Abstract

A diffractive optical element is fabricated with relative ease in a glass containing spherical silver nanoparticles 30 to 40 nm in diameter and embedded in a surface layer of thickness ~10 μm. The nanocomposite was sandwiched between a mesh metallic electrode with a lattice constant 2 μm, facing the nanoparticle containing layer and acting as an anode, and a flat metal electrode as cathode. Applying moderate direct current electric potentials of 0.4 kV and 0.6 kV at an elevated temperature of 200°C for 30 minutes across the nanocomposites led to the formation of a periodic array of embedded structures of metallic nanoparticles. The current-time dynamics of the structuring processes, optical analyses of the structured nanocomposites and diffraction pattern of one such fabricated element are presented.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. U. Kreibig and M. Vollmer, Optical Properties of Metal Clusters (Springer, 1995).
  2. V. M. Shalaev, Optical Properties of Nanostructured Random Media (Springer, 2001).
  3. K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The optical properties of metal nanoparticles: The influence of size, shape, and dielectric environment,” J. Phys. Chem. B 107(3), 668–677 (2003).
    [CrossRef]
  4. R. Jin, Y. Charles Cao, E. Hao, G. S. Métraux, G. C. Schatz, and C. A. Mirkin, “Controlling anisotropic nanoparticle growth through plasmon excitation,” Nature 425(6957), 487–490 (2003).
    [CrossRef] [PubMed]
  5. M. S. Gudiksen, L. J. Lauhon, J. Wang, D. C. Smith, and C. M. Lieber, “Growth of nanowire superlattice structures for nanoscale photonics and electronics,” Nature 415(6872), 617–620 (2002).
    [CrossRef] [PubMed]
  6. P. Chakraborty, “Metal nanoclusters in glasses as nonlinear photonic materials,” J. Mater. Sci. 33(9), 2235–2249 (1998).
    [CrossRef]
  7. F. Gonella and P. Mazzoldi, Handbook of Nanostructured Materials and Nanotechnology, Vol. 4 (Academic Press, 2000), 81 ff.
  8. A. Podlipensky, A. Abdolvand, G. Seifert, and H. Graener, “Femtosecond laser assisted production of dichroitic 3D structures in composite glass containing Ag nanoparticles,” Appl. Phys., A Mater. Sci. Process. 80(8), 1647–1652 (2005).
    [CrossRef]
  9. A. Abdolvand, A. Podlipensky, S. Matthias, F. Syrowatka, U. Gösele, G. Seifert, and H. Graener, “Metallodielectric two-dimensional photonic structures made by electric field microstructuring of nanocomposite glass,” Adv. Mater. (Deerfield Beach Fla.) 17(24), 2983–2987 (2005).
    [CrossRef]
  10. F. Hallermann, C. Rockstuhl, S. Fahr, G. Seifert, S. Wackerow, H. Graener, G. Plessen, and F. Lederer, “On the use of localized plasmon polaritons in solar cells,” Phys. Status Solidi., A Appl. Mater. Sci. 205(12), 2844–2861 (2008).
    [CrossRef]
  11. C. Corbari, M. Beresna, and P. G. Kazansky, “Saturation of absorption in noble metal nanocomposite glass film excited by evanescent light field,” Appl. Phys. Lett. 97(26), 261101 (2010).
    [CrossRef]
  12. A. Stalmashonak, A. Abdolvand, and G. Seifert, “Metal-glass nanocomposites for optical storage of information,” Appl. Phys. Lett. 99(20), 201904 (2011).
    [CrossRef]
  13. A. Podlipensky, A. Abdolvand, G. Seifert, H. Graener, O. Deparis, and P. G. Kazansky, “Dissolution of sliver nanoparticles in glass through an intense dc electric field,” J. Phys. Chem. B 108(46), 17699–17702 (2004).
    [CrossRef]
  14. O. Deparis, P. G. Kazansky, A. Abdolvand, A. Podlipensky, G. Seifert, and H. Graener, “Poling-assisted bleaching of metal-doped nanocomposite glass,” Appl. Phys. Lett. 85(6), 872–874 (2004).
    [CrossRef]
  15. A. Abdolvand, A. Podlipensky, G. Seifert, H. Graener, O. Deparis, and P. G. Kazansky, “Electric field-assisted formation of percolated silver nanolayers inside glass,” Opt. Express 13(4), 1266–1274 (2005).
    [CrossRef] [PubMed]
  16. J. Sancho-Parramon, A. Abdolvand, A. Podlipensky, G. Seifert, H. Graener, and F. Syrowatka, “Modeling of optical properties of silver-doped nanocomposite glasses modified by electric-field-assisted dissolution of nanoparticles,” Appl. Opt. 45(35), 8874–8881 (2006).
    [CrossRef] [PubMed]
  17. Z. Zou, X. Chen, Q. Wang, S. Qu, and X. Wang, “Electric field assisted dissolution of Au rods in gold-doped silica glass,” J. Appl. Phys. 104(11), 1131131–1131134 (2008).
    [CrossRef]
  18. V. Janicki, J. Sancho-Parramon, F. Peiró, and J. Arbiol, “Three-dimensional photonic microstructure produced by electric field assisted dissolution of metal nanoclusters in multilayer stacks,” Appl. Phys. B 98(1), 93–98 (2010).
    [CrossRef]
  19. K.-J. Berg, A. Berger, and H. Hofmeister, “Small silver particle in glass-surface layers produced by sodium-silver ion-exchange-their concentration and size depth profile,” Z. Phys. D 20(1-4), 309–311 (1991).
    [CrossRef]
  20. P. G. Kazansky and P. St. J. Russel, “Thermally poled glass: frozen-in electric field or oriented dipoles?” Opt. Commun. 110(5-6), 611–614 (1994).
    [CrossRef]
  21. M. I. Petrov, A. V. Omelchenko, and A. A. Lipovskii, “Electric field and spatial charge formation in glasses and glassy nanocomposites,” J. Appl. Phys. 109(9), 094108 (2011).
    [CrossRef]

2011 (2)

A. Stalmashonak, A. Abdolvand, and G. Seifert, “Metal-glass nanocomposites for optical storage of information,” Appl. Phys. Lett. 99(20), 201904 (2011).
[CrossRef]

M. I. Petrov, A. V. Omelchenko, and A. A. Lipovskii, “Electric field and spatial charge formation in glasses and glassy nanocomposites,” J. Appl. Phys. 109(9), 094108 (2011).
[CrossRef]

2010 (2)

V. Janicki, J. Sancho-Parramon, F. Peiró, and J. Arbiol, “Three-dimensional photonic microstructure produced by electric field assisted dissolution of metal nanoclusters in multilayer stacks,” Appl. Phys. B 98(1), 93–98 (2010).
[CrossRef]

C. Corbari, M. Beresna, and P. G. Kazansky, “Saturation of absorption in noble metal nanocomposite glass film excited by evanescent light field,” Appl. Phys. Lett. 97(26), 261101 (2010).
[CrossRef]

2008 (2)

F. Hallermann, C. Rockstuhl, S. Fahr, G. Seifert, S. Wackerow, H. Graener, G. Plessen, and F. Lederer, “On the use of localized plasmon polaritons in solar cells,” Phys. Status Solidi., A Appl. Mater. Sci. 205(12), 2844–2861 (2008).
[CrossRef]

Z. Zou, X. Chen, Q. Wang, S. Qu, and X. Wang, “Electric field assisted dissolution of Au rods in gold-doped silica glass,” J. Appl. Phys. 104(11), 1131131–1131134 (2008).
[CrossRef]

2006 (1)

2005 (3)

A. Abdolvand, A. Podlipensky, G. Seifert, H. Graener, O. Deparis, and P. G. Kazansky, “Electric field-assisted formation of percolated silver nanolayers inside glass,” Opt. Express 13(4), 1266–1274 (2005).
[CrossRef] [PubMed]

A. Podlipensky, A. Abdolvand, G. Seifert, and H. Graener, “Femtosecond laser assisted production of dichroitic 3D structures in composite glass containing Ag nanoparticles,” Appl. Phys., A Mater. Sci. Process. 80(8), 1647–1652 (2005).
[CrossRef]

A. Abdolvand, A. Podlipensky, S. Matthias, F. Syrowatka, U. Gösele, G. Seifert, and H. Graener, “Metallodielectric two-dimensional photonic structures made by electric field microstructuring of nanocomposite glass,” Adv. Mater. (Deerfield Beach Fla.) 17(24), 2983–2987 (2005).
[CrossRef]

2004 (2)

A. Podlipensky, A. Abdolvand, G. Seifert, H. Graener, O. Deparis, and P. G. Kazansky, “Dissolution of sliver nanoparticles in glass through an intense dc electric field,” J. Phys. Chem. B 108(46), 17699–17702 (2004).
[CrossRef]

O. Deparis, P. G. Kazansky, A. Abdolvand, A. Podlipensky, G. Seifert, and H. Graener, “Poling-assisted bleaching of metal-doped nanocomposite glass,” Appl. Phys. Lett. 85(6), 872–874 (2004).
[CrossRef]

2003 (2)

K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The optical properties of metal nanoparticles: The influence of size, shape, and dielectric environment,” J. Phys. Chem. B 107(3), 668–677 (2003).
[CrossRef]

R. Jin, Y. Charles Cao, E. Hao, G. S. Métraux, G. C. Schatz, and C. A. Mirkin, “Controlling anisotropic nanoparticle growth through plasmon excitation,” Nature 425(6957), 487–490 (2003).
[CrossRef] [PubMed]

2002 (1)

M. S. Gudiksen, L. J. Lauhon, J. Wang, D. C. Smith, and C. M. Lieber, “Growth of nanowire superlattice structures for nanoscale photonics and electronics,” Nature 415(6872), 617–620 (2002).
[CrossRef] [PubMed]

1998 (1)

P. Chakraborty, “Metal nanoclusters in glasses as nonlinear photonic materials,” J. Mater. Sci. 33(9), 2235–2249 (1998).
[CrossRef]

1994 (1)

P. G. Kazansky and P. St. J. Russel, “Thermally poled glass: frozen-in electric field or oriented dipoles?” Opt. Commun. 110(5-6), 611–614 (1994).
[CrossRef]

1991 (1)

K.-J. Berg, A. Berger, and H. Hofmeister, “Small silver particle in glass-surface layers produced by sodium-silver ion-exchange-their concentration and size depth profile,” Z. Phys. D 20(1-4), 309–311 (1991).
[CrossRef]

Abdolvand, A.

A. Stalmashonak, A. Abdolvand, and G. Seifert, “Metal-glass nanocomposites for optical storage of information,” Appl. Phys. Lett. 99(20), 201904 (2011).
[CrossRef]

J. Sancho-Parramon, A. Abdolvand, A. Podlipensky, G. Seifert, H. Graener, and F. Syrowatka, “Modeling of optical properties of silver-doped nanocomposite glasses modified by electric-field-assisted dissolution of nanoparticles,” Appl. Opt. 45(35), 8874–8881 (2006).
[CrossRef] [PubMed]

A. Abdolvand, A. Podlipensky, G. Seifert, H. Graener, O. Deparis, and P. G. Kazansky, “Electric field-assisted formation of percolated silver nanolayers inside glass,” Opt. Express 13(4), 1266–1274 (2005).
[CrossRef] [PubMed]

A. Podlipensky, A. Abdolvand, G. Seifert, and H. Graener, “Femtosecond laser assisted production of dichroitic 3D structures in composite glass containing Ag nanoparticles,” Appl. Phys., A Mater. Sci. Process. 80(8), 1647–1652 (2005).
[CrossRef]

A. Abdolvand, A. Podlipensky, S. Matthias, F. Syrowatka, U. Gösele, G. Seifert, and H. Graener, “Metallodielectric two-dimensional photonic structures made by electric field microstructuring of nanocomposite glass,” Adv. Mater. (Deerfield Beach Fla.) 17(24), 2983–2987 (2005).
[CrossRef]

A. Podlipensky, A. Abdolvand, G. Seifert, H. Graener, O. Deparis, and P. G. Kazansky, “Dissolution of sliver nanoparticles in glass through an intense dc electric field,” J. Phys. Chem. B 108(46), 17699–17702 (2004).
[CrossRef]

O. Deparis, P. G. Kazansky, A. Abdolvand, A. Podlipensky, G. Seifert, and H. Graener, “Poling-assisted bleaching of metal-doped nanocomposite glass,” Appl. Phys. Lett. 85(6), 872–874 (2004).
[CrossRef]

Arbiol, J.

V. Janicki, J. Sancho-Parramon, F. Peiró, and J. Arbiol, “Three-dimensional photonic microstructure produced by electric field assisted dissolution of metal nanoclusters in multilayer stacks,” Appl. Phys. B 98(1), 93–98 (2010).
[CrossRef]

Beresna, M.

C. Corbari, M. Beresna, and P. G. Kazansky, “Saturation of absorption in noble metal nanocomposite glass film excited by evanescent light field,” Appl. Phys. Lett. 97(26), 261101 (2010).
[CrossRef]

Berg, K.-J.

K.-J. Berg, A. Berger, and H. Hofmeister, “Small silver particle in glass-surface layers produced by sodium-silver ion-exchange-their concentration and size depth profile,” Z. Phys. D 20(1-4), 309–311 (1991).
[CrossRef]

Berger, A.

K.-J. Berg, A. Berger, and H. Hofmeister, “Small silver particle in glass-surface layers produced by sodium-silver ion-exchange-their concentration and size depth profile,” Z. Phys. D 20(1-4), 309–311 (1991).
[CrossRef]

Chakraborty, P.

P. Chakraborty, “Metal nanoclusters in glasses as nonlinear photonic materials,” J. Mater. Sci. 33(9), 2235–2249 (1998).
[CrossRef]

Charles Cao, Y.

R. Jin, Y. Charles Cao, E. Hao, G. S. Métraux, G. C. Schatz, and C. A. Mirkin, “Controlling anisotropic nanoparticle growth through plasmon excitation,” Nature 425(6957), 487–490 (2003).
[CrossRef] [PubMed]

Chen, X.

Z. Zou, X. Chen, Q. Wang, S. Qu, and X. Wang, “Electric field assisted dissolution of Au rods in gold-doped silica glass,” J. Appl. Phys. 104(11), 1131131–1131134 (2008).
[CrossRef]

Corbari, C.

C. Corbari, M. Beresna, and P. G. Kazansky, “Saturation of absorption in noble metal nanocomposite glass film excited by evanescent light field,” Appl. Phys. Lett. 97(26), 261101 (2010).
[CrossRef]

Coronado, E.

K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The optical properties of metal nanoparticles: The influence of size, shape, and dielectric environment,” J. Phys. Chem. B 107(3), 668–677 (2003).
[CrossRef]

Deparis, O.

A. Abdolvand, A. Podlipensky, G. Seifert, H. Graener, O. Deparis, and P. G. Kazansky, “Electric field-assisted formation of percolated silver nanolayers inside glass,” Opt. Express 13(4), 1266–1274 (2005).
[CrossRef] [PubMed]

A. Podlipensky, A. Abdolvand, G. Seifert, H. Graener, O. Deparis, and P. G. Kazansky, “Dissolution of sliver nanoparticles in glass through an intense dc electric field,” J. Phys. Chem. B 108(46), 17699–17702 (2004).
[CrossRef]

O. Deparis, P. G. Kazansky, A. Abdolvand, A. Podlipensky, G. Seifert, and H. Graener, “Poling-assisted bleaching of metal-doped nanocomposite glass,” Appl. Phys. Lett. 85(6), 872–874 (2004).
[CrossRef]

Fahr, S.

F. Hallermann, C. Rockstuhl, S. Fahr, G. Seifert, S. Wackerow, H. Graener, G. Plessen, and F. Lederer, “On the use of localized plasmon polaritons in solar cells,” Phys. Status Solidi., A Appl. Mater. Sci. 205(12), 2844–2861 (2008).
[CrossRef]

Gösele, U.

A. Abdolvand, A. Podlipensky, S. Matthias, F. Syrowatka, U. Gösele, G. Seifert, and H. Graener, “Metallodielectric two-dimensional photonic structures made by electric field microstructuring of nanocomposite glass,” Adv. Mater. (Deerfield Beach Fla.) 17(24), 2983–2987 (2005).
[CrossRef]

Graener, H.

F. Hallermann, C. Rockstuhl, S. Fahr, G. Seifert, S. Wackerow, H. Graener, G. Plessen, and F. Lederer, “On the use of localized plasmon polaritons in solar cells,” Phys. Status Solidi., A Appl. Mater. Sci. 205(12), 2844–2861 (2008).
[CrossRef]

J. Sancho-Parramon, A. Abdolvand, A. Podlipensky, G. Seifert, H. Graener, and F. Syrowatka, “Modeling of optical properties of silver-doped nanocomposite glasses modified by electric-field-assisted dissolution of nanoparticles,” Appl. Opt. 45(35), 8874–8881 (2006).
[CrossRef] [PubMed]

A. Abdolvand, A. Podlipensky, G. Seifert, H. Graener, O. Deparis, and P. G. Kazansky, “Electric field-assisted formation of percolated silver nanolayers inside glass,” Opt. Express 13(4), 1266–1274 (2005).
[CrossRef] [PubMed]

A. Podlipensky, A. Abdolvand, G. Seifert, and H. Graener, “Femtosecond laser assisted production of dichroitic 3D structures in composite glass containing Ag nanoparticles,” Appl. Phys., A Mater. Sci. Process. 80(8), 1647–1652 (2005).
[CrossRef]

A. Abdolvand, A. Podlipensky, S. Matthias, F. Syrowatka, U. Gösele, G. Seifert, and H. Graener, “Metallodielectric two-dimensional photonic structures made by electric field microstructuring of nanocomposite glass,” Adv. Mater. (Deerfield Beach Fla.) 17(24), 2983–2987 (2005).
[CrossRef]

A. Podlipensky, A. Abdolvand, G. Seifert, H. Graener, O. Deparis, and P. G. Kazansky, “Dissolution of sliver nanoparticles in glass through an intense dc electric field,” J. Phys. Chem. B 108(46), 17699–17702 (2004).
[CrossRef]

O. Deparis, P. G. Kazansky, A. Abdolvand, A. Podlipensky, G. Seifert, and H. Graener, “Poling-assisted bleaching of metal-doped nanocomposite glass,” Appl. Phys. Lett. 85(6), 872–874 (2004).
[CrossRef]

Gudiksen, M. S.

M. S. Gudiksen, L. J. Lauhon, J. Wang, D. C. Smith, and C. M. Lieber, “Growth of nanowire superlattice structures for nanoscale photonics and electronics,” Nature 415(6872), 617–620 (2002).
[CrossRef] [PubMed]

Hallermann, F.

F. Hallermann, C. Rockstuhl, S. Fahr, G. Seifert, S. Wackerow, H. Graener, G. Plessen, and F. Lederer, “On the use of localized plasmon polaritons in solar cells,” Phys. Status Solidi., A Appl. Mater. Sci. 205(12), 2844–2861 (2008).
[CrossRef]

Hao, E.

R. Jin, Y. Charles Cao, E. Hao, G. S. Métraux, G. C. Schatz, and C. A. Mirkin, “Controlling anisotropic nanoparticle growth through plasmon excitation,” Nature 425(6957), 487–490 (2003).
[CrossRef] [PubMed]

Hofmeister, H.

K.-J. Berg, A. Berger, and H. Hofmeister, “Small silver particle in glass-surface layers produced by sodium-silver ion-exchange-their concentration and size depth profile,” Z. Phys. D 20(1-4), 309–311 (1991).
[CrossRef]

Janicki, V.

V. Janicki, J. Sancho-Parramon, F. Peiró, and J. Arbiol, “Three-dimensional photonic microstructure produced by electric field assisted dissolution of metal nanoclusters in multilayer stacks,” Appl. Phys. B 98(1), 93–98 (2010).
[CrossRef]

Jin, R.

R. Jin, Y. Charles Cao, E. Hao, G. S. Métraux, G. C. Schatz, and C. A. Mirkin, “Controlling anisotropic nanoparticle growth through plasmon excitation,” Nature 425(6957), 487–490 (2003).
[CrossRef] [PubMed]

Kazansky, P. G.

C. Corbari, M. Beresna, and P. G. Kazansky, “Saturation of absorption in noble metal nanocomposite glass film excited by evanescent light field,” Appl. Phys. Lett. 97(26), 261101 (2010).
[CrossRef]

A. Abdolvand, A. Podlipensky, G. Seifert, H. Graener, O. Deparis, and P. G. Kazansky, “Electric field-assisted formation of percolated silver nanolayers inside glass,” Opt. Express 13(4), 1266–1274 (2005).
[CrossRef] [PubMed]

O. Deparis, P. G. Kazansky, A. Abdolvand, A. Podlipensky, G. Seifert, and H. Graener, “Poling-assisted bleaching of metal-doped nanocomposite glass,” Appl. Phys. Lett. 85(6), 872–874 (2004).
[CrossRef]

A. Podlipensky, A. Abdolvand, G. Seifert, H. Graener, O. Deparis, and P. G. Kazansky, “Dissolution of sliver nanoparticles in glass through an intense dc electric field,” J. Phys. Chem. B 108(46), 17699–17702 (2004).
[CrossRef]

P. G. Kazansky and P. St. J. Russel, “Thermally poled glass: frozen-in electric field or oriented dipoles?” Opt. Commun. 110(5-6), 611–614 (1994).
[CrossRef]

Kelly, K. L.

K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The optical properties of metal nanoparticles: The influence of size, shape, and dielectric environment,” J. Phys. Chem. B 107(3), 668–677 (2003).
[CrossRef]

Lauhon, L. J.

M. S. Gudiksen, L. J. Lauhon, J. Wang, D. C. Smith, and C. M. Lieber, “Growth of nanowire superlattice structures for nanoscale photonics and electronics,” Nature 415(6872), 617–620 (2002).
[CrossRef] [PubMed]

Lederer, F.

F. Hallermann, C. Rockstuhl, S. Fahr, G. Seifert, S. Wackerow, H. Graener, G. Plessen, and F. Lederer, “On the use of localized plasmon polaritons in solar cells,” Phys. Status Solidi., A Appl. Mater. Sci. 205(12), 2844–2861 (2008).
[CrossRef]

Lieber, C. M.

M. S. Gudiksen, L. J. Lauhon, J. Wang, D. C. Smith, and C. M. Lieber, “Growth of nanowire superlattice structures for nanoscale photonics and electronics,” Nature 415(6872), 617–620 (2002).
[CrossRef] [PubMed]

Lipovskii, A. A.

M. I. Petrov, A. V. Omelchenko, and A. A. Lipovskii, “Electric field and spatial charge formation in glasses and glassy nanocomposites,” J. Appl. Phys. 109(9), 094108 (2011).
[CrossRef]

Matthias, S.

A. Abdolvand, A. Podlipensky, S. Matthias, F. Syrowatka, U. Gösele, G. Seifert, and H. Graener, “Metallodielectric two-dimensional photonic structures made by electric field microstructuring of nanocomposite glass,” Adv. Mater. (Deerfield Beach Fla.) 17(24), 2983–2987 (2005).
[CrossRef]

Métraux, G. S.

R. Jin, Y. Charles Cao, E. Hao, G. S. Métraux, G. C. Schatz, and C. A. Mirkin, “Controlling anisotropic nanoparticle growth through plasmon excitation,” Nature 425(6957), 487–490 (2003).
[CrossRef] [PubMed]

Mirkin, C. A.

R. Jin, Y. Charles Cao, E. Hao, G. S. Métraux, G. C. Schatz, and C. A. Mirkin, “Controlling anisotropic nanoparticle growth through plasmon excitation,” Nature 425(6957), 487–490 (2003).
[CrossRef] [PubMed]

Omelchenko, A. V.

M. I. Petrov, A. V. Omelchenko, and A. A. Lipovskii, “Electric field and spatial charge formation in glasses and glassy nanocomposites,” J. Appl. Phys. 109(9), 094108 (2011).
[CrossRef]

Peiró, F.

V. Janicki, J. Sancho-Parramon, F. Peiró, and J. Arbiol, “Three-dimensional photonic microstructure produced by electric field assisted dissolution of metal nanoclusters in multilayer stacks,” Appl. Phys. B 98(1), 93–98 (2010).
[CrossRef]

Petrov, M. I.

M. I. Petrov, A. V. Omelchenko, and A. A. Lipovskii, “Electric field and spatial charge formation in glasses and glassy nanocomposites,” J. Appl. Phys. 109(9), 094108 (2011).
[CrossRef]

Plessen, G.

F. Hallermann, C. Rockstuhl, S. Fahr, G. Seifert, S. Wackerow, H. Graener, G. Plessen, and F. Lederer, “On the use of localized plasmon polaritons in solar cells,” Phys. Status Solidi., A Appl. Mater. Sci. 205(12), 2844–2861 (2008).
[CrossRef]

Podlipensky, A.

J. Sancho-Parramon, A. Abdolvand, A. Podlipensky, G. Seifert, H. Graener, and F. Syrowatka, “Modeling of optical properties of silver-doped nanocomposite glasses modified by electric-field-assisted dissolution of nanoparticles,” Appl. Opt. 45(35), 8874–8881 (2006).
[CrossRef] [PubMed]

A. Abdolvand, A. Podlipensky, G. Seifert, H. Graener, O. Deparis, and P. G. Kazansky, “Electric field-assisted formation of percolated silver nanolayers inside glass,” Opt. Express 13(4), 1266–1274 (2005).
[CrossRef] [PubMed]

A. Abdolvand, A. Podlipensky, S. Matthias, F. Syrowatka, U. Gösele, G. Seifert, and H. Graener, “Metallodielectric two-dimensional photonic structures made by electric field microstructuring of nanocomposite glass,” Adv. Mater. (Deerfield Beach Fla.) 17(24), 2983–2987 (2005).
[CrossRef]

A. Podlipensky, A. Abdolvand, G. Seifert, and H. Graener, “Femtosecond laser assisted production of dichroitic 3D structures in composite glass containing Ag nanoparticles,” Appl. Phys., A Mater. Sci. Process. 80(8), 1647–1652 (2005).
[CrossRef]

O. Deparis, P. G. Kazansky, A. Abdolvand, A. Podlipensky, G. Seifert, and H. Graener, “Poling-assisted bleaching of metal-doped nanocomposite glass,” Appl. Phys. Lett. 85(6), 872–874 (2004).
[CrossRef]

A. Podlipensky, A. Abdolvand, G. Seifert, H. Graener, O. Deparis, and P. G. Kazansky, “Dissolution of sliver nanoparticles in glass through an intense dc electric field,” J. Phys. Chem. B 108(46), 17699–17702 (2004).
[CrossRef]

Qu, S.

Z. Zou, X. Chen, Q. Wang, S. Qu, and X. Wang, “Electric field assisted dissolution of Au rods in gold-doped silica glass,” J. Appl. Phys. 104(11), 1131131–1131134 (2008).
[CrossRef]

Rockstuhl, C.

F. Hallermann, C. Rockstuhl, S. Fahr, G. Seifert, S. Wackerow, H. Graener, G. Plessen, and F. Lederer, “On the use of localized plasmon polaritons in solar cells,” Phys. Status Solidi., A Appl. Mater. Sci. 205(12), 2844–2861 (2008).
[CrossRef]

Russel, P. St. J.

P. G. Kazansky and P. St. J. Russel, “Thermally poled glass: frozen-in electric field or oriented dipoles?” Opt. Commun. 110(5-6), 611–614 (1994).
[CrossRef]

Sancho-Parramon, J.

V. Janicki, J. Sancho-Parramon, F. Peiró, and J. Arbiol, “Three-dimensional photonic microstructure produced by electric field assisted dissolution of metal nanoclusters in multilayer stacks,” Appl. Phys. B 98(1), 93–98 (2010).
[CrossRef]

J. Sancho-Parramon, A. Abdolvand, A. Podlipensky, G. Seifert, H. Graener, and F. Syrowatka, “Modeling of optical properties of silver-doped nanocomposite glasses modified by electric-field-assisted dissolution of nanoparticles,” Appl. Opt. 45(35), 8874–8881 (2006).
[CrossRef] [PubMed]

Schatz, G. C.

R. Jin, Y. Charles Cao, E. Hao, G. S. Métraux, G. C. Schatz, and C. A. Mirkin, “Controlling anisotropic nanoparticle growth through plasmon excitation,” Nature 425(6957), 487–490 (2003).
[CrossRef] [PubMed]

K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The optical properties of metal nanoparticles: The influence of size, shape, and dielectric environment,” J. Phys. Chem. B 107(3), 668–677 (2003).
[CrossRef]

Seifert, G.

A. Stalmashonak, A. Abdolvand, and G. Seifert, “Metal-glass nanocomposites for optical storage of information,” Appl. Phys. Lett. 99(20), 201904 (2011).
[CrossRef]

F. Hallermann, C. Rockstuhl, S. Fahr, G. Seifert, S. Wackerow, H. Graener, G. Plessen, and F. Lederer, “On the use of localized plasmon polaritons in solar cells,” Phys. Status Solidi., A Appl. Mater. Sci. 205(12), 2844–2861 (2008).
[CrossRef]

J. Sancho-Parramon, A. Abdolvand, A. Podlipensky, G. Seifert, H. Graener, and F. Syrowatka, “Modeling of optical properties of silver-doped nanocomposite glasses modified by electric-field-assisted dissolution of nanoparticles,” Appl. Opt. 45(35), 8874–8881 (2006).
[CrossRef] [PubMed]

A. Abdolvand, A. Podlipensky, G. Seifert, H. Graener, O. Deparis, and P. G. Kazansky, “Electric field-assisted formation of percolated silver nanolayers inside glass,” Opt. Express 13(4), 1266–1274 (2005).
[CrossRef] [PubMed]

A. Podlipensky, A. Abdolvand, G. Seifert, and H. Graener, “Femtosecond laser assisted production of dichroitic 3D structures in composite glass containing Ag nanoparticles,” Appl. Phys., A Mater. Sci. Process. 80(8), 1647–1652 (2005).
[CrossRef]

A. Abdolvand, A. Podlipensky, S. Matthias, F. Syrowatka, U. Gösele, G. Seifert, and H. Graener, “Metallodielectric two-dimensional photonic structures made by electric field microstructuring of nanocomposite glass,” Adv. Mater. (Deerfield Beach Fla.) 17(24), 2983–2987 (2005).
[CrossRef]

A. Podlipensky, A. Abdolvand, G. Seifert, H. Graener, O. Deparis, and P. G. Kazansky, “Dissolution of sliver nanoparticles in glass through an intense dc electric field,” J. Phys. Chem. B 108(46), 17699–17702 (2004).
[CrossRef]

O. Deparis, P. G. Kazansky, A. Abdolvand, A. Podlipensky, G. Seifert, and H. Graener, “Poling-assisted bleaching of metal-doped nanocomposite glass,” Appl. Phys. Lett. 85(6), 872–874 (2004).
[CrossRef]

Smith, D. C.

M. S. Gudiksen, L. J. Lauhon, J. Wang, D. C. Smith, and C. M. Lieber, “Growth of nanowire superlattice structures for nanoscale photonics and electronics,” Nature 415(6872), 617–620 (2002).
[CrossRef] [PubMed]

Stalmashonak, A.

A. Stalmashonak, A. Abdolvand, and G. Seifert, “Metal-glass nanocomposites for optical storage of information,” Appl. Phys. Lett. 99(20), 201904 (2011).
[CrossRef]

Syrowatka, F.

J. Sancho-Parramon, A. Abdolvand, A. Podlipensky, G. Seifert, H. Graener, and F. Syrowatka, “Modeling of optical properties of silver-doped nanocomposite glasses modified by electric-field-assisted dissolution of nanoparticles,” Appl. Opt. 45(35), 8874–8881 (2006).
[CrossRef] [PubMed]

A. Abdolvand, A. Podlipensky, S. Matthias, F. Syrowatka, U. Gösele, G. Seifert, and H. Graener, “Metallodielectric two-dimensional photonic structures made by electric field microstructuring of nanocomposite glass,” Adv. Mater. (Deerfield Beach Fla.) 17(24), 2983–2987 (2005).
[CrossRef]

Wackerow, S.

F. Hallermann, C. Rockstuhl, S. Fahr, G. Seifert, S. Wackerow, H. Graener, G. Plessen, and F. Lederer, “On the use of localized plasmon polaritons in solar cells,” Phys. Status Solidi., A Appl. Mater. Sci. 205(12), 2844–2861 (2008).
[CrossRef]

Wang, J.

M. S. Gudiksen, L. J. Lauhon, J. Wang, D. C. Smith, and C. M. Lieber, “Growth of nanowire superlattice structures for nanoscale photonics and electronics,” Nature 415(6872), 617–620 (2002).
[CrossRef] [PubMed]

Wang, Q.

Z. Zou, X. Chen, Q. Wang, S. Qu, and X. Wang, “Electric field assisted dissolution of Au rods in gold-doped silica glass,” J. Appl. Phys. 104(11), 1131131–1131134 (2008).
[CrossRef]

Wang, X.

Z. Zou, X. Chen, Q. Wang, S. Qu, and X. Wang, “Electric field assisted dissolution of Au rods in gold-doped silica glass,” J. Appl. Phys. 104(11), 1131131–1131134 (2008).
[CrossRef]

Zhao, L. L.

K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The optical properties of metal nanoparticles: The influence of size, shape, and dielectric environment,” J. Phys. Chem. B 107(3), 668–677 (2003).
[CrossRef]

Zou, Z.

Z. Zou, X. Chen, Q. Wang, S. Qu, and X. Wang, “Electric field assisted dissolution of Au rods in gold-doped silica glass,” J. Appl. Phys. 104(11), 1131131–1131134 (2008).
[CrossRef]

Adv. Mater. (Deerfield Beach Fla.) (1)

A. Abdolvand, A. Podlipensky, S. Matthias, F. Syrowatka, U. Gösele, G. Seifert, and H. Graener, “Metallodielectric two-dimensional photonic structures made by electric field microstructuring of nanocomposite glass,” Adv. Mater. (Deerfield Beach Fla.) 17(24), 2983–2987 (2005).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. B (1)

V. Janicki, J. Sancho-Parramon, F. Peiró, and J. Arbiol, “Three-dimensional photonic microstructure produced by electric field assisted dissolution of metal nanoclusters in multilayer stacks,” Appl. Phys. B 98(1), 93–98 (2010).
[CrossRef]

Appl. Phys. Lett. (3)

C. Corbari, M. Beresna, and P. G. Kazansky, “Saturation of absorption in noble metal nanocomposite glass film excited by evanescent light field,” Appl. Phys. Lett. 97(26), 261101 (2010).
[CrossRef]

A. Stalmashonak, A. Abdolvand, and G. Seifert, “Metal-glass nanocomposites for optical storage of information,” Appl. Phys. Lett. 99(20), 201904 (2011).
[CrossRef]

O. Deparis, P. G. Kazansky, A. Abdolvand, A. Podlipensky, G. Seifert, and H. Graener, “Poling-assisted bleaching of metal-doped nanocomposite glass,” Appl. Phys. Lett. 85(6), 872–874 (2004).
[CrossRef]

Appl. Phys., A Mater. Sci. Process. (1)

A. Podlipensky, A. Abdolvand, G. Seifert, and H. Graener, “Femtosecond laser assisted production of dichroitic 3D structures in composite glass containing Ag nanoparticles,” Appl. Phys., A Mater. Sci. Process. 80(8), 1647–1652 (2005).
[CrossRef]

J. Appl. Phys. (2)

M. I. Petrov, A. V. Omelchenko, and A. A. Lipovskii, “Electric field and spatial charge formation in glasses and glassy nanocomposites,” J. Appl. Phys. 109(9), 094108 (2011).
[CrossRef]

Z. Zou, X. Chen, Q. Wang, S. Qu, and X. Wang, “Electric field assisted dissolution of Au rods in gold-doped silica glass,” J. Appl. Phys. 104(11), 1131131–1131134 (2008).
[CrossRef]

J. Mater. Sci. (1)

P. Chakraborty, “Metal nanoclusters in glasses as nonlinear photonic materials,” J. Mater. Sci. 33(9), 2235–2249 (1998).
[CrossRef]

J. Phys. Chem. B (2)

K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The optical properties of metal nanoparticles: The influence of size, shape, and dielectric environment,” J. Phys. Chem. B 107(3), 668–677 (2003).
[CrossRef]

A. Podlipensky, A. Abdolvand, G. Seifert, H. Graener, O. Deparis, and P. G. Kazansky, “Dissolution of sliver nanoparticles in glass through an intense dc electric field,” J. Phys. Chem. B 108(46), 17699–17702 (2004).
[CrossRef]

Nature (2)

R. Jin, Y. Charles Cao, E. Hao, G. S. Métraux, G. C. Schatz, and C. A. Mirkin, “Controlling anisotropic nanoparticle growth through plasmon excitation,” Nature 425(6957), 487–490 (2003).
[CrossRef] [PubMed]

M. S. Gudiksen, L. J. Lauhon, J. Wang, D. C. Smith, and C. M. Lieber, “Growth of nanowire superlattice structures for nanoscale photonics and electronics,” Nature 415(6872), 617–620 (2002).
[CrossRef] [PubMed]

Opt. Commun. (1)

P. G. Kazansky and P. St. J. Russel, “Thermally poled glass: frozen-in electric field or oriented dipoles?” Opt. Commun. 110(5-6), 611–614 (1994).
[CrossRef]

Opt. Express (1)

Phys. Status Solidi., A Appl. Mater. Sci. (1)

F. Hallermann, C. Rockstuhl, S. Fahr, G. Seifert, S. Wackerow, H. Graener, G. Plessen, and F. Lederer, “On the use of localized plasmon polaritons in solar cells,” Phys. Status Solidi., A Appl. Mater. Sci. 205(12), 2844–2861 (2008).
[CrossRef]

Z. Phys. D (1)

K.-J. Berg, A. Berger, and H. Hofmeister, “Small silver particle in glass-surface layers produced by sodium-silver ion-exchange-their concentration and size depth profile,” Z. Phys. D 20(1-4), 309–311 (1991).
[CrossRef]

Other (3)

F. Gonella and P. Mazzoldi, Handbook of Nanostructured Materials and Nanotechnology, Vol. 4 (Academic Press, 2000), 81 ff.

U. Kreibig and M. Vollmer, Optical Properties of Metal Clusters (Springer, 1995).

V. M. Shalaev, Optical Properties of Nanostructured Random Media (Springer, 2001).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

(a) SEM image of the glass with embedded spherical silver nanoparticles of 30-40 nm mean diameter. The nanoparticle-containing layer is 20-30 nm beneath the surface of the glass. (b) A thin slice showing the cross-section of the nanoparticle-containing layer. The volume-filling factor of the layer reduces to zero within a few microns and has an exponential profile with the maximum just beneath the surface of the sample. The red arrow indicates the surface.

Fig. 2
Fig. 2

Measured extinction spectra of the original sample (black line), and samples after modification. Each modification was performed for 30 min.

Fig. 3
Fig. 3

(a) Current-time dynamic of the structured sample modified at (0.4 kV, 300°C). (b) SEM image of the cross-section of this sample showing the effect of structuring. Here, the white color is indicative of silver and black represents the dielectric matrix. (c) Current-time dynamics of the structured samples modified at (0.4 kV, 200°C) and (0.6 kV, 200°C). (d) SEM image of the cross-section of the sample modified at (0.6 kV, 200°C). Modification of the sample at (0.4 kV, 200°C) led to the formation of similar structures.

Fig. 4
Fig. 4

Diffraction pattern (in transmission) of the sample structured at (0.6 kV, 200°C, 30 min) upon He-Ne laser illumination. Similar diffraction patterns were observed from the samples structured at (0.4 kV, 200°C) and (0.4 kV, 300°C).

Metrics