R. B. Birch, A. J. Kemp, and D. Burns, “Synthetic diamond for intracavity thermal management in compact solid-state lasers,” IEEE J. Quantum Electron. 44(8), 709–717 (2008).
[CrossRef]

Ostermeyer, M.

M. Ostermeyer and A. Straesser, “Theoretical investigation of feasibility of Yb:YAG as laser material for nanosecond pulse emission with large energies in the Joule range,” Opt. Commun. 274(2), 422–428 (2007).
[CrossRef]

Pan, H.

Pan, Y.

Pessa, M.

J. M. Hopkins, S. A. Smith, C. W. Jeon, H. D. Sun, D. Burns, S. Calvez, M. D. Dawson, T. Jouhti, and M. Pessa, “0.6 W CW GaInNAs vertical external-cavity surface emitting laser operating at 1.32 μm,” Electron. Lett. 40(1), 30–31 (2004).
[CrossRef]

Petrov, V.

Rachum, U.

Y. Kalisky, C. Labbe, K. Waichman, L. Kravchik, U. Rachum, P. Deng, J. Xu, J. Dong, and W. Chen, “Passively Q-switched diode-pumped Yb:YAG laser using Cr4+–doped garnets,” Opt. Mater. 19(4), 403–413 (2002).
[CrossRef]

Reeder, R. A.

H. W. Bruesselbach, D. S. Sumida, R. A. Reeder, and R. W. Byren, “Low-heat high-power scaling using InGaAs-diode-pumped Yb:YAG lasers,” IEEE J. Sel. Top. Quantum Electron. 3(1), 105–116 (1997).
[CrossRef]

Ren, Y. Y.

J. Dong, J. Ma, Y. Cheng, Y. Y. Ren, K. Ueda, and A. A. Kaminskii, “Comparative study on enhancement of self-Q-switched Cr,Yb:YAG lasers by bonding Yb:YAG ceramic and crystal,” Laser Phys. Lett. 8(12), 845–852 (2011).
[CrossRef]

Sekita, H.

Shan, C. X.

Z. Zhuo, S. G. Li, T. Li, C. X. Shan, J. M. Jiang, B. Zhao, J. Li, and J. Z. Chen, “Diode-end-pumped passively Q-switched Nd:Y0.8Lu0.2VO4 laser with Cr4+:YAG crystal,” Opt. Commun. 283(9), 1886–1888 (2010).
[CrossRef]

Shirakawa, A.

J. Dong, A. Shirakawa, K. Ueda, H. Yagi, T. Yanagitani, and A. A. Kaminskii, “Near-diffraction-limited passively Q-switched Yb:Y3Al5O12 ceramic lasers with peak power >150kW,” Appl. Phys. Lett. 90(13), 131105 (2007).
[CrossRef]

J. Dong, K. Ueda, A. Shirakawa, H. Yagi, T. Yanagitani, and A. A. Kaminskii, “Composite Yb:YAG/Cr4+:YAG ceramics picosecond microchip lasers,” Opt. Express 15(22), 14516–14523 (2007).
[CrossRef] [PubMed]

J. Dong, A. Shirakawa, K. I. Ueda, and A. A. Kaminskii, “Effect of ytterbium concentration on cw Yb:YAG microchip laser performance at ambient temperature - Part II: Theoretical modeling,” Appl. Phys. B 89(2-3), 367–376 (2007).
[CrossRef]

J. Dong, A. Shirakawa, K. I. Ueda, and A. A. Kaminskii, “Effect of ytterbium concentration on cw Yb:YAG microchip laser performance at ambient temperature - Part I: Experiments,” Appl. Phys. B 89(2-3), 359–365 (2007).
[CrossRef]

J. Dong, A. Shirakawa, and K. Ueda, “Sub-nanosecond passively Q-switched Yb:YAG/Cr4+:YAG sandwiched microchip laser,” Appl. Phys. B 85(4), 513–518 (2006).
[CrossRef]

J. Dong, J. Li, S. Huang, A. Shirakawa, and K. Ueda, “Multi-longitudinal-mode oscillation of self-Q-switched Cr,Yb:YAG laser with a plano-concave resonator,” Opt. Commun. 256(1-3), 158–165 (2005).
[CrossRef]

Smith, S. A.

J. M. Hopkins, S. A. Smith, C. W. Jeon, H. D. Sun, D. Burns, S. Calvez, M. D. Dawson, T. Jouhti, and M. Pessa, “0.6 W CW GaInNAs vertical external-cavity surface emitting laser operating at 1.32 μm,” Electron. Lett. 40(1), 30–31 (2004).
[CrossRef]

Straesser, A.

M. Ostermeyer and A. Straesser, “Theoretical investigation of feasibility of Yb:YAG as laser material for nanosecond pulse emission with large energies in the Joule range,” Opt. Commun. 274(2), 422–428 (2007).
[CrossRef]

Su, K. W.

W. Z. Zhuang, W. C. Huang, Y. P. Huang, K. W. Su, and Y. F. Chen, “Passively Q-switched photonic crystal fiber laser and intracavity optical parametric oscillator,” Opt. Express 18(9), 8969–8975 (2010).
[CrossRef] [PubMed]

Y. F. Chen, K. W. Su, W. L. Chen, K. F. Huang, and Y. F. Chen, “High-peak-power optically pumped AlGaInAs eye-safe laser at 500-kHz repetition rate with an intracavity diamond heat spreader,” Appl. Phys. B ((to be published), doi:.
[CrossRef] [PubMed]

Sumida, D. S.

H. W. Bruesselbach, D. S. Sumida, R. A. Reeder, and R. W. Byren, “Low-heat high-power scaling using InGaAs-diode-pumped Yb:YAG lasers,” IEEE J. Sel. Top. Quantum Electron. 3(1), 105–116 (1997).
[CrossRef]

D. S. Sumida and T. Y. Fan, “Effect of radiation trapping on fluorescence lifetime and emission cross section measurements in solid-state laser media,” Opt. Lett. 19(17), 1343–1345 (1994).
[CrossRef] [PubMed]

Sun, D. L.

B. Y. Zhang, J. L. Xu, G. J. Wang, J. L. He, W. J. Wang, Q. L. Zhang, D. L. Sun, J. Q. Luo, and S. T. Yin, “Continuous-wave and passively Q-switched laser performance of a disordered Nd:GYSGG crystal,” Opt. Commun. 284(24), 5734–5737 (2011).
[CrossRef]

Sun, H. D.

J. M. Hopkins, S. A. Smith, C. W. Jeon, H. D. Sun, D. Burns, S. Calvez, M. D. Dawson, T. Jouhti, and M. Pessa, “0.6 W CW GaInNAs vertical external-cavity surface emitting laser operating at 1.32 μm,” Electron. Lett. 40(1), 30–31 (2004).
[CrossRef]

Taira, T.

Tal, A.

Y. Tzuk, A. Tal, S. Goldring, Y. Glick, E. Lebiush, G. Kaufman, and R. Lavi, “Diamond cooling of high-power diode-pumped solid-state lasers,” IEEE J. Quantum Electron. 40(3), 262–269 (2004).
[CrossRef]

Tzuk, Y.

Y. Tzuk, A. Tal, S. Goldring, Y. Glick, E. Lebiush, G. Kaufman, and R. Lavi, “Diamond cooling of high-power diode-pumped solid-state lasers,” IEEE J. Quantum Electron. 40(3), 262–269 (2004).
[CrossRef]

Ueda, K.

J. Dong, J. Ma, Y. Cheng, Y. Y. Ren, K. Ueda, and A. A. Kaminskii, “Comparative study on enhancement of self-Q-switched Cr,Yb:YAG lasers by bonding Yb:YAG ceramic and crystal,” Laser Phys. Lett. 8(12), 845–852 (2011).
[CrossRef]

J. Dong, K. Ueda, A. Shirakawa, H. Yagi, T. Yanagitani, and A. A. Kaminskii, “Composite Yb:YAG/Cr4+:YAG ceramics picosecond microchip lasers,” Opt. Express 15(22), 14516–14523 (2007).
[CrossRef] [PubMed]

J. Dong, A. Shirakawa, K. Ueda, H. Yagi, T. Yanagitani, and A. A. Kaminskii, “Near-diffraction-limited passively Q-switched Yb:Y3Al5O12 ceramic lasers with peak power >150kW,” Appl. Phys. Lett. 90(13), 131105 (2007).
[CrossRef]

J. Dong, K. Ueda, and A. A. Kaminskii, “Efficient passively Q-switched Yb:LuAG microchip laser,” Opt. Lett. 32(22), 3266–3268 (2007).
[CrossRef] [PubMed]

J. Dong, A. Shirakawa, and K. Ueda, “Sub-nanosecond passively Q-switched Yb:YAG/Cr4+:YAG sandwiched microchip laser,” Appl. Phys. B 85(4), 513–518 (2006).
[CrossRef]

J. Dong, J. Li, S. Huang, A. Shirakawa, and K. Ueda, “Multi-longitudinal-mode oscillation of self-Q-switched Cr,Yb:YAG laser with a plano-concave resonator,” Opt. Commun. 256(1-3), 158–165 (2005).
[CrossRef]

J. Dong and K. Ueda, “Temperature-tuning Yb:YAG microchip lasers,” Laser Phys. Lett. 2(9), 429–436 (2005).
[CrossRef]

Ueda, K. I.

J. Dong, A. Shirakawa, K. I. Ueda, and A. A. Kaminskii, “Effect of ytterbium concentration on cw Yb:YAG microchip laser performance at ambient temperature - Part I: Experiments,” Appl. Phys. B 89(2-3), 359–365 (2007).
[CrossRef]

J. Dong, A. Shirakawa, K. I. Ueda, and A. A. Kaminskii, “Effect of ytterbium concentration on cw Yb:YAG microchip laser performance at ambient temperature - Part II: Theoretical modeling,” Appl. Phys. B 89(2-3), 367–376 (2007).
[CrossRef]

Waichman, K.

Y. Kalisky, C. Labbe, K. Waichman, L. Kravchik, U. Rachum, P. Deng, J. Xu, J. Dong, and W. Chen, “Passively Q-switched diode-pumped Yb:YAG laser using Cr4+–doped garnets,” Opt. Mater. 19(4), 403–413 (2002).
[CrossRef]

Wang, G. J.

B. Y. Zhang, J. L. Xu, G. J. Wang, J. L. He, W. J. Wang, Q. L. Zhang, D. L. Sun, J. Q. Luo, and S. T. Yin, “Continuous-wave and passively Q-switched laser performance of a disordered Nd:GYSGG crystal,” Opt. Commun. 284(24), 5734–5737 (2011).
[CrossRef]

Wang, J.

Wang, W. J.

B. Y. Zhang, J. L. Xu, G. J. Wang, J. L. He, W. J. Wang, Q. L. Zhang, D. L. Sun, J. Q. Luo, and S. T. Yin, “Continuous-wave and passively Q-switched laser performance of a disordered Nd:GYSGG crystal,” Opt. Commun. 284(24), 5734–5737 (2011).
[CrossRef]

Xu, J.

Y. Kalisky, C. Labbe, K. Waichman, L. Kravchik, U. Rachum, P. Deng, J. Xu, J. Dong, and W. Chen, “Passively Q-switched diode-pumped Yb:YAG laser using Cr4+–doped garnets,” Opt. Mater. 19(4), 403–413 (2002).
[CrossRef]

Xu, J. L.

B. Y. Zhang, J. L. Xu, G. J. Wang, J. L. He, W. J. Wang, Q. L. Zhang, D. L. Sun, J. Q. Luo, and S. T. Yin, “Continuous-wave and passively Q-switched laser performance of a disordered Nd:GYSGG crystal,” Opt. Commun. 284(24), 5734–5737 (2011).
[CrossRef]

Yagi, H.

J. Dong, A. Shirakawa, K. Ueda, H. Yagi, T. Yanagitani, and A. A. Kaminskii, “Near-diffraction-limited passively Q-switched Yb:Y3Al5O12 ceramic lasers with peak power >150kW,” Appl. Phys. Lett. 90(13), 131105 (2007).
[CrossRef]

J. Dong, K. Ueda, A. Shirakawa, H. Yagi, T. Yanagitani, and A. A. Kaminskii, “Composite Yb:YAG/Cr4+:YAG ceramics picosecond microchip lasers,” Opt. Express 15(22), 14516–14523 (2007).
[CrossRef] [PubMed]

Yan, P.

C. Li, Q. Liu, M. Gong, G. Chen, and P. Yan, “Q-switched operation of end-pumped Yb:YAG lasers with non-uniform temperature distribution,” Opt. Commun. 231(1-6), 331–341 (2004).
[CrossRef]

Yanagitani, T.

J. Dong, K. Ueda, A. Shirakawa, H. Yagi, T. Yanagitani, and A. A. Kaminskii, “Composite Yb:YAG/Cr4+:YAG ceramics picosecond microchip lasers,” Opt. Express 15(22), 14516–14523 (2007).
[CrossRef] [PubMed]

J. Dong, A. Shirakawa, K. Ueda, H. Yagi, T. Yanagitani, and A. A. Kaminskii, “Near-diffraction-limited passively Q-switched Yb:Y3Al5O12 ceramic lasers with peak power >150kW,” Appl. Phys. Lett. 90(13), 131105 (2007).
[CrossRef]

Yin, S. T.

B. Y. Zhang, J. L. Xu, G. J. Wang, J. L. He, W. J. Wang, Q. L. Zhang, D. L. Sun, J. Q. Luo, and S. T. Yin, “Continuous-wave and passively Q-switched laser performance of a disordered Nd:GYSGG crystal,” Opt. Commun. 284(24), 5734–5737 (2011).
[CrossRef]

Zayhowski, J. J.

J. J. Zayhowski, “Passively Q-switched Nd:YAG microchip lasers and applications,” J. Alloy. Comp. 303–304, 393–400 (2000).
[CrossRef]

J. J. Zayhowski, “Microchip lasers,” Opt. Mater. 11(2-3), 255–267 (1999).
[CrossRef]

Zeng, H.

Zhang, B. Y.

B. Y. Zhang, J. L. Xu, G. J. Wang, J. L. He, W. J. Wang, Q. L. Zhang, D. L. Sun, J. Q. Luo, and S. T. Yin, “Continuous-wave and passively Q-switched laser performance of a disordered Nd:GYSGG crystal,” Opt. Commun. 284(24), 5734–5737 (2011).
[CrossRef]

Zhang, H.

Zhang, J.

Zhang, Q. L.

B. Y. Zhang, J. L. Xu, G. J. Wang, J. L. He, W. J. Wang, Q. L. Zhang, D. L. Sun, J. Q. Luo, and S. T. Yin, “Continuous-wave and passively Q-switched laser performance of a disordered Nd:GYSGG crystal,” Opt. Commun. 284(24), 5734–5737 (2011).
[CrossRef]

Zhang, X.

Zhao, B.

Z. Zhuo, S. G. Li, T. Li, C. X. Shan, J. M. Jiang, B. Zhao, J. Li, and J. Z. Chen, “Diode-end-pumped passively Q-switched Nd:Y0.8Lu0.2VO4 laser with Cr4+:YAG crystal,” Opt. Commun. 283(9), 1886–1888 (2010).
[CrossRef]

Zhuang, W. Z.

Zhuo, Z.

Z. Zhuo, S. G. Li, T. Li, C. X. Shan, J. M. Jiang, B. Zhao, J. Li, and J. Z. Chen, “Diode-end-pumped passively Q-switched Nd:Y0.8Lu0.2VO4 laser with Cr4+:YAG crystal,” Opt. Commun. 283(9), 1886–1888 (2010).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. B (4)

J. Dong, A. Shirakawa, and K. Ueda, “Sub-nanosecond passively Q-switched Yb:YAG/Cr4+:YAG sandwiched microchip laser,” Appl. Phys. B 85(4), 513–518 (2006).
[CrossRef]

J. Dong, A. Shirakawa, K. I. Ueda, and A. A. Kaminskii, “Effect of ytterbium concentration on cw Yb:YAG microchip laser performance at ambient temperature - Part I: Experiments,” Appl. Phys. B 89(2-3), 359–365 (2007).
[CrossRef]

J. Dong, A. Shirakawa, K. I. Ueda, and A. A. Kaminskii, “Effect of ytterbium concentration on cw Yb:YAG microchip laser performance at ambient temperature - Part II: Theoretical modeling,” Appl. Phys. B 89(2-3), 367–376 (2007).
[CrossRef]

Y. F. Chen, K. W. Su, W. L. Chen, K. F. Huang, and Y. F. Chen, “High-peak-power optically pumped AlGaInAs eye-safe laser at 500-kHz repetition rate with an intracavity diamond heat spreader,” Appl. Phys. B ((to be published), doi:.
[CrossRef] [PubMed]

Appl. Phys. Lett. (1)

J. Dong, A. Shirakawa, K. Ueda, H. Yagi, T. Yanagitani, and A. A. Kaminskii, “Near-diffraction-limited passively Q-switched Yb:Y3Al5O12 ceramic lasers with peak power >150kW,” Appl. Phys. Lett. 90(13), 131105 (2007).
[CrossRef]

Electron. Lett. (1)

J. M. Hopkins, S. A. Smith, C. W. Jeon, H. D. Sun, D. Burns, S. Calvez, M. D. Dawson, T. Jouhti, and M. Pessa, “0.6 W CW GaInNAs vertical external-cavity surface emitting laser operating at 1.32 μm,” Electron. Lett. 40(1), 30–31 (2004).
[CrossRef]

IEEE J. Quantum Electron. (3)

Y. Tzuk, A. Tal, S. Goldring, Y. Glick, E. Lebiush, G. Kaufman, and R. Lavi, “Diamond cooling of high-power diode-pumped solid-state lasers,” IEEE J. Quantum Electron. 40(3), 262–269 (2004).
[CrossRef]

P. Millar, R. B. Birch, A. J. Kemp, and D. Burns, “Synthetic diamond for intracavity thermal management in compact solid-state lasers,” IEEE J. Quantum Electron. 44(8), 709–717 (2008).
[CrossRef]

D. C. Brown, “Ultrahigh-average-power diode-pumped Nd:YAG and Yb:YAG lasers,” IEEE J. Quantum Electron. 33(5), 861–873 (1997).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

H. W. Bruesselbach, D. S. Sumida, R. A. Reeder, and R. W. Byren, “Low-heat high-power scaling using InGaAs-diode-pumped Yb:YAG lasers,” IEEE J. Sel. Top. Quantum Electron. 3(1), 105–116 (1997).
[CrossRef]

J. Alloy. Comp. (1)

J. J. Zayhowski, “Passively Q-switched Nd:YAG microchip lasers and applications,” J. Alloy. Comp. 303–304, 393–400 (2000).
[CrossRef]

J. Opt. Soc. Am. B (2)

Laser Phys. Lett. (2)

J. Dong and K. Ueda, “Temperature-tuning Yb:YAG microchip lasers,” Laser Phys. Lett. 2(9), 429–436 (2005).
[CrossRef]

J. Dong, J. Ma, Y. Cheng, Y. Y. Ren, K. Ueda, and A. A. Kaminskii, “Comparative study on enhancement of self-Q-switched Cr,Yb:YAG lasers by bonding Yb:YAG ceramic and crystal,” Laser Phys. Lett. 8(12), 845–852 (2011).
[CrossRef]

Opt. Commun. (5)

J. Dong, J. Li, S. Huang, A. Shirakawa, and K. Ueda, “Multi-longitudinal-mode oscillation of self-Q-switched Cr,Yb:YAG laser with a plano-concave resonator,” Opt. Commun. 256(1-3), 158–165 (2005).
[CrossRef]

M. Ostermeyer and A. Straesser, “Theoretical investigation of feasibility of Yb:YAG as laser material for nanosecond pulse emission with large energies in the Joule range,” Opt. Commun. 274(2), 422–428 (2007).
[CrossRef]

C. Li, Q. Liu, M. Gong, G. Chen, and P. Yan, “Q-switched operation of end-pumped Yb:YAG lasers with non-uniform temperature distribution,” Opt. Commun. 231(1-6), 331–341 (2004).
[CrossRef]

Z. Zhuo, S. G. Li, T. Li, C. X. Shan, J. M. Jiang, B. Zhao, J. Li, and J. Z. Chen, “Diode-end-pumped passively Q-switched Nd:Y0.8Lu0.2VO4 laser with Cr4+:YAG crystal,” Opt. Commun. 283(9), 1886–1888 (2010).
[CrossRef]

B. Y. Zhang, J. L. Xu, G. J. Wang, J. L. He, W. J. Wang, Q. L. Zhang, D. L. Sun, J. Q. Luo, and S. T. Yin, “Continuous-wave and passively Q-switched laser performance of a disordered Nd:GYSGG crystal,” Opt. Commun. 284(24), 5734–5737 (2011).
[CrossRef]

Opt. Express (4)

Opt. Lett. (6)

Opt. Mater. (2)

Y. Kalisky, C. Labbe, K. Waichman, L. Kravchik, U. Rachum, P. Deng, J. Xu, J. Dong, and W. Chen, “Passively Q-switched diode-pumped Yb:YAG laser using Cr4+–doped garnets,” Opt. Mater. 19(4), 403–413 (2002).
[CrossRef]

J. J. Zayhowski, “Microchip lasers,” Opt. Mater. 11(2-3), 255–267 (1999).
[CrossRef]

Other (2)

W. Koechner, Solid State Laser Engineering (Springer, 2006).

J. J. Zayhowski, C. Dill III, C. Cook, and J. L. Daneu, “Mid-and high-power passively Q-switched microchip lasers,” in Proceeding of Advanced Solid-State Lasers, M. M. Fejer, H. Injeyan, and U. Keller, eds., Vol. 26 of OSA Trends in Optics and Photonic Series (Optical Society of America, Washington, D. C., 1999), pp. 178–186.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Metrics