Abstract

We have demonstrated a laser-diode pumped continuous-wave (CW) and passively Q-switched laser with a Nd:Sc0.2Y0.8SiO5 (Nd:SYSO) crystal for the first time. In the CW operation, the laser was found to oscillate in tri-wavelength regime at 1074.8 nm, 1076.6 nm and 1078.2 nm, respectively. The maximum CW output power of 1.96 W was obtained, giving an optical-to-optical conversion efficiency of 35% and a slope efficiency of 39%. Using either Cr4+:YAG or V3+:YAG crystal as saturable absorber, stable passively Q-switched laser was obtained at dual-wavelength of 1074.8 nm and 1078.2 nm with orthogonal-polarization. The maximum average output power, pulse repetition rate, and shortest pulse width were 1.03 W, 50 kHz, and 24 ns, respectively. The passively Q-switched dual-wavelength laser could be potentially used as a source for generation of terahertz radiation.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. W. E. van Eijk, “Inorganic scintillators in medical imaging,” Phys. Med. Biol. 47(8), R85–R106 (2002).
    [CrossRef] [PubMed]
  2. P. Dorenbos, J. T. M. de Haas, C. W. E. van Eijk, C. L. Melcher, and J. S. Schweitzer, “Non-linear response in the scintillation yield of Lu2SiO5:Ce+3,” IEEE Trans. Nucl. Sci. 41(4), 735–737 (1994).
    [CrossRef]
  3. C. M. Pepin, P. Berard, A. L. Perrot, C. Pepin, D. Houde, R. Lecomte, C. L. Melcher, and H. Dautet, “Properties of LYSO and recent LSO scintillators for phoswich PET detectors,” IEEE Trans. Nucl. Sci. 51(3), 789–795 (2004).
    [CrossRef]
  4. S. Zhuang, D. Li, X. Xu, Z. Wang, H. Yu, J. Xu, L. Chen, Y. Zhao, L. Guo, and X. Xu, “Continuous-wave and actively Q-switched Nd:LSO crystal lasers,” Appl. Phys. B 107(1), 41–45 (2012).
    [CrossRef]
  5. Z. H. Cong, D. Y. Tang, W. De Tan, J. Zhang, C. W. Xu, D. W. Luo, X. D. Xu, D. Z. Li, J. Xu, X. Y. Zhang, and Q. P. Wang, “Dual-wavelength passively mode-locked Nd:LuYSiO5 laser with SESAM,” Opt. Express 19(5), 3984–3989 (2011).
    [CrossRef] [PubMed]
  6. B. K. Brickeen and E. Geathers, “Laser performance of Yb3+ doped oxyorthosilicates LYSO and GYSO,” Opt. Express 17(10), 8461–8466 (2009).
    [CrossRef] [PubMed]
  7. B. Q. Yao, Z. P. Yu, X. M. Duan, Z. M. Jiang, Y. J. Zhang, Y. Z. Wang, and G. J. Zhao, “Continuous-wave laser action around 2-µm in Ho3+:Lu2SiO5,” Opt. Express 17(15), 12582–12587 (2009).
    [CrossRef] [PubMed]
  8. F. Thibault, D. Pelenc, F. Druon, Y. Zaouter, M. Jacquemet, and P. Georges, “Efficient diode-pumped Yb3+:Y2SiO5 and Yb3+:Lu2SiO5 high-power femtosecond laser operation,” Opt. Lett. 31(10), 1555–1557 (2006).
    [CrossRef] [PubMed]
  9. B. Comaskey, G. F. Albrecht, R. J. Beach, B. D. Moran, and R. W. Solarz, “Flash-lamp-pumped laser operation of Nd:Y2SiO5 at 1.074 µm,” Opt. Lett. 18(23), 2029–2031 (1993).
    [CrossRef] [PubMed]
  10. D. Findlay and R. A. Clay, “The measurement of internal losses in 4-level lasers,” Phys. Lett. 20(3), 277–278 (1966).
    [CrossRef]
  11. D. Creeden, J. C. McCarthy, P. A. Ketteridge, P. G. Schunemann, T. Southward, J. J. Komiak, and E. P. Chicklis, “Compact, high average power, fiber-pumped terahertz source for active real-time imaging of concealed objects,” Opt. Express 15(10), 6478–6483 (2007).
    [CrossRef] [PubMed]

2012 (1)

S. Zhuang, D. Li, X. Xu, Z. Wang, H. Yu, J. Xu, L. Chen, Y. Zhao, L. Guo, and X. Xu, “Continuous-wave and actively Q-switched Nd:LSO crystal lasers,” Appl. Phys. B 107(1), 41–45 (2012).
[CrossRef]

2011 (1)

2009 (2)

2007 (1)

2006 (1)

2004 (1)

C. M. Pepin, P. Berard, A. L. Perrot, C. Pepin, D. Houde, R. Lecomte, C. L. Melcher, and H. Dautet, “Properties of LYSO and recent LSO scintillators for phoswich PET detectors,” IEEE Trans. Nucl. Sci. 51(3), 789–795 (2004).
[CrossRef]

2002 (1)

C. W. E. van Eijk, “Inorganic scintillators in medical imaging,” Phys. Med. Biol. 47(8), R85–R106 (2002).
[CrossRef] [PubMed]

1994 (1)

P. Dorenbos, J. T. M. de Haas, C. W. E. van Eijk, C. L. Melcher, and J. S. Schweitzer, “Non-linear response in the scintillation yield of Lu2SiO5:Ce+3,” IEEE Trans. Nucl. Sci. 41(4), 735–737 (1994).
[CrossRef]

1993 (1)

1966 (1)

D. Findlay and R. A. Clay, “The measurement of internal losses in 4-level lasers,” Phys. Lett. 20(3), 277–278 (1966).
[CrossRef]

Albrecht, G. F.

Beach, R. J.

Berard, P.

C. M. Pepin, P. Berard, A. L. Perrot, C. Pepin, D. Houde, R. Lecomte, C. L. Melcher, and H. Dautet, “Properties of LYSO and recent LSO scintillators for phoswich PET detectors,” IEEE Trans. Nucl. Sci. 51(3), 789–795 (2004).
[CrossRef]

Brickeen, B. K.

Chen, L.

S. Zhuang, D. Li, X. Xu, Z. Wang, H. Yu, J. Xu, L. Chen, Y. Zhao, L. Guo, and X. Xu, “Continuous-wave and actively Q-switched Nd:LSO crystal lasers,” Appl. Phys. B 107(1), 41–45 (2012).
[CrossRef]

Chicklis, E. P.

Clay, R. A.

D. Findlay and R. A. Clay, “The measurement of internal losses in 4-level lasers,” Phys. Lett. 20(3), 277–278 (1966).
[CrossRef]

Comaskey, B.

Cong, Z. H.

Creeden, D.

Dautet, H.

C. M. Pepin, P. Berard, A. L. Perrot, C. Pepin, D. Houde, R. Lecomte, C. L. Melcher, and H. Dautet, “Properties of LYSO and recent LSO scintillators for phoswich PET detectors,” IEEE Trans. Nucl. Sci. 51(3), 789–795 (2004).
[CrossRef]

de Haas, J. T. M.

P. Dorenbos, J. T. M. de Haas, C. W. E. van Eijk, C. L. Melcher, and J. S. Schweitzer, “Non-linear response in the scintillation yield of Lu2SiO5:Ce+3,” IEEE Trans. Nucl. Sci. 41(4), 735–737 (1994).
[CrossRef]

De Tan, W.

Dorenbos, P.

P. Dorenbos, J. T. M. de Haas, C. W. E. van Eijk, C. L. Melcher, and J. S. Schweitzer, “Non-linear response in the scintillation yield of Lu2SiO5:Ce+3,” IEEE Trans. Nucl. Sci. 41(4), 735–737 (1994).
[CrossRef]

Druon, F.

Duan, X. M.

Findlay, D.

D. Findlay and R. A. Clay, “The measurement of internal losses in 4-level lasers,” Phys. Lett. 20(3), 277–278 (1966).
[CrossRef]

Geathers, E.

Georges, P.

Guo, L.

S. Zhuang, D. Li, X. Xu, Z. Wang, H. Yu, J. Xu, L. Chen, Y. Zhao, L. Guo, and X. Xu, “Continuous-wave and actively Q-switched Nd:LSO crystal lasers,” Appl. Phys. B 107(1), 41–45 (2012).
[CrossRef]

Houde, D.

C. M. Pepin, P. Berard, A. L. Perrot, C. Pepin, D. Houde, R. Lecomte, C. L. Melcher, and H. Dautet, “Properties of LYSO and recent LSO scintillators for phoswich PET detectors,” IEEE Trans. Nucl. Sci. 51(3), 789–795 (2004).
[CrossRef]

Jacquemet, M.

Jiang, Z. M.

Ketteridge, P. A.

Komiak, J. J.

Lecomte, R.

C. M. Pepin, P. Berard, A. L. Perrot, C. Pepin, D. Houde, R. Lecomte, C. L. Melcher, and H. Dautet, “Properties of LYSO and recent LSO scintillators for phoswich PET detectors,” IEEE Trans. Nucl. Sci. 51(3), 789–795 (2004).
[CrossRef]

Li, D.

S. Zhuang, D. Li, X. Xu, Z. Wang, H. Yu, J. Xu, L. Chen, Y. Zhao, L. Guo, and X. Xu, “Continuous-wave and actively Q-switched Nd:LSO crystal lasers,” Appl. Phys. B 107(1), 41–45 (2012).
[CrossRef]

Li, D. Z.

Luo, D. W.

McCarthy, J. C.

Melcher, C. L.

C. M. Pepin, P. Berard, A. L. Perrot, C. Pepin, D. Houde, R. Lecomte, C. L. Melcher, and H. Dautet, “Properties of LYSO and recent LSO scintillators for phoswich PET detectors,” IEEE Trans. Nucl. Sci. 51(3), 789–795 (2004).
[CrossRef]

P. Dorenbos, J. T. M. de Haas, C. W. E. van Eijk, C. L. Melcher, and J. S. Schweitzer, “Non-linear response in the scintillation yield of Lu2SiO5:Ce+3,” IEEE Trans. Nucl. Sci. 41(4), 735–737 (1994).
[CrossRef]

Moran, B. D.

Pelenc, D.

Pepin, C.

C. M. Pepin, P. Berard, A. L. Perrot, C. Pepin, D. Houde, R. Lecomte, C. L. Melcher, and H. Dautet, “Properties of LYSO and recent LSO scintillators for phoswich PET detectors,” IEEE Trans. Nucl. Sci. 51(3), 789–795 (2004).
[CrossRef]

Pepin, C. M.

C. M. Pepin, P. Berard, A. L. Perrot, C. Pepin, D. Houde, R. Lecomte, C. L. Melcher, and H. Dautet, “Properties of LYSO and recent LSO scintillators for phoswich PET detectors,” IEEE Trans. Nucl. Sci. 51(3), 789–795 (2004).
[CrossRef]

Perrot, A. L.

C. M. Pepin, P. Berard, A. L. Perrot, C. Pepin, D. Houde, R. Lecomte, C. L. Melcher, and H. Dautet, “Properties of LYSO and recent LSO scintillators for phoswich PET detectors,” IEEE Trans. Nucl. Sci. 51(3), 789–795 (2004).
[CrossRef]

Schunemann, P. G.

Schweitzer, J. S.

P. Dorenbos, J. T. M. de Haas, C. W. E. van Eijk, C. L. Melcher, and J. S. Schweitzer, “Non-linear response in the scintillation yield of Lu2SiO5:Ce+3,” IEEE Trans. Nucl. Sci. 41(4), 735–737 (1994).
[CrossRef]

Solarz, R. W.

Southward, T.

Tang, D. Y.

Thibault, F.

van Eijk, C. W. E.

C. W. E. van Eijk, “Inorganic scintillators in medical imaging,” Phys. Med. Biol. 47(8), R85–R106 (2002).
[CrossRef] [PubMed]

P. Dorenbos, J. T. M. de Haas, C. W. E. van Eijk, C. L. Melcher, and J. S. Schweitzer, “Non-linear response in the scintillation yield of Lu2SiO5:Ce+3,” IEEE Trans. Nucl. Sci. 41(4), 735–737 (1994).
[CrossRef]

Wang, Q. P.

Wang, Y. Z.

Wang, Z.

S. Zhuang, D. Li, X. Xu, Z. Wang, H. Yu, J. Xu, L. Chen, Y. Zhao, L. Guo, and X. Xu, “Continuous-wave and actively Q-switched Nd:LSO crystal lasers,” Appl. Phys. B 107(1), 41–45 (2012).
[CrossRef]

Xu, C. W.

Xu, J.

S. Zhuang, D. Li, X. Xu, Z. Wang, H. Yu, J. Xu, L. Chen, Y. Zhao, L. Guo, and X. Xu, “Continuous-wave and actively Q-switched Nd:LSO crystal lasers,” Appl. Phys. B 107(1), 41–45 (2012).
[CrossRef]

Z. H. Cong, D. Y. Tang, W. De Tan, J. Zhang, C. W. Xu, D. W. Luo, X. D. Xu, D. Z. Li, J. Xu, X. Y. Zhang, and Q. P. Wang, “Dual-wavelength passively mode-locked Nd:LuYSiO5 laser with SESAM,” Opt. Express 19(5), 3984–3989 (2011).
[CrossRef] [PubMed]

Xu, X.

S. Zhuang, D. Li, X. Xu, Z. Wang, H. Yu, J. Xu, L. Chen, Y. Zhao, L. Guo, and X. Xu, “Continuous-wave and actively Q-switched Nd:LSO crystal lasers,” Appl. Phys. B 107(1), 41–45 (2012).
[CrossRef]

S. Zhuang, D. Li, X. Xu, Z. Wang, H. Yu, J. Xu, L. Chen, Y. Zhao, L. Guo, and X. Xu, “Continuous-wave and actively Q-switched Nd:LSO crystal lasers,” Appl. Phys. B 107(1), 41–45 (2012).
[CrossRef]

Xu, X. D.

Yao, B. Q.

Yu, H.

S. Zhuang, D. Li, X. Xu, Z. Wang, H. Yu, J. Xu, L. Chen, Y. Zhao, L. Guo, and X. Xu, “Continuous-wave and actively Q-switched Nd:LSO crystal lasers,” Appl. Phys. B 107(1), 41–45 (2012).
[CrossRef]

Yu, Z. P.

Zaouter, Y.

Zhang, J.

Zhang, X. Y.

Zhang, Y. J.

Zhao, G. J.

Zhao, Y.

S. Zhuang, D. Li, X. Xu, Z. Wang, H. Yu, J. Xu, L. Chen, Y. Zhao, L. Guo, and X. Xu, “Continuous-wave and actively Q-switched Nd:LSO crystal lasers,” Appl. Phys. B 107(1), 41–45 (2012).
[CrossRef]

Zhuang, S.

S. Zhuang, D. Li, X. Xu, Z. Wang, H. Yu, J. Xu, L. Chen, Y. Zhao, L. Guo, and X. Xu, “Continuous-wave and actively Q-switched Nd:LSO crystal lasers,” Appl. Phys. B 107(1), 41–45 (2012).
[CrossRef]

Appl. Phys. B (1)

S. Zhuang, D. Li, X. Xu, Z. Wang, H. Yu, J. Xu, L. Chen, Y. Zhao, L. Guo, and X. Xu, “Continuous-wave and actively Q-switched Nd:LSO crystal lasers,” Appl. Phys. B 107(1), 41–45 (2012).
[CrossRef]

IEEE Trans. Nucl. Sci. (2)

P. Dorenbos, J. T. M. de Haas, C. W. E. van Eijk, C. L. Melcher, and J. S. Schweitzer, “Non-linear response in the scintillation yield of Lu2SiO5:Ce+3,” IEEE Trans. Nucl. Sci. 41(4), 735–737 (1994).
[CrossRef]

C. M. Pepin, P. Berard, A. L. Perrot, C. Pepin, D. Houde, R. Lecomte, C. L. Melcher, and H. Dautet, “Properties of LYSO and recent LSO scintillators for phoswich PET detectors,” IEEE Trans. Nucl. Sci. 51(3), 789–795 (2004).
[CrossRef]

Opt. Express (4)

Opt. Lett. (2)

Phys. Lett. (1)

D. Findlay and R. A. Clay, “The measurement of internal losses in 4-level lasers,” Phys. Lett. 20(3), 277–278 (1966).
[CrossRef]

Phys. Med. Biol. (1)

C. W. E. van Eijk, “Inorganic scintillators in medical imaging,” Phys. Med. Biol. 47(8), R85–R106 (2002).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

The schematic arrangement of experimental laser setup.

Fig. 2
Fig. 2

(a) Room temperature absorption spectrum of the Nd:SYSO crystal. (b) Room temperature emission spectrum of the Nd:SYSO crystal.

Fig. 3
Fig. 3

The relationship between CW output power and absorbed pump power.

Fig. 4
Fig. 4

(a), (b), (c) CW and passively Q-switched laser spectra. (d), (e) The reflection and transmission laser spectra after Glan-Taylor polarizer

Fig. 5
Fig. 5

(a) The PQS output power with respect to absorbed pump power. (b) The variation of the pulse width and repetition rate versus the pump power.

Fig. 6
Fig. 6

(a) Pulse profile with a width of 24 ns. Inset: pulse train with a repetition rate of 50 kHz. (b) The 2D and 3D Q-switched beam spatial profile at the highest average output power.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

P th =K(δ+T).

Metrics