Abstract

The in-line holography has obvious advantages especially in wider spatial bandwidth over the off-axis holography. However, a direct current(DC)-noise and an unwanted twin image should be separated or eliminated in the in-line holography for a high quality reconstruction. An approach for suppressing the twin image is proposed by separating the real and twin image regions in the digital holography. Specifically, the initial region of real and twin images is obtained by a blind separation matrix, and the segmentation mask to suppress the twin image is calculated by nonlinear quantization from the segmented image. For the performance evaluation, the proposed method is compared with the existing approaches including the overlapping block variance and manual-based schemes. Experimental results showed that the proposed method has a better performance at the overlapped region of the real and twin images. Additionally, the proposed method causes less loss of real image than the overlapping block variance-based scheme. Therefore, we believe that the proposed scheme can be a useful tool for high quality reconstruction in the in-line holography.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Y. Takaki and M. Yokouchi, “Speckle-free and grayscale hologram reconstruction using time-multiplexing technique,” Opt. Express 19, 7567–7579 (2011).
    [CrossRef] [PubMed]
  2. C. S. Seelamantula, N. Pavillon, C. Depeursinge, and M. Unser, “Exact complex-wave reconstruction in digital holography,” J. Opt. Soc. Am. A 28, 983–992 (2011).
    [CrossRef]
  3. U. Schnars and W.P. Jüptner, “Digital recording and numerical reconstruction of hologram,” Meas. Sci. Technol. 13, 85–101 (2002).
    [CrossRef]
  4. C. P. McElhinney, J. B. McDonald, A. Castro, Y. Frauel, B. Javidi, and T. J. Naughton, “Depth-independent segmentation of macroscopic three-dimensional objects encoded in single perspectives of digital holograms,” Opt. Lett. 32, 1229–1231 (2007).
    [CrossRef] [PubMed]
  5. C. McElhinney, B. M. Hennelly, L. Ahrenberg, and T. J. Naughton, “Removing the twin image in digital holography by segmented filtering of in-focus twin image,” in Optics and Photonics for Information, Proc. SPIE  7072, 707208 (2008).
  6. D. P. Kelly, D. S. Monaghan, N. Pandey, T. Kozacki, A. Michalkiewicz, G. Finke, B. M. Hennelly, and M. Kujawinska, “Digital holographic capture and optoelectronic reconstruction for 3D displays,” Int. J. Digital Multimedia Broadcasting 2010, 1–14 (2010).
    [CrossRef]
  7. G. Koren, F. Polack, and D. Joyeux, “Iterative algorithms for twin-image elimination in in-line holography using finite-support constraints,” J. Opt. Soc. Am. A 10, 423–433 (1993).
    [CrossRef]
  8. L Denis, C Fournier, T Fournel, and C Ducotter, “Numerical suppression of the twin image in in-line holography of a volume of micro-objects,” Meas. Sci. Technol. 19, 1–10 (2008).
    [CrossRef]
  9. B. S. Monaghan, D. P. Kelly, N. Pandey, and B. M. Hennelly, “Twin removal in digital holography using diffuse illumination,” Opt. Lett. 34, 3610–3612 (2009).
    [CrossRef] [PubMed]
  10. D. S. Monaghan, D. P. Kelly, N. Pandey, and B. M. Hennelly, “Twin suppression in digital holography by mean of speckle reduction,” In Proceedings China-Ireland International Conference on Information and Communications Technologies, (Kildare, Ireland, 2009), 237–240.
  11. J. Schwider, “Phase shifting interferometry: reference phase error reduction,” Appl. Opt. 28, 3889–3892 (1989).
    [CrossRef] [PubMed]
  12. J. Hahn, H. Kim, S. Cho, and B. Lee, “Phase-shifting interferometry with genetic algorithm-based twin image noise elimination,” Appl. Opt. 47, 4068–4076 (2008).
    [CrossRef] [PubMed]
  13. T. Kozacki, M. Kujawińska, G. Finke, W. Zaperty, and B. Hennelly, “Holographic capture and display systems in circular configurations,” J. Disp. Technol. 8, 225–232 (2012).
    [CrossRef]
  14. V. L. Tuft, HoloVision 2.2 User’s manual ( http://www2.edge.no/projects/holovision/doc/holovision221manual.pdf , 2001).
    [PubMed]
  15. H. Cho, J.K. Woo, D. Kim, S. Shin, and Y. Yu, “DC suppression in-line digital holographic microscopes on the basis of an intensity-averaging method using variable pixel numbers,” Opt. & Laser Tech. 41, 741–725 (2009).
    [CrossRef] [PubMed]
  16. J. Maycock, B. M. Hennelly, J. B. McDonald, Y. Frauel, A. Castro, B. Javidi, and T. J. Naughton, “Reduction of speckle in digital holography by discrete Fourier filtering,” J. Opt. Soc. Am. A 24, 1617–1622 (2007).
    [CrossRef]
  17. C. Tomasi and R. Manduchi, “Bilateral filtering for gray and color images,” in Proceedings of 6th IEEE International Conference on Computer Vision (IEEE, 1998), 839–846.
  18. J. C. Dainty and W. T. Welford, “Reduction of speckle in image plane hologram reconstruction by moving pupils,” Opt. Commun. 3, 289–294 (1971).
    [CrossRef]
  19. R. C. Gonzalez and R. E. Woods, Digital Image Processing, 3rd ed. (Pearson, 2010).
  20. J. V. Stone, Independent Component Analysis (MIT Press, 2004).
  21. F. Abrard and Y. Deville, “A time-frequency blind signal separation method applicable to underdetermined mixtures of dependent sources,” Signal Processing 85, 1389–1403 (2005).
    [CrossRef]
  22. T. K. Moon, Mathematical Methods and Algorithms for Signal Processing (Prentice hall, 2009).

2012 (1)

T. Kozacki, M. Kujawińska, G. Finke, W. Zaperty, and B. Hennelly, “Holographic capture and display systems in circular configurations,” J. Disp. Technol. 8, 225–232 (2012).
[CrossRef]

2011 (2)

2010 (1)

D. P. Kelly, D. S. Monaghan, N. Pandey, T. Kozacki, A. Michalkiewicz, G. Finke, B. M. Hennelly, and M. Kujawinska, “Digital holographic capture and optoelectronic reconstruction for 3D displays,” Int. J. Digital Multimedia Broadcasting 2010, 1–14 (2010).
[CrossRef]

2009 (2)

B. S. Monaghan, D. P. Kelly, N. Pandey, and B. M. Hennelly, “Twin removal in digital holography using diffuse illumination,” Opt. Lett. 34, 3610–3612 (2009).
[CrossRef] [PubMed]

H. Cho, J.K. Woo, D. Kim, S. Shin, and Y. Yu, “DC suppression in-line digital holographic microscopes on the basis of an intensity-averaging method using variable pixel numbers,” Opt. & Laser Tech. 41, 741–725 (2009).
[CrossRef] [PubMed]

2008 (3)

L Denis, C Fournier, T Fournel, and C Ducotter, “Numerical suppression of the twin image in in-line holography of a volume of micro-objects,” Meas. Sci. Technol. 19, 1–10 (2008).
[CrossRef]

J. Hahn, H. Kim, S. Cho, and B. Lee, “Phase-shifting interferometry with genetic algorithm-based twin image noise elimination,” Appl. Opt. 47, 4068–4076 (2008).
[CrossRef] [PubMed]

C. McElhinney, B. M. Hennelly, L. Ahrenberg, and T. J. Naughton, “Removing the twin image in digital holography by segmented filtering of in-focus twin image,” in Optics and Photonics for Information, Proc. SPIE  7072, 707208 (2008).

2007 (2)

2005 (1)

F. Abrard and Y. Deville, “A time-frequency blind signal separation method applicable to underdetermined mixtures of dependent sources,” Signal Processing 85, 1389–1403 (2005).
[CrossRef]

2002 (1)

U. Schnars and W.P. Jüptner, “Digital recording and numerical reconstruction of hologram,” Meas. Sci. Technol. 13, 85–101 (2002).
[CrossRef]

1993 (1)

1989 (1)

1971 (1)

J. C. Dainty and W. T. Welford, “Reduction of speckle in image plane hologram reconstruction by moving pupils,” Opt. Commun. 3, 289–294 (1971).
[CrossRef]

Abrard, F.

F. Abrard and Y. Deville, “A time-frequency blind signal separation method applicable to underdetermined mixtures of dependent sources,” Signal Processing 85, 1389–1403 (2005).
[CrossRef]

Ahrenberg, L.

C. McElhinney, B. M. Hennelly, L. Ahrenberg, and T. J. Naughton, “Removing the twin image in digital holography by segmented filtering of in-focus twin image,” in Optics and Photonics for Information, Proc. SPIE  7072, 707208 (2008).

Castro, A.

Cho, H.

H. Cho, J.K. Woo, D. Kim, S. Shin, and Y. Yu, “DC suppression in-line digital holographic microscopes on the basis of an intensity-averaging method using variable pixel numbers,” Opt. & Laser Tech. 41, 741–725 (2009).
[CrossRef] [PubMed]

Cho, S.

Dainty, J. C.

J. C. Dainty and W. T. Welford, “Reduction of speckle in image plane hologram reconstruction by moving pupils,” Opt. Commun. 3, 289–294 (1971).
[CrossRef]

Denis, L

L Denis, C Fournier, T Fournel, and C Ducotter, “Numerical suppression of the twin image in in-line holography of a volume of micro-objects,” Meas. Sci. Technol. 19, 1–10 (2008).
[CrossRef]

Depeursinge, C.

Deville, Y.

F. Abrard and Y. Deville, “A time-frequency blind signal separation method applicable to underdetermined mixtures of dependent sources,” Signal Processing 85, 1389–1403 (2005).
[CrossRef]

Ducotter, C

L Denis, C Fournier, T Fournel, and C Ducotter, “Numerical suppression of the twin image in in-line holography of a volume of micro-objects,” Meas. Sci. Technol. 19, 1–10 (2008).
[CrossRef]

Finke, G.

T. Kozacki, M. Kujawińska, G. Finke, W. Zaperty, and B. Hennelly, “Holographic capture and display systems in circular configurations,” J. Disp. Technol. 8, 225–232 (2012).
[CrossRef]

D. P. Kelly, D. S. Monaghan, N. Pandey, T. Kozacki, A. Michalkiewicz, G. Finke, B. M. Hennelly, and M. Kujawinska, “Digital holographic capture and optoelectronic reconstruction for 3D displays,” Int. J. Digital Multimedia Broadcasting 2010, 1–14 (2010).
[CrossRef]

Fournel, T

L Denis, C Fournier, T Fournel, and C Ducotter, “Numerical suppression of the twin image in in-line holography of a volume of micro-objects,” Meas. Sci. Technol. 19, 1–10 (2008).
[CrossRef]

Fournier, C

L Denis, C Fournier, T Fournel, and C Ducotter, “Numerical suppression of the twin image in in-line holography of a volume of micro-objects,” Meas. Sci. Technol. 19, 1–10 (2008).
[CrossRef]

Frauel, Y.

Gonzalez, R. C.

R. C. Gonzalez and R. E. Woods, Digital Image Processing, 3rd ed. (Pearson, 2010).

Hahn, J.

Hennelly, B.

T. Kozacki, M. Kujawińska, G. Finke, W. Zaperty, and B. Hennelly, “Holographic capture and display systems in circular configurations,” J. Disp. Technol. 8, 225–232 (2012).
[CrossRef]

Hennelly, B. M.

D. P. Kelly, D. S. Monaghan, N. Pandey, T. Kozacki, A. Michalkiewicz, G. Finke, B. M. Hennelly, and M. Kujawinska, “Digital holographic capture and optoelectronic reconstruction for 3D displays,” Int. J. Digital Multimedia Broadcasting 2010, 1–14 (2010).
[CrossRef]

B. S. Monaghan, D. P. Kelly, N. Pandey, and B. M. Hennelly, “Twin removal in digital holography using diffuse illumination,” Opt. Lett. 34, 3610–3612 (2009).
[CrossRef] [PubMed]

C. McElhinney, B. M. Hennelly, L. Ahrenberg, and T. J. Naughton, “Removing the twin image in digital holography by segmented filtering of in-focus twin image,” in Optics and Photonics for Information, Proc. SPIE  7072, 707208 (2008).

J. Maycock, B. M. Hennelly, J. B. McDonald, Y. Frauel, A. Castro, B. Javidi, and T. J. Naughton, “Reduction of speckle in digital holography by discrete Fourier filtering,” J. Opt. Soc. Am. A 24, 1617–1622 (2007).
[CrossRef]

D. S. Monaghan, D. P. Kelly, N. Pandey, and B. M. Hennelly, “Twin suppression in digital holography by mean of speckle reduction,” In Proceedings China-Ireland International Conference on Information and Communications Technologies, (Kildare, Ireland, 2009), 237–240.

Javidi, B.

Joyeux, D.

Jüptner, W.P.

U. Schnars and W.P. Jüptner, “Digital recording and numerical reconstruction of hologram,” Meas. Sci. Technol. 13, 85–101 (2002).
[CrossRef]

Kelly, D. P.

D. P. Kelly, D. S. Monaghan, N. Pandey, T. Kozacki, A. Michalkiewicz, G. Finke, B. M. Hennelly, and M. Kujawinska, “Digital holographic capture and optoelectronic reconstruction for 3D displays,” Int. J. Digital Multimedia Broadcasting 2010, 1–14 (2010).
[CrossRef]

B. S. Monaghan, D. P. Kelly, N. Pandey, and B. M. Hennelly, “Twin removal in digital holography using diffuse illumination,” Opt. Lett. 34, 3610–3612 (2009).
[CrossRef] [PubMed]

D. S. Monaghan, D. P. Kelly, N. Pandey, and B. M. Hennelly, “Twin suppression in digital holography by mean of speckle reduction,” In Proceedings China-Ireland International Conference on Information and Communications Technologies, (Kildare, Ireland, 2009), 237–240.

Kim, D.

H. Cho, J.K. Woo, D. Kim, S. Shin, and Y. Yu, “DC suppression in-line digital holographic microscopes on the basis of an intensity-averaging method using variable pixel numbers,” Opt. & Laser Tech. 41, 741–725 (2009).
[CrossRef] [PubMed]

Kim, H.

Koren, G.

Kozacki, T.

T. Kozacki, M. Kujawińska, G. Finke, W. Zaperty, and B. Hennelly, “Holographic capture and display systems in circular configurations,” J. Disp. Technol. 8, 225–232 (2012).
[CrossRef]

D. P. Kelly, D. S. Monaghan, N. Pandey, T. Kozacki, A. Michalkiewicz, G. Finke, B. M. Hennelly, and M. Kujawinska, “Digital holographic capture and optoelectronic reconstruction for 3D displays,” Int. J. Digital Multimedia Broadcasting 2010, 1–14 (2010).
[CrossRef]

Kujawinska, M.

T. Kozacki, M. Kujawińska, G. Finke, W. Zaperty, and B. Hennelly, “Holographic capture and display systems in circular configurations,” J. Disp. Technol. 8, 225–232 (2012).
[CrossRef]

D. P. Kelly, D. S. Monaghan, N. Pandey, T. Kozacki, A. Michalkiewicz, G. Finke, B. M. Hennelly, and M. Kujawinska, “Digital holographic capture and optoelectronic reconstruction for 3D displays,” Int. J. Digital Multimedia Broadcasting 2010, 1–14 (2010).
[CrossRef]

Lee, B.

Manduchi, R.

C. Tomasi and R. Manduchi, “Bilateral filtering for gray and color images,” in Proceedings of 6th IEEE International Conference on Computer Vision (IEEE, 1998), 839–846.

Maycock, J.

McDonald, J. B.

McElhinney, C.

C. McElhinney, B. M. Hennelly, L. Ahrenberg, and T. J. Naughton, “Removing the twin image in digital holography by segmented filtering of in-focus twin image,” in Optics and Photonics for Information, Proc. SPIE  7072, 707208 (2008).

McElhinney, C. P.

Michalkiewicz, A.

D. P. Kelly, D. S. Monaghan, N. Pandey, T. Kozacki, A. Michalkiewicz, G. Finke, B. M. Hennelly, and M. Kujawinska, “Digital holographic capture and optoelectronic reconstruction for 3D displays,” Int. J. Digital Multimedia Broadcasting 2010, 1–14 (2010).
[CrossRef]

Monaghan, B. S.

Monaghan, D. S.

D. P. Kelly, D. S. Monaghan, N. Pandey, T. Kozacki, A. Michalkiewicz, G. Finke, B. M. Hennelly, and M. Kujawinska, “Digital holographic capture and optoelectronic reconstruction for 3D displays,” Int. J. Digital Multimedia Broadcasting 2010, 1–14 (2010).
[CrossRef]

D. S. Monaghan, D. P. Kelly, N. Pandey, and B. M. Hennelly, “Twin suppression in digital holography by mean of speckle reduction,” In Proceedings China-Ireland International Conference on Information and Communications Technologies, (Kildare, Ireland, 2009), 237–240.

Moon, T. K.

T. K. Moon, Mathematical Methods and Algorithms for Signal Processing (Prentice hall, 2009).

Naughton, T. J.

Pandey, N.

D. P. Kelly, D. S. Monaghan, N. Pandey, T. Kozacki, A. Michalkiewicz, G. Finke, B. M. Hennelly, and M. Kujawinska, “Digital holographic capture and optoelectronic reconstruction for 3D displays,” Int. J. Digital Multimedia Broadcasting 2010, 1–14 (2010).
[CrossRef]

B. S. Monaghan, D. P. Kelly, N. Pandey, and B. M. Hennelly, “Twin removal in digital holography using diffuse illumination,” Opt. Lett. 34, 3610–3612 (2009).
[CrossRef] [PubMed]

D. S. Monaghan, D. P. Kelly, N. Pandey, and B. M. Hennelly, “Twin suppression in digital holography by mean of speckle reduction,” In Proceedings China-Ireland International Conference on Information and Communications Technologies, (Kildare, Ireland, 2009), 237–240.

Pavillon, N.

Polack, F.

Schnars, U.

U. Schnars and W.P. Jüptner, “Digital recording and numerical reconstruction of hologram,” Meas. Sci. Technol. 13, 85–101 (2002).
[CrossRef]

Schwider, J.

Seelamantula, C. S.

Shin, S.

H. Cho, J.K. Woo, D. Kim, S. Shin, and Y. Yu, “DC suppression in-line digital holographic microscopes on the basis of an intensity-averaging method using variable pixel numbers,” Opt. & Laser Tech. 41, 741–725 (2009).
[CrossRef] [PubMed]

Stone, J. V.

J. V. Stone, Independent Component Analysis (MIT Press, 2004).

Takaki, Y.

Tomasi, C.

C. Tomasi and R. Manduchi, “Bilateral filtering for gray and color images,” in Proceedings of 6th IEEE International Conference on Computer Vision (IEEE, 1998), 839–846.

Unser, M.

Welford, W. T.

J. C. Dainty and W. T. Welford, “Reduction of speckle in image plane hologram reconstruction by moving pupils,” Opt. Commun. 3, 289–294 (1971).
[CrossRef]

Woo, J.K.

H. Cho, J.K. Woo, D. Kim, S. Shin, and Y. Yu, “DC suppression in-line digital holographic microscopes on the basis of an intensity-averaging method using variable pixel numbers,” Opt. & Laser Tech. 41, 741–725 (2009).
[CrossRef] [PubMed]

Woods, R. E.

R. C. Gonzalez and R. E. Woods, Digital Image Processing, 3rd ed. (Pearson, 2010).

Yokouchi, M.

Yu, Y.

H. Cho, J.K. Woo, D. Kim, S. Shin, and Y. Yu, “DC suppression in-line digital holographic microscopes on the basis of an intensity-averaging method using variable pixel numbers,” Opt. & Laser Tech. 41, 741–725 (2009).
[CrossRef] [PubMed]

Zaperty, W.

T. Kozacki, M. Kujawińska, G. Finke, W. Zaperty, and B. Hennelly, “Holographic capture and display systems in circular configurations,” J. Disp. Technol. 8, 225–232 (2012).
[CrossRef]

Appl. Opt. (2)

Int. J. Digital Multimedia Broadcasting (1)

D. P. Kelly, D. S. Monaghan, N. Pandey, T. Kozacki, A. Michalkiewicz, G. Finke, B. M. Hennelly, and M. Kujawinska, “Digital holographic capture and optoelectronic reconstruction for 3D displays,” Int. J. Digital Multimedia Broadcasting 2010, 1–14 (2010).
[CrossRef]

J. Disp. Technol. (1)

T. Kozacki, M. Kujawińska, G. Finke, W. Zaperty, and B. Hennelly, “Holographic capture and display systems in circular configurations,” J. Disp. Technol. 8, 225–232 (2012).
[CrossRef]

J. Opt. Soc. Am. A (3)

Meas. Sci. Technol. (2)

U. Schnars and W.P. Jüptner, “Digital recording and numerical reconstruction of hologram,” Meas. Sci. Technol. 13, 85–101 (2002).
[CrossRef]

L Denis, C Fournier, T Fournel, and C Ducotter, “Numerical suppression of the twin image in in-line holography of a volume of micro-objects,” Meas. Sci. Technol. 19, 1–10 (2008).
[CrossRef]

Opt. & Laser Tech. (1)

H. Cho, J.K. Woo, D. Kim, S. Shin, and Y. Yu, “DC suppression in-line digital holographic microscopes on the basis of an intensity-averaging method using variable pixel numbers,” Opt. & Laser Tech. 41, 741–725 (2009).
[CrossRef] [PubMed]

Opt. Commun. (1)

J. C. Dainty and W. T. Welford, “Reduction of speckle in image plane hologram reconstruction by moving pupils,” Opt. Commun. 3, 289–294 (1971).
[CrossRef]

Opt. Express (1)

Opt. Lett. (2)

Optics and Photonics for Information (1)

C. McElhinney, B. M. Hennelly, L. Ahrenberg, and T. J. Naughton, “Removing the twin image in digital holography by segmented filtering of in-focus twin image,” in Optics and Photonics for Information, Proc. SPIE  7072, 707208 (2008).

Signal Processing (1)

F. Abrard and Y. Deville, “A time-frequency blind signal separation method applicable to underdetermined mixtures of dependent sources,” Signal Processing 85, 1389–1403 (2005).
[CrossRef]

Other (6)

T. K. Moon, Mathematical Methods and Algorithms for Signal Processing (Prentice hall, 2009).

R. C. Gonzalez and R. E. Woods, Digital Image Processing, 3rd ed. (Pearson, 2010).

J. V. Stone, Independent Component Analysis (MIT Press, 2004).

D. S. Monaghan, D. P. Kelly, N. Pandey, and B. M. Hennelly, “Twin suppression in digital holography by mean of speckle reduction,” In Proceedings China-Ireland International Conference on Information and Communications Technologies, (Kildare, Ireland, 2009), 237–240.

C. Tomasi and R. Manduchi, “Bilateral filtering for gray and color images,” in Proceedings of 6th IEEE International Conference on Computer Vision (IEEE, 1998), 839–846.

V. L. Tuft, HoloVision 2.2 User’s manual ( http://www2.edge.no/projects/holovision/doc/holovision221manual.pdf , 2001).
[PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Input images for segmentation mask generation: (a) In-focus real image; (b) In-focus twin image. Note that the intensity values are doubled for better illustration.

Fig. 2
Fig. 2

Overall scheme to generate the nonlinear segmentation mask.

Fig. 3
Fig. 3

Speckle noise suppression by a bilateral filter: (a) In-focus real image; (b) In-focus twin image. Note that the intensity values are doubled for better illustration.

Fig. 4
Fig. 4

Separated images by applying the weighted inverse matrix: (a) for an in-focus real image; (b) for an in-focus twin image.

Fig. 5
Fig. 5

Generated segmentation mask by each algorithm. From left to right: (a) Segmentation mask by overlapping block variance; (b) Manually generated mask; and (c) Segmentation mask from the proposed scheme.

Fig. 6
Fig. 6

Reconstructed digital holography images by the fresnel approximation for each algorithm. From top-left to bottom-right: (a) Result without twin image reduction; (b) Result with overlapping block variance-based segmentation mask; (c) Result with manually generated segmentation mask; and (d) Result with the proposed segmentation mask. Note that the intensity values are doubled for better illustration.

Fig. 7
Fig. 7

Speckle noise suppression results after applying a bilateral filter to reconstructed digital holography image. From left to right: (a) Result without twin image reduction; and (b) Result with the proposed segmentation mask. Note that the intensity values are doubled for better illustration.

Fig. 8
Fig. 8

Graphical comparison for the results without and with the proposed scheme in the solid line in Fig. 7(a) and 7(b). Black-dotted line and gray-solid line represent the crossover intensity values from without- and with-applying the proposed scheme, respectively.

Tables (1)

Tables Icon

Algorithm 1: Twin image suppression scheme by a nonlinear segmentation mask

Equations (12)

Equations on this page are rendered with MathJax. Learn more.

E O ( x , y ) = a O ( x , y ) e i φ O ( x , y ) E R ( x , y ) = a R ( x , y ) e i φ R ( x , y )
I ( x , y ) = | E O ( x , y ) + E R ( x , y ) | 2 = a R 2 + a O 2 + E O ( x , y ) E R * ( x , y ) + E R ( x , y ) E O * ( x , y )
H b = exp { 1 2 [ d ( ξ , x ) σ s ] 2 } exp { 1 2 [ δ ( ξ , x ) σ r ] 2 }
I = A S [ i R 2 i T 2 ] = [ a 11 a 12 a 21 a 22 ] [ s R s T ]
S = A 1 I .
A 1 = [ 1 a 11 1 a 11 1 a 12 1 a 12 ] [ 1 1 1 c 1 1 c 2 ] 1
( i R 2 ) ( i T 2 ) = a 11 S R ( w ) + a 12 S T ( w ) a 21 S R ( w ) + a 22 S T ( w )
T = int 1 N × M i N j M s R ( i , j )
Q t ( x ) = 2 × D b × [ 1 + exp ( x × 2 T × w ) ] 1 , { x : x ( 0 , 1 , , T ) }
i M = { 1 , if i i R ( i , j ) > μ 0 , otherwise where , i i R ( i , j ) = 1 i R 2 ( i , j ) and μ = 1 N × M i N j M i i R ( i , j ) .
H = { 1 , if i M = = 1 Q t [ s R ( i , j ) ] , otherwise
i T s = i T 2 H

Metrics